Skip to main content
Erschienen in: Cancer and Metastasis Reviews 2/2015

01.06.2015

Allosteric therapies for lung cancer

verfasst von: Ye Ling, Meiling Jing, Xiang-dong Wang

Erschienen in: Cancer and Metastasis Reviews | Ausgabe 2/2015

Einloggen, um Zugang zu erhalten

Abstract

Allostery is a regulation at a distance by conveying information from one site to another and an intrinsic property of dynamic proteins. Allostery plays an essential role in receptor trafficking, signal transmission, controlled catalysis, gene turn on/off, or cell apoptosis. Allosteric mutations are considered as one of causes responsible for cancer development, leading to “allosteric diseases” by stabilizing an active or inactive conformation or changing the dynamic distribution of preexisting propagation pathways. The present article mainly focuses on the potential of allosteric therapies for lung cancer. Allosteric drugs may have several advantages over traditional drugs. The epidermal growth factor receptor mutations and signaling pathways downstream (such as PI3K/AKT/mTOR and RAS/RAF/MEK/ERK pathways) were suggested to play a key role in lung cancer and considered as targets of allosteric therapy. Some allosteric inhibitors for lung cancer-specific targets and a series of preclinical trials of allosteric inhibitors for lung cancer have been developed and reported. We expect that allosteric therapies will gain more attentions to develop combinatorial strategies for lung cancer and metastasis.
Literatur
1.
Zurück zum Zitat Di Paola, L., & Giuliani, A. (2015). Protein contact network topology: a natural language for allostery. Current Opinion in Structural Biology, 31, 43–48.PubMedCrossRef Di Paola, L., & Giuliani, A. (2015). Protein contact network topology: a natural language for allostery. Current Opinion in Structural Biology, 31, 43–48.PubMedCrossRef
2.
Zurück zum Zitat Nussinov, R., & Tsai, C. J. (2013). Allostery in disease and in drug discovery. Cell, 153(2), 293–305.PubMedCrossRef Nussinov, R., & Tsai, C. J. (2013). Allostery in disease and in drug discovery. Cell, 153(2), 293–305.PubMedCrossRef
3.
Zurück zum Zitat Tsai, C. J., Del Sol, A., & Nussinov, R. (2009). Protein allostery, signal trans- mission and dynamics: a classification scheme of allosteric mechanisms. Molecular Biosystems, 5(3), 207–216.PubMedCentralPubMedCrossRef Tsai, C. J., Del Sol, A., & Nussinov, R. (2009). Protein allostery, signal trans- mission and dynamics: a classification scheme of allosteric mechanisms. Molecular Biosystems, 5(3), 207–216.PubMedCentralPubMedCrossRef
4.
Zurück zum Zitat Changeux, J. P. (2012). Allostery and the Monod-Wyman-Changeux model after 50 years. Annual Review of Biophysics, 41, 103–133.PubMedCrossRef Changeux, J. P. (2012). Allostery and the Monod-Wyman-Changeux model after 50 years. Annual Review of Biophysics, 41, 103–133.PubMedCrossRef
5.
Zurück zum Zitat Collier, G., & Ortiz, V. (2013). Emerging computational approaches for the study of protein allostery. Archives Biochemistry and Biophysics, 538(1), 6–15.CrossRef Collier, G., & Ortiz, V. (2013). Emerging computational approaches for the study of protein allostery. Archives Biochemistry and Biophysics, 538(1), 6–15.CrossRef
6.
Zurück zum Zitat Manley, G., & Loria, J. P. (2012). NMR insights into protein allostery. Archives Biochemistry and Biophysics, 519(2), 223–231.CrossRef Manley, G., & Loria, J. P. (2012). NMR insights into protein allostery. Archives Biochemistry and Biophysics, 519(2), 223–231.CrossRef
7.
Zurück zum Zitat Fenwick, R. B., Esteban-Martín, S., & Salvatella, X. (2014). The ensemble nature of allostery. Nature, 508(7496), 331–339.CrossRef Fenwick, R. B., Esteban-Martín, S., & Salvatella, X. (2014). The ensemble nature of allostery. Nature, 508(7496), 331–339.CrossRef
8.
Zurück zum Zitat Strickland, D., Moffat, K., & Sosnick, T. R. (2008). Light-activated DNA binding in a designed allosteric protein. Proceedings of the National Academy of Sciences of the United States of America, 105(31), 10709–10714.PubMedCentralPubMedCrossRef Strickland, D., Moffat, K., & Sosnick, T. R. (2008). Light-activated DNA binding in a designed allosteric protein. Proceedings of the National Academy of Sciences of the United States of America, 105(31), 10709–10714.PubMedCentralPubMedCrossRef
9.
Zurück zum Zitat Csermely, P., Palotai, R., & Nussinov, R. (2010). Induced fit, conformational selection and independent dynamic segments: an extended view of binding events. Trends in Biochemical Sciences, 35(10), 539–546.PubMedCentralPubMedCrossRef Csermely, P., Palotai, R., & Nussinov, R. (2010). Induced fit, conformational selection and independent dynamic segments: an extended view of binding events. Trends in Biochemical Sciences, 35(10), 539–546.PubMedCentralPubMedCrossRef
10.
Zurück zum Zitat Mittag, T., Kay, L. E., & Forman-Kay, J. D. (2010). Protein dynamics and conformational disorder in molecular recognition. Journal of Molecular Recognition, 23(2), 105–116.PubMed Mittag, T., Kay, L. E., & Forman-Kay, J. D. (2010). Protein dynamics and conformational disorder in molecular recognition. Journal of Molecular Recognition, 23(2), 105–116.PubMed
11.
Zurück zum Zitat Nussinov, R., Tsai, C. J., Xin, F., & Radivojac, P. (2012). Allosteric post-translational modification codes. Trends in Biochemical Sciences, 37(10), 447–455.PubMedCrossRef Nussinov, R., Tsai, C. J., Xin, F., & Radivojac, P. (2012). Allosteric post-translational modification codes. Trends in Biochemical Sciences, 37(10), 447–455.PubMedCrossRef
12.
Zurück zum Zitat Ma, B., Tsai, C. J., Haliloğlu, T., & Nussinov, R. (2011). Dynamic allostery: linkers are not merely flexible. Structure, 19(7), 907–917.PubMedCrossRef Ma, B., Tsai, C. J., Haliloğlu, T., & Nussinov, R. (2011). Dynamic allostery: linkers are not merely flexible. Structure, 19(7), 907–917.PubMedCrossRef
13.
Zurück zum Zitat del Sol, A., Tsai, C. J., Ma, B., & Nussinov, R. (2009). The origin of allosteric functional modulation: multiple pre-existing pathways. Structure, 17(8), 1042–1050.PubMedCentralPubMedCrossRef del Sol, A., Tsai, C. J., Ma, B., & Nussinov, R. (2009). The origin of allosteric functional modulation: multiple pre-existing pathways. Structure, 17(8), 1042–1050.PubMedCentralPubMedCrossRef
14.
Zurück zum Zitat Tsai, C. J., del Sol, A., & Nussinov, R. (2008). Allostery: absence of a change in shape does not imply that allostery is not at play. Journal of Molecular Biology, 378(1), 1–11.PubMedCentralPubMedCrossRef Tsai, C. J., del Sol, A., & Nussinov, R. (2008). Allostery: absence of a change in shape does not imply that allostery is not at play. Journal of Molecular Biology, 378(1), 1–11.PubMedCentralPubMedCrossRef
15.
Zurück zum Zitat Boehr, D. D., Nussinov, R., & Wright, P. E. (2009). The role of dynamic conformational ensembles in biomolecular recognition. Nature Chemical Biology, 5(11), 789–796.PubMedCentralPubMedCrossRef Boehr, D. D., Nussinov, R., & Wright, P. E. (2009). The role of dynamic conformational ensembles in biomolecular recognition. Nature Chemical Biology, 5(11), 789–796.PubMedCentralPubMedCrossRef
16.
Zurück zum Zitat Kar, G., Keskin, O., Gursoy, A., & Nussinov, R. (2010). Allostery and population shift in drug discovery. Current Opinion in Pharmacology, 10(6), 715–722.PubMedCrossRef Kar, G., Keskin, O., Gursoy, A., & Nussinov, R. (2010). Allostery and population shift in drug discovery. Current Opinion in Pharmacology, 10(6), 715–722.PubMedCrossRef
17.
Zurück zum Zitat Popovych, N., Sun, S., Ebright, R. H., & Kalodimos, C. G. (2006). Dynamically driven protein allostery. Nature Structural & Molecular Biology, 13(9), 831–838.CrossRef Popovych, N., Sun, S., Ebright, R. H., & Kalodimos, C. G. (2006). Dynamically driven protein allostery. Nature Structural & Molecular Biology, 13(9), 831–838.CrossRef
18.
Zurück zum Zitat Urwyler, S. (2011). Allosteric modulation of family C G-protein-coupled receptors: from molecular insights to therapeutic perspectives. Pharmacological Reviews, 63(1), 59–126.PubMedCrossRef Urwyler, S. (2011). Allosteric modulation of family C G-protein-coupled receptors: from molecular insights to therapeutic perspectives. Pharmacological Reviews, 63(1), 59–126.PubMedCrossRef
19.
Zurück zum Zitat De Lean, A., Stadel, J. M., & Lefkowitz, R. J. (1980). A ternary complex model explains the agonist-specific binding properties of the adenylate cyclase-coupled beta- adrenergic receptor. Journal of Biological Chemistry, 255(15), 7108–7117.PubMed De Lean, A., Stadel, J. M., & Lefkowitz, R. J. (1980). A ternary complex model explains the agonist-specific binding properties of the adenylate cyclase-coupled beta- adrenergic receptor. Journal of Biological Chemistry, 255(15), 7108–7117.PubMed
20.
Zurück zum Zitat Keov, P., Sexton, P. M., & Christopoulos, A. (2011). Allosteric modulation of G protein-coupled receptors: a pharmacological perspective. Neuropharmacology, 60(1), 24–35.PubMedCrossRef Keov, P., Sexton, P. M., & Christopoulos, A. (2011). Allosteric modulation of G protein-coupled receptors: a pharmacological perspective. Neuropharmacology, 60(1), 24–35.PubMedCrossRef
21.
Zurück zum Zitat Leach, K., Loiacono, R. E., Felder, C. C., McKinzie, D. L., Mogg, A., Shaw, D. B., Sexton, P. M., & Christopoulos, A. (2010). Molecular mechanisms of action and in vivo validation of an M4 muscarinic acetylcholine receptor allosteric modulator with potential antipsychotic properties. Neuropsychopharmacology, 35(4), 855–869.PubMedCentralPubMedCrossRef Leach, K., Loiacono, R. E., Felder, C. C., McKinzie, D. L., Mogg, A., Shaw, D. B., Sexton, P. M., & Christopoulos, A. (2010). Molecular mechanisms of action and in vivo validation of an M4 muscarinic acetylcholine receptor allosteric modulator with potential antipsychotic properties. Neuropsychopharmacology, 35(4), 855–869.PubMedCentralPubMedCrossRef
22.
Zurück zum Zitat Suratman, S., Leach, K., Sexton, P., Felder, C., Loiacono, R., & Christopoulos, A. (2011). Impact of species variability and ‘probe-dependence’ on the detection and in vivo validation of allosteric modulation at the M4 muscarinic acetylcholine receptor. British Journal of Pharmacology, 162(7), 1659–1670.PubMedCentralPubMedCrossRef Suratman, S., Leach, K., Sexton, P., Felder, C., Loiacono, R., & Christopoulos, A. (2011). Impact of species variability and ‘probe-dependence’ on the detection and in vivo validation of allosteric modulation at the M4 muscarinic acetylcholine receptor. British Journal of Pharmacology, 162(7), 1659–1670.PubMedCentralPubMedCrossRef
23.
Zurück zum Zitat Valant, C., Felder, C. C., Sexton, P. M., & Christopoulos, A. (2012). Probe dependence in the allosteric modulation of a G protein-coupled receptor: implications for detection and validation of allosteric ligand effects. Molecular Pharmacology, 81(1), 41–52.PubMedCrossRef Valant, C., Felder, C. C., Sexton, P. M., & Christopoulos, A. (2012). Probe dependence in the allosteric modulation of a G protein-coupled receptor: implications for detection and validation of allosteric ligand effects. Molecular Pharmacology, 81(1), 41–52.PubMedCrossRef
24.
Zurück zum Zitat Gregory, K. J., Dong, E. N., Meiler, J., & Conn, P. J. (2011). Allosteric modulation of metabotropic glutamate receptors: structural insights and therapeutic potential. Neuropharmacology, 60(1), 66–81.PubMedCentralPubMedCrossRef Gregory, K. J., Dong, E. N., Meiler, J., & Conn, P. J. (2011). Allosteric modulation of metabotropic glutamate receptors: structural insights and therapeutic potential. Neuropharmacology, 60(1), 66–81.PubMedCentralPubMedCrossRef
25.
Zurück zum Zitat Hall, D. A. (2000). Modeling the functional effects of allosteric modulators at pharmacological receptors: an extension of the two-state model of receptor activation. Molecular Pharmacology, 58(6), 1412–1423.PubMed Hall, D. A. (2000). Modeling the functional effects of allosteric modulators at pharmacological receptors: an extension of the two-state model of receptor activation. Molecular Pharmacology, 58(6), 1412–1423.PubMed
26.
Zurück zum Zitat Christopoulos, A., & Kenakin, T. (2002). G protein-coupled receptor allosterism and complexing. Pharmacological Reviews, 54(2), 323–374.PubMedCrossRef Christopoulos, A., & Kenakin, T. (2002). G protein-coupled receptor allosterism and complexing. Pharmacological Reviews, 54(2), 323–374.PubMedCrossRef
27.
Zurück zum Zitat Nussinov, R., Tsai, C. J., & Ma, B. (2013). The underappreciated role of allostery in the cellular network. Annual Review of Biophysics, 42, 169–189.PubMedCrossRef Nussinov, R., Tsai, C. J., & Ma, B. (2013). The underappreciated role of allostery in the cellular network. Annual Review of Biophysics, 42, 169–189.PubMedCrossRef
28.
Zurück zum Zitat Tzeng, S. R., & Kalodimos, C. G. (2011). Protein dynamics and allostery: an NMR view. Current Opinion in Structural Biology, 21(1), 62–67.PubMedCrossRef Tzeng, S. R., & Kalodimos, C. G. (2011). Protein dynamics and allostery: an NMR view. Current Opinion in Structural Biology, 21(1), 62–67.PubMedCrossRef
29.
Zurück zum Zitat Popovych, N., Tzeng, S. R., Tonelli, M., Ebright, R. H., & Kalodimos, C. G. (2009). Structural basis for cAMP-mediated allosteric control of the catabolite activator protein. Proceedings of the National Academy of Sciences of the United States of America, 106(17), 6927–6932.PubMedCentralPubMedCrossRef Popovych, N., Tzeng, S. R., Tonelli, M., Ebright, R. H., & Kalodimos, C. G. (2009). Structural basis for cAMP-mediated allosteric control of the catabolite activator protein. Proceedings of the National Academy of Sciences of the United States of America, 106(17), 6927–6932.PubMedCentralPubMedCrossRef
30.
Zurück zum Zitat Tzeng, S. R., & Kalodimos, C. G. (2009). Dynamic activation of an allosteric regulatory protein. Nature, 462(7271), 368–372.PubMedCrossRef Tzeng, S. R., & Kalodimos, C. G. (2009). Dynamic activation of an allosteric regulatory protein. Nature, 462(7271), 368–372.PubMedCrossRef
31.
Zurück zum Zitat Zaytseva, Y. Y., Valentino, J. D., Gulhati, P., & Evers, B. M. (2012). mTOR inhibitors in cancer therapy. Cancer Letters, 319(1), 1–7.PubMedCrossRef Zaytseva, Y. Y., Valentino, J. D., Gulhati, P., & Evers, B. M. (2012). mTOR inhibitors in cancer therapy. Cancer Letters, 319(1), 1–7.PubMedCrossRef
32.
Zurück zum Zitat Goncharova, E. A. (2013). mTOR and vascular remodeling in lung diseases: current challenges and therapeutic prospects. FASEB Journal, 27(5), 1796–1807.PubMedCentralPubMedCrossRef Goncharova, E. A. (2013). mTOR and vascular remodeling in lung diseases: current challenges and therapeutic prospects. FASEB Journal, 27(5), 1796–1807.PubMedCentralPubMedCrossRef
33.
Zurück zum Zitat Geserick, C., Meyer, H. A., & Haendler, B. (2005). The role of DNA response elements as allosteric modulators of steroid receptor function. Molecular and Cellular Endocrinology, 236(1-2), 1–7.PubMedCrossRef Geserick, C., Meyer, H. A., & Haendler, B. (2005). The role of DNA response elements as allosteric modulators of steroid receptor function. Molecular and Cellular Endocrinology, 236(1-2), 1–7.PubMedCrossRef
34.
Zurück zum Zitat Ma, B., Tsai, C. J., Pan, Y., & Nussinov, R. (2010). Why does binding of proteins to DNA or proteins to proteins not necessarily spell function? ACS Chemical Biology, 5(3), 265–272.PubMedCentralPubMedCrossRef Ma, B., Tsai, C. J., Pan, Y., & Nussinov, R. (2010). Why does binding of proteins to DNA or proteins to proteins not necessarily spell function? ACS Chemical Biology, 5(3), 265–272.PubMedCentralPubMedCrossRef
35.
Zurück zum Zitat Garcia, H. G., Sanchez, A., Boedicker, J. Q., Osborne, M., Gelles, J., Kondev, J., & Phillips, R. (2012). Operator sequence alters gene expression independently of transcription factor occupancy in bacteria. Cell Reports, 2(1), 150–161.PubMedCentralPubMedCrossRef Garcia, H. G., Sanchez, A., Boedicker, J. Q., Osborne, M., Gelles, J., Kondev, J., & Phillips, R. (2012). Operator sequence alters gene expression independently of transcription factor occupancy in bacteria. Cell Reports, 2(1), 150–161.PubMedCentralPubMedCrossRef
36.
Zurück zum Zitat Kim, S., Broströmer, E., Xing, D., Jin, J., Chong, S., Ge, H., Wang, S., Gu, C., Yang, L., Gao, Y. Q., Su, X. D., Sun, Y., & Xie, X. S. (2013). Probing allostery through DNA. Science, 339(6121), 816–819.PubMedCentralPubMedCrossRef Kim, S., Broströmer, E., Xing, D., Jin, J., Chong, S., Ge, H., Wang, S., Gu, C., Yang, L., Gao, Y. Q., Su, X. D., Sun, Y., & Xie, X. S. (2013). Probing allostery through DNA. Science, 339(6121), 816–819.PubMedCentralPubMedCrossRef
37.
Zurück zum Zitat Wootten, D., Christopoulos, A., & Sexton, P. M. (2013). Emerging paradigms in GPCR allostery: implications for drug discovery. Nature Reviews Drug Discovery, 12(8), 630–644.PubMedCrossRef Wootten, D., Christopoulos, A., & Sexton, P. M. (2013). Emerging paradigms in GPCR allostery: implications for drug discovery. Nature Reviews Drug Discovery, 12(8), 630–644.PubMedCrossRef
38.
Zurück zum Zitat Schelshorn, D., Joly, F., Mutel, S., Hampe, C., Breton, B., Mutel, V., & Lütjens, R. (2012). Lateral allosterism in the glucagon receptor family: glucagon-like peptide 1 induces G-protein-coupled receptor heteromer formation. Molecular Pharmacology, 81(3), 309–318.PubMedCrossRef Schelshorn, D., Joly, F., Mutel, S., Hampe, C., Breton, B., Mutel, V., & Lütjens, R. (2012). Lateral allosterism in the glucagon receptor family: glucagon-like peptide 1 induces G-protein-coupled receptor heteromer formation. Molecular Pharmacology, 81(3), 309–318.PubMedCrossRef
39.
Zurück zum Zitat Foster, A. C., & Kemp, J. A. (2006). Glutamate- and GABA-based CNS therapeutics. Current Opinion in Pharmacology, 6(1), 7–17.PubMedCrossRef Foster, A. C., & Kemp, J. A. (2006). Glutamate- and GABA-based CNS therapeutics. Current Opinion in Pharmacology, 6(1), 7–17.PubMedCrossRef
40.
Zurück zum Zitat Lindberg, J. S., Culleton, B., Wong, G., Borah, M. F., Clark, R. V., Shapiro, W. B., Roger, S. D., Husserl, F. E., Klassen, P. S., Guo, M. D., Albizem, M. B., & Coburn, J. W. (2005). Cinacalcet HCl, an oral calcimimetic agent for the treatment of secondary hyperparathyroidism in hemodialysis and peritoneal dialysis: a randomized, double-blind, multicenter study. Journal of the American Society of Nephrology, 16(3), 800–807.PubMedCrossRef Lindberg, J. S., Culleton, B., Wong, G., Borah, M. F., Clark, R. V., Shapiro, W. B., Roger, S. D., Husserl, F. E., Klassen, P. S., Guo, M. D., Albizem, M. B., & Coburn, J. W. (2005). Cinacalcet HCl, an oral calcimimetic agent for the treatment of secondary hyperparathyroidism in hemodialysis and peritoneal dialysis: a randomized, double-blind, multicenter study. Journal of the American Society of Nephrology, 16(3), 800–807.PubMedCrossRef
41.
Zurück zum Zitat Lieberman-Blum, S. S., Fung, H. B., & Bandres, J. C. (2008). Maraviroc: a CCR5-receptor antagonist for the treatment of HIV-1 infection. Clinical Therapeutics, 30(7), 1228–1250.PubMedCrossRef Lieberman-Blum, S. S., Fung, H. B., & Bandres, J. C. (2008). Maraviroc: a CCR5-receptor antagonist for the treatment of HIV-1 infection. Clinical Therapeutics, 30(7), 1228–1250.PubMedCrossRef
42.
Zurück zum Zitat Wander, S. A., Hennessy, B. T., & Slingerland, J. M. (2011). Next-generation mTOR inhibitors in clinical oncology: how pathway complexity informs therapeutic strategy. Journal of Clinical Investigation, 121(4), 1231–1241.PubMedCentralPubMedCrossRef Wander, S. A., Hennessy, B. T., & Slingerland, J. M. (2011). Next-generation mTOR inhibitors in clinical oncology: how pathway complexity informs therapeutic strategy. Journal of Clinical Investigation, 121(4), 1231–1241.PubMedCentralPubMedCrossRef
43.
Zurück zum Zitat Lu, S., Li, S., & Zhang, J. (2014). Harnessing allostery: a novel approach to drug discovery. Medicinal Research Reviews, 34(6), 1242–1285.PubMedCrossRef Lu, S., Li, S., & Zhang, J. (2014). Harnessing allostery: a novel approach to drug discovery. Medicinal Research Reviews, 34(6), 1242–1285.PubMedCrossRef
44.
Zurück zum Zitat Alamgeer, M., Ganju, V., & Watkins, D. N. (2013). Novel therapeutic targets in non-small cell lung cancer. Current Opinion in Pharmacology, 13(3), 394–401.PubMedCrossRef Alamgeer, M., Ganju, V., & Watkins, D. N. (2013). Novel therapeutic targets in non-small cell lung cancer. Current Opinion in Pharmacology, 13(3), 394–401.PubMedCrossRef
45.
Zurück zum Zitat Li, T., Kung, H. J., Mack, P. C., & Gandara, D. R. (2013). Genotyping and genomic profiling of non-small-cell lung cancer: implications for current and future therapies. Journal of Clinical Oncology, 31(8), 1039–1049.PubMedCentralPubMedCrossRef Li, T., Kung, H. J., Mack, P. C., & Gandara, D. R. (2013). Genotyping and genomic profiling of non-small-cell lung cancer: implications for current and future therapies. Journal of Clinical Oncology, 31(8), 1039–1049.PubMedCentralPubMedCrossRef
46.
Zurück zum Zitat Lindeman, N. I., Cagle, P. T., Beasley, M. B., Chitale, D. A., Dacic, S., Giaccone, G., Jenkins, R. B., Kwiatkowski, D. J., Saldivar, J. S., Squire, J., Thunnissen, E., & Ladanyi, M. (2013). Molecular testing guideline for Selection of Lung Cancer Patients for EGFR and ALK tyrosine kinase inhibitors: guideline from the College of American Pathologists, International Association for the Study of Lung Cancer, and Association for Molecular Pathology. Journal of Molecular Diagnostics, 15(4), 415–453.PubMedCrossRef Lindeman, N. I., Cagle, P. T., Beasley, M. B., Chitale, D. A., Dacic, S., Giaccone, G., Jenkins, R. B., Kwiatkowski, D. J., Saldivar, J. S., Squire, J., Thunnissen, E., & Ladanyi, M. (2013). Molecular testing guideline for Selection of Lung Cancer Patients for EGFR and ALK tyrosine kinase inhibitors: guideline from the College of American Pathologists, International Association for the Study of Lung Cancer, and Association for Molecular Pathology. Journal of Molecular Diagnostics, 15(4), 415–453.PubMedCrossRef
47.
Zurück zum Zitat Hynes, N. E., & MacDonald, G. (2009). ErbB receptors and signaling pathways in cancer. Current Opinion in Cell Biology, 21(2), 177–184.PubMedCrossRef Hynes, N. E., & MacDonald, G. (2009). ErbB receptors and signaling pathways in cancer. Current Opinion in Cell Biology, 21(2), 177–184.PubMedCrossRef
48.
Zurück zum Zitat Endres, N. F., Engel, K., Das, R., Kovacs, E., & Kuriyan, J. (2011). Regulation of the catalytic activity of the EGF receptor. Current Opinion in Structural Biology, 21(6), 777–784.PubMedCentralPubMedCrossRef Endres, N. F., Engel, K., Das, R., Kovacs, E., & Kuriyan, J. (2011). Regulation of the catalytic activity of the EGF receptor. Current Opinion in Structural Biology, 21(6), 777–784.PubMedCentralPubMedCrossRef
49.
Zurück zum Zitat Zhang, X., Gureasko, J., Shen, K., Cole, P. A., & Kuriyan, J. (2006). An allosteric mechanism for activation of the kinase domain of epidermal growth factor receptor. Cell, 125(6), 1137–1149.PubMedCrossRef Zhang, X., Gureasko, J., Shen, K., Cole, P. A., & Kuriyan, J. (2006). An allosteric mechanism for activation of the kinase domain of epidermal growth factor receptor. Cell, 125(6), 1137–1149.PubMedCrossRef
50.
Zurück zum Zitat Jura, N., Zhang, X., Endres, N. F., Seeliger, M. A., Schindler, T., & Kuriyan, J. (2011). Catalytic control in the EGF receptor and its connection to general kinase regulatory mechanisms. Molecular Cell, 42(1), 9–22.PubMedCentralPubMedCrossRef Jura, N., Zhang, X., Endres, N. F., Seeliger, M. A., Schindler, T., & Kuriyan, J. (2011). Catalytic control in the EGF receptor and its connection to general kinase regulatory mechanisms. Molecular Cell, 42(1), 9–22.PubMedCentralPubMedCrossRef
51.
Zurück zum Zitat Jura, N., Endres, N. F., Engel, K., Deindl, S., Das, R., Lamers, M. H., Wemmer, D. E., Zhang, X., & Kuriyan, J. (2009). Mechanism for activation of the EGF receptor catalytic domain by the juxtamembrane segment. Cell, 137(7), 1293–1307.PubMedCentralPubMedCrossRef Jura, N., Endres, N. F., Engel, K., Deindl, S., Das, R., Lamers, M. H., Wemmer, D. E., Zhang, X., & Kuriyan, J. (2009). Mechanism for activation of the EGF receptor catalytic domain by the juxtamembrane segment. Cell, 137(7), 1293–1307.PubMedCentralPubMedCrossRef
52.
Zurück zum Zitat Papakyriakou, A., Vourloumis, D., Tzortzatou-Stathopoulou, F., & Karpusas, M. (2009). Conformational dynamics of the EGFR kinase domain reveals structural features involved in activation. Proteins, 76(2), 375–386.PubMedCrossRef Papakyriakou, A., Vourloumis, D., Tzortzatou-Stathopoulou, F., & Karpusas, M. (2009). Conformational dynamics of the EGFR kinase domain reveals structural features involved in activation. Proteins, 76(2), 375–386.PubMedCrossRef
53.
Zurück zum Zitat Lynch, T. J., Bell, D. W., Sordella, R., Gurubhagavatula, S., Okimoto, R. A., Brannigan, B. W., Wemmer, D. E., Zhang, X., & Kuriyan, J. (2004). Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. New England Journal of Medicine, 350(21), 2129–2139.PubMedCrossRef Lynch, T. J., Bell, D. W., Sordella, R., Gurubhagavatula, S., Okimoto, R. A., Brannigan, B. W., Wemmer, D. E., Zhang, X., & Kuriyan, J. (2004). Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. New England Journal of Medicine, 350(21), 2129–2139.PubMedCrossRef
54.
Zurück zum Zitat Paez, J. G., Jänne, P. A., Lee, J. C., Tracy, S., Greulich, H., Gabriel, S., Herman, P., Kaye, F. J., Lindeman, N., Boggon, T. J., Naoki, K., Sasaki, H., Fujii, Y., Eck, M. J., Sellers, W. R., Johnson, B. E., & Meyerson, M. (2004). EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science, 304(5676), 1497–1500.PubMedCrossRef Paez, J. G., Jänne, P. A., Lee, J. C., Tracy, S., Greulich, H., Gabriel, S., Herman, P., Kaye, F. J., Lindeman, N., Boggon, T. J., Naoki, K., Sasaki, H., Fujii, Y., Eck, M. J., Sellers, W. R., Johnson, B. E., & Meyerson, M. (2004). EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science, 304(5676), 1497–1500.PubMedCrossRef
55.
Zurück zum Zitat Gazdar, A. F. (2009). Activating and resistance mutations of EGFR in non-small-cell lung cancer: role in clinical response to EGFR tyrosine kinase inhibitors. Oncogene, 28(S1), S24–S31.PubMedCentralPubMedCrossRef Gazdar, A. F. (2009). Activating and resistance mutations of EGFR in non-small-cell lung cancer: role in clinical response to EGFR tyrosine kinase inhibitors. Oncogene, 28(S1), S24–S31.PubMedCentralPubMedCrossRef
56.
Zurück zum Zitat Yun, C. H., Boggon, T. J., Li, Y., Woo, M. S., Greulich, H., Meyerson, M., & Eck, M. J. (2007). Structures of lung cancer-derived EGFR mutants and inhibitor complexes: mechanism of activation and insights into differential inhibitor sensitivity. Cancer Cell, 11(3), 217–227.PubMedCentralPubMedCrossRef Yun, C. H., Boggon, T. J., Li, Y., Woo, M. S., Greulich, H., Meyerson, M., & Eck, M. J. (2007). Structures of lung cancer-derived EGFR mutants and inhibitor complexes: mechanism of activation and insights into differential inhibitor sensitivity. Cancer Cell, 11(3), 217–227.PubMedCentralPubMedCrossRef
57.
Zurück zum Zitat Shan, Y., Eastwood, M. P., Zhang, X., Kim, E. T., Arkhipov, A., Dror, R. O., Jumper, J., Kuriyan, J., & Shaw, D. E. (2012). Oncogenic mutations counteract intrinsic disorder in the EGFR kinase and promote receptor dimerization. Cell, 149(4), 860–870.PubMedCrossRef Shan, Y., Eastwood, M. P., Zhang, X., Kim, E. T., Arkhipov, A., Dror, R. O., Jumper, J., Kuriyan, J., & Shaw, D. E. (2012). Oncogenic mutations counteract intrinsic disorder in the EGFR kinase and promote receptor dimerization. Cell, 149(4), 860–870.PubMedCrossRef
58.
Zurück zum Zitat Dixit, A., & Verkhivker, G. M. (2011). Computational modeling of allosteric communication reveals organizing principles of mutation-induced signaling in ABL and EGFR kinases. PLoS Computational Biology, 7(10), e1002179.PubMedCentralPubMedCrossRef Dixit, A., & Verkhivker, G. M. (2011). Computational modeling of allosteric communication reveals organizing principles of mutation-induced signaling in ABL and EGFR kinases. PLoS Computational Biology, 7(10), e1002179.PubMedCentralPubMedCrossRef
59.
Zurück zum Zitat Kosaka, T., Yatabe, Y., Endoh, H., Yoshida, K., Hida, T., Tsuboi, M., Tada, H., Kuwano, H., & Mitsudomi, T. (2006). Analysis of epidermal growth factor receptor gene mutation in patients with non-small cell lung cancer and acquired resistance to gefitinib. Clinical Cancer Research, 12(19), 5764–5769.PubMedCrossRef Kosaka, T., Yatabe, Y., Endoh, H., Yoshida, K., Hida, T., Tsuboi, M., Tada, H., Kuwano, H., & Mitsudomi, T. (2006). Analysis of epidermal growth factor receptor gene mutation in patients with non-small cell lung cancer and acquired resistance to gefitinib. Clinical Cancer Research, 12(19), 5764–5769.PubMedCrossRef
60.
Zurück zum Zitat Yun, C. H., Mengwasser, K. E., Toms, A. V., Woo, M. S., Greulich, H., Wong, K. K., Meyerson, M., & Eck, M. J. (2008). The T790 mutation in EGFR kinase causes drug resistance by increasing the affinity for ATP. Proceedings of the National Academy of Sciences of the United States of America, 105(6), 2070–2075.PubMedCentralPubMedCrossRef Yun, C. H., Mengwasser, K. E., Toms, A. V., Woo, M. S., Greulich, H., Wong, K. K., Meyerson, M., & Eck, M. J. (2008). The T790 mutation in EGFR kinase causes drug resistance by increasing the affinity for ATP. Proceedings of the National Academy of Sciences of the United States of America, 105(6), 2070–2075.PubMedCentralPubMedCrossRef
61.
Zurück zum Zitat Azam, M., Seeliger, M. A., Gray, N. S., Kuriyan, J., & Daley, G. Q. (2008). Activation of tyrosine kinases by mutation of the gatekeeper threonine. Nature Structural & Molecular Biology, 15(10), 1109–1118.CrossRef Azam, M., Seeliger, M. A., Gray, N. S., Kuriyan, J., & Daley, G. Q. (2008). Activation of tyrosine kinases by mutation of the gatekeeper threonine. Nature Structural & Molecular Biology, 15(10), 1109–1118.CrossRef
62.
Zurück zum Zitat Santarpia, L., Lippman, S. M., & El-Naggar, A. K. (2012). Targeting the MAPK-RAS-RAF signaling pathway in cancer therapy. Expert Opinion on Therapeutic Targets, 16(1), 103–119.PubMedCentralPubMedCrossRef Santarpia, L., Lippman, S. M., & El-Naggar, A. K. (2012). Targeting the MAPK-RAS-RAF signaling pathway in cancer therapy. Expert Opinion on Therapeutic Targets, 16(1), 103–119.PubMedCentralPubMedCrossRef
63.
Zurück zum Zitat Liu, P., Cheng, H., Roberts, T. M., & Zhao, J. J. (2009). Targeting the phosphoinositide 3-kinase pathway in cancer. Nature Reviews Drug Discovery, 8(8), 627–644.PubMedCentralPubMedCrossRef Liu, P., Cheng, H., Roberts, T. M., & Zhao, J. J. (2009). Targeting the phosphoinositide 3-kinase pathway in cancer. Nature Reviews Drug Discovery, 8(8), 627–644.PubMedCentralPubMedCrossRef
64.
Zurück zum Zitat Britten, C. D. (2013). PI3K and MEK inhibitor combinations: examining the evidence in selected tumor types. Cancer Chemotherapy and Pharmacology, 71(6), 1395–1409.PubMedCrossRef Britten, C. D. (2013). PI3K and MEK inhibitor combinations: examining the evidence in selected tumor types. Cancer Chemotherapy and Pharmacology, 71(6), 1395–1409.PubMedCrossRef
65.
Zurück zum Zitat Chappell, W. H., Steelman, L. S., Long, J. M., Kempf, R. C., Abrams, S. L., Franklin, R. A., Bäsecke, J., Stivala, F., Donia, M., Fagone, P., Malaponte, G., Mazzarino, M. C., Nicoletti, F., Libra, M., Maksimovic-Ivanic, D., Mijatovic, S., Montalto, G., Cervello, M., Laidler, P., Milella, M., Tafuri, A., Bonati, A., Evangelisti, C., Cocco, L., Martelli, A. M., & McCubrey, J. A. (2011). Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR inhibitors: rationale and importance to inhibiting these pathways in human health. Oncotarget, 2(3), 135–164.PubMedCentralPubMed Chappell, W. H., Steelman, L. S., Long, J. M., Kempf, R. C., Abrams, S. L., Franklin, R. A., Bäsecke, J., Stivala, F., Donia, M., Fagone, P., Malaponte, G., Mazzarino, M. C., Nicoletti, F., Libra, M., Maksimovic-Ivanic, D., Mijatovic, S., Montalto, G., Cervello, M., Laidler, P., Milella, M., Tafuri, A., Bonati, A., Evangelisti, C., Cocco, L., Martelli, A. M., & McCubrey, J. A. (2011). Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR inhibitors: rationale and importance to inhibiting these pathways in human health. Oncotarget, 2(3), 135–164.PubMedCentralPubMed
66.
Zurück zum Zitat McCubrey, J. A., Steelman, L. S., Chappell, W. H., Abrams, S. L., Montalto, G., Cervello, M., Nicoletti, F., Fagone, P., Malaponte, G., Mazzarino, M. C., Candido, S., Libra, M., Bäsecke, J., Mijatovic, S., Maksimovic-Ivanic, D., Milella, M., Tafuri, A., Cocco, L., Evangelisti, C., Chiarini, F., & Martelli, A. M. (2012). Mutations and deregulation of Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/ mTOR cascades which alter therapy response. Oncotarget, 3(9), 954–987.PubMedCentralPubMed McCubrey, J. A., Steelman, L. S., Chappell, W. H., Abrams, S. L., Montalto, G., Cervello, M., Nicoletti, F., Fagone, P., Malaponte, G., Mazzarino, M. C., Candido, S., Libra, M., Bäsecke, J., Mijatovic, S., Maksimovic-Ivanic, D., Milella, M., Tafuri, A., Cocco, L., Evangelisti, C., Chiarini, F., & Martelli, A. M. (2012). Mutations and deregulation of Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/ mTOR cascades which alter therapy response. Oncotarget, 3(9), 954–987.PubMedCentralPubMed
67.
Zurück zum Zitat McCubrey, J. A., Steelman, L. S., Chappell, W. H., Abrams, S. L., Franklin, R. A., Montalto, G., Cervello, M., Libra, M., Candido, S., Malaponte, G., Mazzarino, M. C., Fagone, P., Nicoletti, F., Bäsecke, J., Mijatovic, S., Maksimovic-Ivanic, D., Milella, M., Tafuri, A., Chiarini, F., Evangelisti, C., Cocco, L., & Martelli, A. M. (2012). Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR cascade inhibitors: how mutations can result in therapy resistance and how to overcome resistance. Oncotarget, 3(10), 1068–1111.PubMedCentralPubMed McCubrey, J. A., Steelman, L. S., Chappell, W. H., Abrams, S. L., Franklin, R. A., Montalto, G., Cervello, M., Libra, M., Candido, S., Malaponte, G., Mazzarino, M. C., Fagone, P., Nicoletti, F., Bäsecke, J., Mijatovic, S., Maksimovic-Ivanic, D., Milella, M., Tafuri, A., Chiarini, F., Evangelisti, C., Cocco, L., & Martelli, A. M. (2012). Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR cascade inhibitors: how mutations can result in therapy resistance and how to overcome resistance. Oncotarget, 3(10), 1068–1111.PubMedCentralPubMed
68.
Zurück zum Zitat Iida, M., Brand, T. M., Campbell, D. A., Starr, M. M., Luthar, N., Traynor, A. M., & Wheeler, D. L. (2013). Targeting AKT with the allosteric AKT inhibitor MK-2206 in non-small cell lung cancer cells with acquired resistance to cetuximab. Cancer Biology & Therapy, 14(6), 481–491.CrossRef Iida, M., Brand, T. M., Campbell, D. A., Starr, M. M., Luthar, N., Traynor, A. M., & Wheeler, D. L. (2013). Targeting AKT with the allosteric AKT inhibitor MK-2206 in non-small cell lung cancer cells with acquired resistance to cetuximab. Cancer Biology & Therapy, 14(6), 481–491.CrossRef
69.
Zurück zum Zitat Holland, W. S., Chinn, D. C., Lara, P. N., Jr., Gandara, D. R., & Mack, P. C. (2015). Effects of AKT inhibition on HGF-mediated erlotinib resistance in non-small cell lung cancer cell lines. Journal of Cancer Research and Clinical Oncology, 141(4), 615–626.PubMedCrossRef Holland, W. S., Chinn, D. C., Lara, P. N., Jr., Gandara, D. R., & Mack, P. C. (2015). Effects of AKT inhibition on HGF-mediated erlotinib resistance in non-small cell lung cancer cell lines. Journal of Cancer Research and Clinical Oncology, 141(4), 615–626.PubMedCrossRef
70.
Zurück zum Zitat Gadgeel, S. M., & Wozniak, A. (2013). Preclinical rationale for PI3K/Akt/mTOR pathway inhibitors as therapy for epidermal growth factor receptor inhibitor-resistant non-small-cell lung cancer. Clinical Lung Cancer, 14(4), 322–332.PubMedCrossRef Gadgeel, S. M., & Wozniak, A. (2013). Preclinical rationale for PI3K/Akt/mTOR pathway inhibitors as therapy for epidermal growth factor receptor inhibitor-resistant non-small-cell lung cancer. Clinical Lung Cancer, 14(4), 322–332.PubMedCrossRef
71.
Zurück zum Zitat Soria, J. C., Shepherd, F. A., Douillard, J. Y., Wolf, J., Giaccone, G., Crino, L., Cappuzzo, F., Sharma, S., Gross, S. H., Dimitrijevic, S., Di Scala, L., Gardner, H., Nogova, L., & Papadimitrakopoulou, V. (2009). Efficacy of everolimus (RAD001) in patients with advanced NSCLC previously treated with chemotherapy alone or with chemotherapy and EGFR inhibitors. Annals of Oncology, 20(10), 1674–1681.PubMedCrossRef Soria, J. C., Shepherd, F. A., Douillard, J. Y., Wolf, J., Giaccone, G., Crino, L., Cappuzzo, F., Sharma, S., Gross, S. H., Dimitrijevic, S., Di Scala, L., Gardner, H., Nogova, L., & Papadimitrakopoulou, V. (2009). Efficacy of everolimus (RAD001) in patients with advanced NSCLC previously treated with chemotherapy alone or with chemotherapy and EGFR inhibitors. Annals of Oncology, 20(10), 1674–1681.PubMedCrossRef
72.
Zurück zum Zitat Price, K. A., Azzoli, C. G., Krug, L. M., Pietanza, M. C., Rizvi, N. A., Pao, W., Kris, M. G., Riely, G. J., Heelan, R. T., Arcila, M. E., & Miller, V. A. (2010). Phase II trial of gefitinib and everolimus in advanced non-small cell lung cancer. Journal of Thoracic Oncology, 5(10), 1623–1629.PubMedCentralPubMedCrossRef Price, K. A., Azzoli, C. G., Krug, L. M., Pietanza, M. C., Rizvi, N. A., Pao, W., Kris, M. G., Riely, G. J., Heelan, R. T., Arcila, M. E., & Miller, V. A. (2010). Phase II trial of gefitinib and everolimus in advanced non-small cell lung cancer. Journal of Thoracic Oncology, 5(10), 1623–1629.PubMedCentralPubMedCrossRef
73.
Zurück zum Zitat Ramalingam, S. S., Owonikoko, T. K., Behera, M., Subramanian, J., Saba, N. F., Kono, S. A., Gal, A. A., Sica, G., Harvey, R. D., Chen, Z., Klass, C. M., Shin, D. M., Fu, H., Sun, S. Y., Govindan, R., & Khuri, F. R. (2013). Phase II study of docetaxel in combination with everolimus for second- or third-line therapy of advanced non-small-cell lung cancer. Journal of Thoracic Oncology, 8(3), 369–372.PubMedCentralPubMedCrossRef Ramalingam, S. S., Owonikoko, T. K., Behera, M., Subramanian, J., Saba, N. F., Kono, S. A., Gal, A. A., Sica, G., Harvey, R. D., Chen, Z., Klass, C. M., Shin, D. M., Fu, H., Sun, S. Y., Govindan, R., & Khuri, F. R. (2013). Phase II study of docetaxel in combination with everolimus for second- or third-line therapy of advanced non-small-cell lung cancer. Journal of Thoracic Oncology, 8(3), 369–372.PubMedCentralPubMedCrossRef
74.
Zurück zum Zitat Besse, B., Leighl, N., Bennouna, J., Papadimitrakopoulou, V. A., Blais, N., Traynor, A. M., Soria, J. C., Gogov, S., Miller, N., Jehl, V., & Johnson, B. E. (2014). Phase II study of everolimus-erlotinib in previously treated patients with advanced non-small-cell lung cancer. Annals of Oncology, 25(2), 409–415.PubMedCrossRef Besse, B., Leighl, N., Bennouna, J., Papadimitrakopoulou, V. A., Blais, N., Traynor, A. M., Soria, J. C., Gogov, S., Miller, N., Jehl, V., & Johnson, B. E. (2014). Phase II study of everolimus-erlotinib in previously treated patients with advanced non-small-cell lung cancer. Annals of Oncology, 25(2), 409–415.PubMedCrossRef
75.
Zurück zum Zitat Hainsworth, J. D., Cebotaru, C. L., Kanarev, V., Ciuleanu, T. E., Damyanov, D., Stella, P., Ganchev, H., Pover, G., Morris, C., & Tzekova, V. (2010). A phase II, open-label, randomized study to assess the efficacy and safety of AZD6244 (ARRY-142886) versus pemetrexed in patients with non-small cell lung cancer who have failed one or two prior chemotherapeutic regimens. Journal of Thoracic Oncology, 5(10), 1630–1636.PubMedCrossRef Hainsworth, J. D., Cebotaru, C. L., Kanarev, V., Ciuleanu, T. E., Damyanov, D., Stella, P., Ganchev, H., Pover, G., Morris, C., & Tzekova, V. (2010). A phase II, open-label, randomized study to assess the efficacy and safety of AZD6244 (ARRY-142886) versus pemetrexed in patients with non-small cell lung cancer who have failed one or two prior chemotherapeutic regimens. Journal of Thoracic Oncology, 5(10), 1630–1636.PubMedCrossRef
76.
Zurück zum Zitat Jänne, P. A., Shaw, A. T., Pereira, J. R., Jeannin, G., Vansteenkiste, J., Barrios, C., Franke, F. A., Grinsted, L., Zazulina, V., Smith, P., Smith, I., & Crinò, L. (2013). Selumetinib plus docetaxel for KRAS-mutant advanced non-small-cell lung cancer: a randomised, multicentre, placebo-controlled, phase 2 study. Lancet Oncology, 14(1), 38–47.PubMedCrossRef Jänne, P. A., Shaw, A. T., Pereira, J. R., Jeannin, G., Vansteenkiste, J., Barrios, C., Franke, F. A., Grinsted, L., Zazulina, V., Smith, P., Smith, I., & Crinò, L. (2013). Selumetinib plus docetaxel for KRAS-mutant advanced non-small-cell lung cancer: a randomised, multicentre, placebo-controlled, phase 2 study. Lancet Oncology, 14(1), 38–47.PubMedCrossRef
77.
Zurück zum Zitat Infante, J. R., Papadopoulos, K. P., Bendell, J. C., Patnaik, A., Burris, H. A., Rasco, D., Jones, S. F., Smith, L., Cox, D. S., Durante, M., Bellew, K. M., Park, J. J., Le, N. T., & Tolcher, A. W. (2013). A phase 1b study of trametinib, an oral Mitogen-activated protein kinase kinase (MEK) inhibitor, in combination with gemcitabine in advanced solid tumours. European Journal of Cancer, 49(9), 2077–2085.PubMedCrossRef Infante, J. R., Papadopoulos, K. P., Bendell, J. C., Patnaik, A., Burris, H. A., Rasco, D., Jones, S. F., Smith, L., Cox, D. S., Durante, M., Bellew, K. M., Park, J. J., Le, N. T., & Tolcher, A. W. (2013). A phase 1b study of trametinib, an oral Mitogen-activated protein kinase kinase (MEK) inhibitor, in combination with gemcitabine in advanced solid tumours. European Journal of Cancer, 49(9), 2077–2085.PubMedCrossRef
78.
Zurück zum Zitat Blumenschein, G. R., Jr., Smit, E. F., Planchard, D., Kim, D. W., Cadranel, J., De Pas, T., Dunphy, F., Udud, K., Ahn, M. J., Hanna, N. H., Kim, J. H., Mazieres, J., Kim, S. W., Baas, P., Rappold, E., Redhu, S., Puski, A., Wu, F. S., & Jänne, P. A. (2015). A randomized phase II study of the MEK1/MEK2 inhibitor trametinib (GSK1120212) compared with docetaxel in KRAS-mutant advanced non-small-cell lung cancer (NSCLC)†. Annals of Oncology, 26(5), 894–901.PubMedCrossRef Blumenschein, G. R., Jr., Smit, E. F., Planchard, D., Kim, D. W., Cadranel, J., De Pas, T., Dunphy, F., Udud, K., Ahn, M. J., Hanna, N. H., Kim, J. H., Mazieres, J., Kim, S. W., Baas, P., Rappold, E., Redhu, S., Puski, A., Wu, F. S., & Jänne, P. A. (2015). A randomized phase II study of the MEK1/MEK2 inhibitor trametinib (GSK1120212) compared with docetaxel in KRAS-mutant advanced non-small-cell lung cancer (NSCLC)†. Annals of Oncology, 26(5), 894–901.PubMedCrossRef
79.
Zurück zum Zitat Zimmer, L., Barlesi, F., Martinez-Garcia, M., Dieras, V., Schellens, J. H., Spano, J. P., Middleton, M. R., Calvo, E., Paz-Ares, L., Larkin, J., Pacey, S., Venturi, M., Kraeber-Bodéré, F., Tessier, J. J., Eberhardt, W. E., Paques, M., Guarin, E., Meresse, V., & Soria, J. C. (2014). Phase I expansion and pharmacodynamic study of the oral MEK inhibitor RO4987655 (CH4987655) in selected patients with advanced cancer with RAS-RAF mutations. Clinical Cancer Research, 20(16), 4251–4261.PubMedCrossRef Zimmer, L., Barlesi, F., Martinez-Garcia, M., Dieras, V., Schellens, J. H., Spano, J. P., Middleton, M. R., Calvo, E., Paz-Ares, L., Larkin, J., Pacey, S., Venturi, M., Kraeber-Bodéré, F., Tessier, J. J., Eberhardt, W. E., Paques, M., Guarin, E., Meresse, V., & Soria, J. C. (2014). Phase I expansion and pharmacodynamic study of the oral MEK inhibitor RO4987655 (CH4987655) in selected patients with advanced cancer with RAS-RAF mutations. Clinical Cancer Research, 20(16), 4251–4261.PubMedCrossRef
80.
Zurück zum Zitat Honda, K., Yamamoto, N., Nokihara, H., Tamura, Y., Asahina, H., Yamada, Y., Suzuki, S., Yamazaki, N., Ogita, Y., & Tamura, T. (2013). Phase I and pharmacokinetic/pharmacodynamic study of RO5126766, a first-in-class dual Raf/MEK inhibitor, in Japanese patients with advanced solid tumors. Cancer Chemotherapy and Pharmacology, 72(3), 577–584.PubMedCrossRef Honda, K., Yamamoto, N., Nokihara, H., Tamura, Y., Asahina, H., Yamada, Y., Suzuki, S., Yamazaki, N., Ogita, Y., & Tamura, T. (2013). Phase I and pharmacokinetic/pharmacodynamic study of RO5126766, a first-in-class dual Raf/MEK inhibitor, in Japanese patients with advanced solid tumors. Cancer Chemotherapy and Pharmacology, 72(3), 577–584.PubMedCrossRef
Metadaten
Titel
Allosteric therapies for lung cancer
verfasst von
Ye Ling
Meiling Jing
Xiang-dong Wang
Publikationsdatum
01.06.2015
Verlag
Springer US
Erschienen in
Cancer and Metastasis Reviews / Ausgabe 2/2015
Print ISSN: 0167-7659
Elektronische ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-015-9567-z

Weitere Artikel der Ausgabe 2/2015

Cancer and Metastasis Reviews 2/2015 Zur Ausgabe

Announcement

Biographies

Adjuvante Immuntherapie verlängert Leben bei RCC

25.04.2024 Nierenkarzinom Nachrichten

Nun gibt es auch Resultate zum Gesamtüberleben: Eine adjuvante Pembrolizumab-Therapie konnte in einer Phase-3-Studie das Leben von Menschen mit Nierenzellkarzinom deutlich verlängern. Die Sterberate war im Vergleich zu Placebo um 38% geringer.

Alectinib verbessert krankheitsfreies Überleben bei ALK-positivem NSCLC

25.04.2024 NSCLC Nachrichten

Das Risiko für Rezidiv oder Tod von Patienten und Patientinnen mit reseziertem ALK-positivem NSCLC ist unter einer adjuvanten Therapie mit dem Tyrosinkinase-Inhibitor Alectinib signifikant geringer als unter platinbasierter Chemotherapie.

Bei Senioren mit Prostatakarzinom auf Anämie achten!

24.04.2024 DGIM 2024 Nachrichten

Patienten, die zur Behandlung ihres Prostatakarzinoms eine Androgendeprivationstherapie erhalten, entwickeln nicht selten eine Anämie. Wer ältere Patienten internistisch mitbetreut, sollte auf diese Nebenwirkung achten.

ICI-Therapie in der Schwangerschaft wird gut toleriert

Müssen sich Schwangere einer Krebstherapie unterziehen, rufen Immuncheckpointinhibitoren offenbar nicht mehr unerwünschte Wirkungen hervor als andere Mittel gegen Krebs.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.