Skip to main content
Erschienen in: Clinical and Translational Oncology 3/2020

06.07.2019 | Review Article

Altered expression and functional role of ion channels in leukemia: bench to bedside

verfasst von: H. Rafieemehr, A. Samimi, M. Maleki Behzad, M. Ghanavat, S. Shahrabi

Erschienen in: Clinical and Translational Oncology | Ausgabe 3/2020

Einloggen, um Zugang zu erhalten

Abstract

Leukemic cells’ (LCs) survival, proliferation, activation, differentiation, and invasiveness/migration can be mediated through the function of cation and anion channels that are involved in volume regulation, polarization, cytoskeleton, and extracellular matrix reorganization. This study will review the expression of ion channels in LCs and their possible function in leukemia progression. We searched relevant literature by a PubMed (2002–2019) of English-language literature using the terms “ion channels”, “leukemia”, “proliferation”, “differentiation”, “apoptosis”, and “migration”. Altered expression and dysfunction of ion channels can have a strong impact on hematopoietic cell and LCs physiology and signaling, which contributes to the vital processes such as proliferation, differentiation, and apoptosis. Indeed, it can be stated that changing expression of ion channels can affect the onset and progression as well as clinical features and therapeutic responses of leukemia via inducing the maintenance of LCs. Since ion channels are membrane proteins, they can be easily accessible in LCs for understanding their influence on leukemia progression. On the other hand, ion channels can be new potential targets for chemotherapeutic agents, which may open a novel clinical and pharmaceutical field in leukemia therapy.
Literatur
1.
Zurück zum Zitat Jean-Yves LG, Halima O-A, Olivier S, Pierre B, Ahmed A, Christophe V. Voltage-gated ion channels, new targets in anti-cancer research. Recent Pat Anticancer Drug Discov. 2007;2(3):189–202. Jean-Yves LG, Halima O-A, Olivier S, Pierre B, Ahmed A, Christophe V. Voltage-gated ion channels, new targets in anti-cancer research. Recent Pat Anticancer Drug Discov. 2007;2(3):189–202.
2.
Zurück zum Zitat Arcangeli A, Becchetti A. Novel perspectives in cancer therapy: targeting ion channels. Drug Resist Updat. 2015;21:11–9.PubMed Arcangeli A, Becchetti A. Novel perspectives in cancer therapy: targeting ion channels. Drug Resist Updat. 2015;21:11–9.PubMed
3.
Zurück zum Zitat Arcangeli A, Crociani O, Lastraioli E, Masi A, Pillozzi S, Becchetti A. Targeting ion channels in cancer: a novel frontier in antineoplastic therapy. Curr Med Chem. 2009;16(1):66–93.PubMed Arcangeli A, Crociani O, Lastraioli E, Masi A, Pillozzi S, Becchetti A. Targeting ion channels in cancer: a novel frontier in antineoplastic therapy. Curr Med Chem. 2009;16(1):66–93.PubMed
4.
Zurück zum Zitat Turner KL, Sontheimer H. Cl − and K + channels and their role in primary brain tumour biology. Philos Trans R Soc Lond B Biol Sci. 2014;369(1638):20130095.PubMedCentralPubMed Turner KL, Sontheimer H. Cl − and K + channels and their role in primary brain tumour biology. Philos Trans R Soc Lond B Biol Sci. 2014;369(1638):20130095.PubMedCentralPubMed
5.
Zurück zum Zitat Becchetti A. Ion channels and transporters in cancer. 1. Ion channels and cell proliferation in cancer. Am J Physiol Cell Physiol. 2011;301(2):C255–65.PubMed Becchetti A. Ion channels and transporters in cancer. 1. Ion channels and cell proliferation in cancer. Am J Physiol Cell Physiol. 2011;301(2):C255–65.PubMed
6.
Zurück zum Zitat Pillozzi S, Brizzi MF, Bernabei PA, Bartolozzi B, Caporale R, Basile V, et al. VEGFR-1 (FLT-1), β1 integrin, and hERG K + channel for a macromolecular signaling complex in acute myeloid leukemia: role in cell migration and clinical outcome. Blood. 2007;110(4):1238–50.PubMed Pillozzi S, Brizzi MF, Bernabei PA, Bartolozzi B, Caporale R, Basile V, et al. VEGFR-1 (FLT-1), β1 integrin, and hERG K + channel for a macromolecular signaling complex in acute myeloid leukemia: role in cell migration and clinical outcome. Blood. 2007;110(4):1238–50.PubMed
7.
Zurück zum Zitat Tefferi A, Vardiman J. Classification and diagnosis of myeloproliferative neoplasms: the 2008 World Health Organization criteria and point-of-care diagnostic algorithms. Leukemia. 2008;22(1):14.PubMed Tefferi A, Vardiman J. Classification and diagnosis of myeloproliferative neoplasms: the 2008 World Health Organization criteria and point-of-care diagnostic algorithms. Leukemia. 2008;22(1):14.PubMed
8.
Zurück zum Zitat Arcangeli A, Becchetti A. Complex functional interaction between integrin receptors and ion channels. Trends Cell Biol. 2006;16(12):631–9.PubMed Arcangeli A, Becchetti A. Complex functional interaction between integrin receptors and ion channels. Trends Cell Biol. 2006;16(12):631–9.PubMed
9.
Zurück zum Zitat Kaczmarek LK. Non-conducting functions of voltage-gated ion channels. Nat Rev Neurosci. 2006;7(10):761.PubMed Kaczmarek LK. Non-conducting functions of voltage-gated ion channels. Nat Rev Neurosci. 2006;7(10):761.PubMed
10.
Zurück zum Zitat Arcangeli A, Pillozzi S, Becchetti A. Targeting ion channels in leukemias: a new challenge for treatment. Curr Med Chem. 2012;19(5):683–96.PubMed Arcangeli A, Pillozzi S, Becchetti A. Targeting ion channels in leukemias: a new challenge for treatment. Curr Med Chem. 2012;19(5):683–96.PubMed
11.
Zurück zum Zitat Becchetti A, Arcangeli A. Integrins and ion channels in cell migration: implications for neuronal development, wound healing and metastatic spread. Adv Exp Med Biol. 2010;674:107–23.PubMed Becchetti A, Arcangeli A. Integrins and ion channels in cell migration: implications for neuronal development, wound healing and metastatic spread. Adv Exp Med Biol. 2010;674:107–23.PubMed
12.
Zurück zum Zitat Lang F, Föller M, Lang K, Lang P, Ritter M, Gulbins E, et al. Ion channels in cell proliferation and apoptotic cell death. J Membr Biol. 2005;205(3):147–57.PubMed Lang F, Föller M, Lang K, Lang P, Ritter M, Gulbins E, et al. Ion channels in cell proliferation and apoptotic cell death. J Membr Biol. 2005;205(3):147–57.PubMed
13.
Zurück zum Zitat Prevarskaya N, Skryma R, Shuba Y. Ion channels and the hallmarks of cancer. Trends Mol Med. 2010;16(3):107–21.PubMed Prevarskaya N, Skryma R, Shuba Y. Ion channels and the hallmarks of cancer. Trends Mol Med. 2010;16(3):107–21.PubMed
14.
Zurück zum Zitat Cuddapah VA, Sontheimer H. Ion channels and transporters in cancer. 2. Ion channels and the control of cancer cell migration. Am J Physiol Cell Physiol. 2011;301(3):C541–9.PubMedCentralPubMed Cuddapah VA, Sontheimer H. Ion channels and transporters in cancer. 2. Ion channels and the control of cancer cell migration. Am J Physiol Cell Physiol. 2011;301(3):C541–9.PubMedCentralPubMed
15.
Zurück zum Zitat D’Amico M, Gasparoli L, Arcangeli A. Potassium channels: novel emerging biomarkers and targets for therapy in cancer. Recent Pat Anticancer Drug Discov. 2013;8(1):53–65.PubMed D’Amico M, Gasparoli L, Arcangeli A. Potassium channels: novel emerging biomarkers and targets for therapy in cancer. Recent Pat Anticancer Drug Discov. 2013;8(1):53–65.PubMed
16.
Zurück zum Zitat Saki N, Abroun S, Hagh MF, Asgharei F. Neoplastic bone marrow niche: hematopoietic and mesenchymal stem cells. Cell J. 2011;13(3):131.PubMedCentralPubMed Saki N, Abroun S, Hagh MF, Asgharei F. Neoplastic bone marrow niche: hematopoietic and mesenchymal stem cells. Cell J. 2011;13(3):131.PubMedCentralPubMed
17.
Zurück zum Zitat Park KS, Pang B, Park SJ, Lee Y-G, Bae J-Y, Park S, et al. Identification and functional characterization of ion channels in CD34 + hematopoietic stem cells from human peripheral blood. Mol Cells. 2011;32(2):181–8.PubMedCentralPubMed Park KS, Pang B, Park SJ, Lee Y-G, Bae J-Y, Park S, et al. Identification and functional characterization of ion channels in CD34 + hematopoietic stem cells from human peripheral blood. Mol Cells. 2011;32(2):181–8.PubMedCentralPubMed
18.
Zurück zum Zitat Zhang W, Hirschler-Laszkiewicz I, Tong Q, Conrad K, Sun S-C, Penn L, et al. TRPM2 is an ion channel that modulates hematopoietic cell death through activation of caspases and PARP cleavage. Am J Physiol Cell Physiol. 2006;290(4):C1146–59.PubMed Zhang W, Hirschler-Laszkiewicz I, Tong Q, Conrad K, Sun S-C, Penn L, et al. TRPM2 is an ion channel that modulates hematopoietic cell death through activation of caspases and PARP cleavage. Am J Physiol Cell Physiol. 2006;290(4):C1146–59.PubMed
19.
Zurück zum Zitat Li H, Liu L, Guo L, Zhang J, Du W, Li X, et al. HERG K + channel expression in CD34 +/CD38 −/CD123 high cells and primary leukemia cells and analysis of its regulation in leukemia cells. Int J Lab Hematol. 2008;87(4):387. Li H, Liu L, Guo L, Zhang J, Du W, Li X, et al. HERG K + channel expression in CD34 +/CD38 −/CD123 high cells and primary leukemia cells and analysis of its regulation in leukemia cells. Int J Lab Hematol. 2008;87(4):387.
20.
Zurück zum Zitat Li H, Liu L, Guo T, Zhang J, Li X, Du W, et al. Expression and functional role of HERG1, K + channels in leukemic cells and leukemic stem cells. J Huazhong Univ Sci Technol Med Sci. 2007;27(3):257–60. Li H, Liu L, Guo T, Zhang J, Li X, Du W, et al. Expression and functional role of HERG1, K + channels in leukemic cells and leukemic stem cells. J Huazhong Univ Sci Technol Med Sci. 2007;27(3):257–60.
21.
Zurück zum Zitat Urrego D, Tomczak AP, Zahed F, Stühmer W, Pardo LA. Potassium channels in cell cycle and cell proliferation. Philos Trans R Soc Lond B Biol Sci. 2014;369(1638):20130094.PubMedCentralPubMed Urrego D, Tomczak AP, Zahed F, Stühmer W, Pardo LA. Potassium channels in cell cycle and cell proliferation. Philos Trans R Soc Lond B Biol Sci. 2014;369(1638):20130094.PubMedCentralPubMed
22.
Zurück zum Zitat Glassmeier G, Hempel K, Wulfsen I, Bauer CK, Schumacher U, Schwarz JR. Inhibition of HERG1 K + channel protein expression decreases cell proliferation of human small cell lung cancer cells. Pflug Arch. 2012;463(2):365–76. Glassmeier G, Hempel K, Wulfsen I, Bauer CK, Schumacher U, Schwarz JR. Inhibition of HERG1 K + channel protein expression decreases cell proliferation of human small cell lung cancer cells. Pflug Arch. 2012;463(2):365–76.
23.
Zurück zum Zitat Leanza L, O’Reilly P, Doyle A, Venturini E, Zoratti M, Szegezdi E, et al. Correlation between potassium channel expression and sensitivity to drug-induced cell death in tumor cell lines. Curr Pharm Des. 2014;20(2):189–200.PubMed Leanza L, O’Reilly P, Doyle A, Venturini E, Zoratti M, Szegezdi E, et al. Correlation between potassium channel expression and sensitivity to drug-induced cell death in tumor cell lines. Curr Pharm Des. 2014;20(2):189–200.PubMed
24.
Zurück zum Zitat Arcangeli A. Ion channels and transporters in cancer. 3. Ion channels in the tumor cell-microenvironment cross talk. Am J Physiol Cell Physiol. 2011;301(4):C762–71.PubMed Arcangeli A. Ion channels and transporters in cancer. 3. Ion channels in the tumor cell-microenvironment cross talk. Am J Physiol Cell Physiol. 2011;301(4):C762–71.PubMed
25.
Zurück zum Zitat Rafieemehr H, Kheirandish M, Soleimani M. Improving the neuronal differentiation efficiency of umbilical cord blood-derived mesenchymal stem cells cultivated under appropriate conditions. Iran J basic Med Sci. 2015;18(11):1100.PubMedCentralPubMed Rafieemehr H, Kheirandish M, Soleimani M. Improving the neuronal differentiation efficiency of umbilical cord blood-derived mesenchymal stem cells cultivated under appropriate conditions. Iran J basic Med Sci. 2015;18(11):1100.PubMedCentralPubMed
26.
Zurück zum Zitat Rafieemehr H, Kheirandish M, Soleimani M. Neural differentiation of human umbilical cord blood derived mesenchymal stem cells. Avicenna J Med Biochem. 2016;4(1):e29066. Rafieemehr H, Kheirandish M, Soleimani M. Neural differentiation of human umbilical cord blood derived mesenchymal stem cells. Avicenna J Med Biochem. 2016;4(1):e29066.
27.
Zurück zum Zitat Ravan AP, Goudarzi F, Rafieemehr H, Bahmani M, Rad F, Jafari M, et al. Human umbilical cord-mesenchymal stem cells conditioned medium attenuates CCl4 induced chronic liver fibrosis. Toxin Rev. 2019;38(3):1–12. Ravan AP, Goudarzi F, Rafieemehr H, Bahmani M, Rad F, Jafari M, et al. Human umbilical cord-mesenchymal stem cells conditioned medium attenuates CCl4 induced chronic liver fibrosis. Toxin Rev. 2019;38(3):1–12.
28.
Zurück zum Zitat Zeng Z, Samudio IJ, Munsell M, An J, Huang Z, Estey E, et al. Inhibition of CXCR29 with the novel RCP168 peptide overcomes stroma-mediated chemoresistance in chronic and acute leukemias. Mol Cancer Ther. 2006;5(12):3113–21.PubMed Zeng Z, Samudio IJ, Munsell M, An J, Huang Z, Estey E, et al. Inhibition of CXCR29 with the novel RCP168 peptide overcomes stroma-mediated chemoresistance in chronic and acute leukemias. Mol Cancer Ther. 2006;5(12):3113–21.PubMed
29.
Zurück zum Zitat Pillozzi S, Masselli M, De Lorenzo E, Accordi B, Cilia E, Crociani O, et al. Chemotherapy resistance in acute lymphoblastic leukemia requires hERG1 channels and is overcome by hERG1 blockers. Blood. 2011;117(3):902–14.PubMed Pillozzi S, Masselli M, De Lorenzo E, Accordi B, Cilia E, Crociani O, et al. Chemotherapy resistance in acute lymphoblastic leukemia requires hERG1 channels and is overcome by hERG1 blockers. Blood. 2011;117(3):902–14.PubMed
30.
Zurück zum Zitat Liu P, Ma D, Yu Z, Zhe N, Ren M, Wang P, et al. Overexpression of heme oxygenase-1 in bone marrow stromal cells promotes microenvironment-mediated imatinib resistance in chronic myeloid leukemia. Biomed Pharmacother. 2017;91:21–30.PubMed Liu P, Ma D, Yu Z, Zhe N, Ren M, Wang P, et al. Overexpression of heme oxygenase-1 in bone marrow stromal cells promotes microenvironment-mediated imatinib resistance in chronic myeloid leukemia. Biomed Pharmacother. 2017;91:21–30.PubMed
31.
Zurück zum Zitat Burger JA, Gribben JG. The microenvironment in chronic lymphocytic leukemia (CLL) and other B cell malignancies: insight into disease biology and new targeted therapies. Semin Cancer Biol. 2014;24:71–81.PubMed Burger JA, Gribben JG. The microenvironment in chronic lymphocytic leukemia (CLL) and other B cell malignancies: insight into disease biology and new targeted therapies. Semin Cancer Biol. 2014;24:71–81.PubMed
32.
Zurück zum Zitat Li H, Du YM, Guo L, Jie S, Zhang S, Du W, et al. The role of hERG1 K + channels and a functional link between hERG1 K + channels and SDF-1 in acute leukemic cell migration. Exper Cell Res. 2009;315(13):2256–64. Li H, Du YM, Guo L, Jie S, Zhang S, Du W, et al. The role of hERG1 K + channels and a functional link between hERG1 K + channels and SDF-1 in acute leukemic cell migration. Exper Cell Res. 2009;315(13):2256–64.
33.
Zurück zum Zitat Iwamoto S, Mihara K, Downing JR, Pui CH, Campana D. Mesenchymal cells regulate the response of acute lymphoblastic leukemia cells to asparaginase. J Clin Invest. 2007;117(4):1049–57.PubMedCentralPubMed Iwamoto S, Mihara K, Downing JR, Pui CH, Campana D. Mesenchymal cells regulate the response of acute lymphoblastic leukemia cells to asparaginase. J Clin Invest. 2007;117(4):1049–57.PubMedCentralPubMed
34.
Zurück zum Zitat Zeng Z, Shi YX, Samudio IJ, Wang RY, Ling X, Frolova O, et al. Targeting the leukemia microenvironment by CXCR35 inhibition overcomes resistance to kinase inhibitors and chemotherapy in AML. Blood. 2009;113(24):6215–24.PubMedCentralPubMed Zeng Z, Shi YX, Samudio IJ, Wang RY, Ling X, Frolova O, et al. Targeting the leukemia microenvironment by CXCR35 inhibition overcomes resistance to kinase inhibitors and chemotherapy in AML. Blood. 2009;113(24):6215–24.PubMedCentralPubMed
35.
Zurück zum Zitat Wulff H, Castle NA, Pardo LA. Voltage-gated potassium channels as therapeutic targets. Nat Rev Drug Discov. 2009;8(12):982–1001.PubMedCentralPubMed Wulff H, Castle NA, Pardo LA. Voltage-gated potassium channels as therapeutic targets. Nat Rev Drug Discov. 2009;8(12):982–1001.PubMedCentralPubMed
36.
Zurück zum Zitat Hemmerlein B, Weseloh RM, de Queiroz MF, Knotgen H, Sanchez A, Rubio ME, et al. Overexpression of Eag1 potassium channels in clinical tumours. Mol Cancer. 2006;5:41.PubMedCentralPubMed Hemmerlein B, Weseloh RM, de Queiroz MF, Knotgen H, Sanchez A, Rubio ME, et al. Overexpression of Eag1 potassium channels in clinical tumours. Mol Cancer. 2006;5:41.PubMedCentralPubMed
37.
Zurück zum Zitat Gomez-Varela D, Zwick-Wallasch E, Knotgen H, Sanchez A, Hettmann T, Ossipov D, et al. Monoclonal antibody blockade of the human Eag1 potassium channel function exerts antitumor activity. Cancer Res. 2007;67(15):7343–9.PubMed Gomez-Varela D, Zwick-Wallasch E, Knotgen H, Sanchez A, Hettmann T, Ossipov D, et al. Monoclonal antibody blockade of the human Eag1 potassium channel function exerts antitumor activity. Cancer Res. 2007;67(15):7343–9.PubMed
38.
Zurück zum Zitat Rodriguez-Rasgado JA, Acuna-Macias I, Camacho J. Eag1 channels as potential cancer biomarkers. Sensors (Basel). 2012;12(5):5986–95.PubMedCentralPubMed Rodriguez-Rasgado JA, Acuna-Macias I, Camacho J. Eag1 channels as potential cancer biomarkers. Sensors (Basel). 2012;12(5):5986–95.PubMedCentralPubMed
39.
Zurück zum Zitat Downie BR, Sanchez A, Knotgen H, Contreras-Jurado C, Gymnopoulos M, Weber C, et al. Eag1 expression interferes with hypoxia homeostasis and induces angiogenesis in tumors. J Biol Chem. 2008;283(52):36234–40.PubMedCentralPubMed Downie BR, Sanchez A, Knotgen H, Contreras-Jurado C, Gymnopoulos M, Weber C, et al. Eag1 expression interferes with hypoxia homeostasis and induces angiogenesis in tumors. J Biol Chem. 2008;283(52):36234–40.PubMedCentralPubMed
40.
Zurück zum Zitat Agarwal JR, Griesinger F, Stuhmer W, Pardo LA. The potassium channel Ether a go-go is a novel prognostic factor with functional relevance in acute myeloid leukemia. Mol Cancer. 2010;9:18.PubMedCentralPubMed Agarwal JR, Griesinger F, Stuhmer W, Pardo LA. The potassium channel Ether a go-go is a novel prognostic factor with functional relevance in acute myeloid leukemia. Mol Cancer. 2010;9:18.PubMedCentralPubMed
41.
Zurück zum Zitat Lin H, Li Z, Chen C, Luo X, Xiao J, Dong D, et al. Transcriptional and post-transcriptional mechanisms for oncogenic overexpression of ether a go-go K + channel. PLoS One. 2011;6(5):e20362.PubMedCentralPubMed Lin H, Li Z, Chen C, Luo X, Xiao J, Dong D, et al. Transcriptional and post-transcriptional mechanisms for oncogenic overexpression of ether a go-go K + channel. PLoS One. 2011;6(5):e20362.PubMedCentralPubMed
42.
Zurück zum Zitat Behzad MM, Shahrabi S, Jaseb K, Bertacchini J, Ketabchi N, Saki N. Aberrant DNA methylation in chronic myeloid leukemia: cell fate control, prognosis, and therapeutic response. Biochem Gene. 2018;56(3):149–75. Behzad MM, Shahrabi S, Jaseb K, Bertacchini J, Ketabchi N, Saki N. Aberrant DNA methylation in chronic myeloid leukemia: cell fate control, prognosis, and therapeutic response. Biochem Gene. 2018;56(3):149–75.
43.
Zurück zum Zitat Leanza L, Venturini E, Kadow S, Carpinteiro A, Gulbins E, Becker KA. Targeting a mitochondrial potassium channel to fight cancer. Cell Calcium. 2015;58(1):131–8.PubMed Leanza L, Venturini E, Kadow S, Carpinteiro A, Gulbins E, Becker KA. Targeting a mitochondrial potassium channel to fight cancer. Cell Calcium. 2015;58(1):131–8.PubMed
44.
Zurück zum Zitat Leanza L, Henry B, Sassi N, Zoratti M, Chandy KG, Gulbins E, et al. Inhibitors of mitochondrial Kv1.3 channels induce Bax/Bak-independent death of cancer cells. EMBO Mol Med. 2012;4(7):577–93.PubMedCentralPubMed Leanza L, Henry B, Sassi N, Zoratti M, Chandy KG, Gulbins E, et al. Inhibitors of mitochondrial Kv1.3 channels induce Bax/Bak-independent death of cancer cells. EMBO Mol Med. 2012;4(7):577–93.PubMedCentralPubMed
45.
Zurück zum Zitat Szabò I, Zoratti M, Gulbins E. Contribution of voltage-gated potassium channels to the regulation of apoptosis. FEBS Lett. 2010;584(10):2049–56.PubMed Szabò I, Zoratti M, Gulbins E. Contribution of voltage-gated potassium channels to the regulation of apoptosis. FEBS Lett. 2010;584(10):2049–56.PubMed
46.
Zurück zum Zitat Palme D, Misovic M, Schmid E, Klumpp D, Salih HR, Rudner J, et al. Kv.34 potassium channel-mediated electrosignaling controls cell cycle and survival of irradiated leukemia cells. Pflug Arch. 2013;465(8):1209–21. Palme D, Misovic M, Schmid E, Klumpp D, Salih HR, Rudner J, et al. Kv.34 potassium channel-mediated electrosignaling controls cell cycle and survival of irradiated leukemia cells. Pflug Arch. 2013;465(8):1209–21.
47.
Zurück zum Zitat Szabo I, Trentin L, Trimarco V, Semenzato G, Leanza L. Biophysical characterization and expression analysis of Kv1.3 potassium channel in primary human leukemic B cells. Cell Physiol Biochem. 2015;37(3):965–78.PubMed Szabo I, Trentin L, Trimarco V, Semenzato G, Leanza L. Biophysical characterization and expression analysis of Kv1.3 potassium channel in primary human leukemic B cells. Cell Physiol Biochem. 2015;37(3):965–78.PubMed
48.
Zurück zum Zitat Roskoski R Jr. ERK1/2 MAP kinases: structure, function, and regulation. Pharmacol Res. 2012;66(2):105–43.PubMed Roskoski R Jr. ERK1/2 MAP kinases: structure, function, and regulation. Pharmacol Res. 2012;66(2):105–43.PubMed
49.
Zurück zum Zitat Nguyen W, Howard BL, Neale DS, Thompson PE, White PJ, Wulff H, et al. Use of Kv1.3 blockers for inflammatory skin conditions. Curr Med Chem. 2010;17(26):2882–96.PubMedCentralPubMed Nguyen W, Howard BL, Neale DS, Thompson PE, White PJ, Wulff H, et al. Use of Kv1.3 blockers for inflammatory skin conditions. Curr Med Chem. 2010;17(26):2882–96.PubMedCentralPubMed
50.
Zurück zum Zitat Grossinger EM, Weiss L, Zierler S, Rebhandl S, Krenn PW, Hinterseer E, et al. Targeting proliferation of chronic lymphocytic leukemia (CLL) cells through KCa3.1 blockade. Leukemia. 2014;28(4):954–8.PubMed Grossinger EM, Weiss L, Zierler S, Rebhandl S, Krenn PW, Hinterseer E, et al. Targeting proliferation of chronic lymphocytic leukemia (CLL) cells through KCa3.1 blockade. Leukemia. 2014;28(4):954–8.PubMed
51.
Zurück zum Zitat Wang J, Xu YQ, Liang YY, Gongora R, Warnock DG, Ma HP. An intermediate-conductance Ca(2 +)-activated K (+) channel mediates B lymphoma cell cycle progression induced by serum. Pflug Arch. 2007;454(6):945–56. Wang J, Xu YQ, Liang YY, Gongora R, Warnock DG, Ma HP. An intermediate-conductance Ca(2 +)-activated K (+) channel mediates B lymphoma cell cycle progression induced by serum. Pflug Arch. 2007;454(6):945–56.
52.
Zurück zum Zitat Cid LP, Roa-Rojas HA, Niemeyer MI, Gonzalez W, Araki M, Araki K, et al. TASK-2: a K2P K(+) channel with complex regulation and diverse physiological functions. Front Physiol. 2013;4:198.PubMedCentralPubMed Cid LP, Roa-Rojas HA, Niemeyer MI, Gonzalez W, Araki M, Araki K, et al. TASK-2: a K2P K(+) channel with complex regulation and diverse physiological functions. Front Physiol. 2013;4:198.PubMedCentralPubMed
53.
Zurück zum Zitat Enyedi P, Czirjak G. Molecular background of leak K + currents: two-pore domain potassium channels. Physiol Rev. 2010;90(2):559–605.PubMed Enyedi P, Czirjak G. Molecular background of leak K + currents: two-pore domain potassium channels. Physiol Rev. 2010;90(2):559–605.PubMed
54.
Zurück zum Zitat Liu H, Enyeart JA, Enyeart JJ. Potent inhibition of native TREK-1 K + channels by selected dihydropyridine Ca2 + channel antagonists. J Pharmacol Exp Ther. 2007;323(1):39–48.PubMed Liu H, Enyeart JA, Enyeart JJ. Potent inhibition of native TREK-1 K + channels by selected dihydropyridine Ca2 + channel antagonists. J Pharmacol Exp Ther. 2007;323(1):39–48.PubMed
55.
Zurück zum Zitat Borsotto M, Veyssiere J, Maati MOH, Devader C, Mazella J, Heurteaux C. Targeting two-pore domain K(+) channels TREK-1 and TASK-3 for the treatment of depression: a new therapeutic concept. Br J Pharmacol. 2015;172(3):771–84.PubMed Borsotto M, Veyssiere J, Maati MOH, Devader C, Mazella J, Heurteaux C. Targeting two-pore domain K(+) channels TREK-1 and TASK-3 for the treatment of depression: a new therapeutic concept. Br J Pharmacol. 2015;172(3):771–84.PubMed
56.
Zurück zum Zitat Meuth SG, Bittner S, Meuth P, Simon OJ, Budde T, Wiendl H. TWIK-related acid-sensitive K + channel 1 (TASK1) and TASK3 critically influence T lymphocyte effector functions. J Biol Chem. 2008;283(21):14559–70.PubMed Meuth SG, Bittner S, Meuth P, Simon OJ, Budde T, Wiendl H. TWIK-related acid-sensitive K + channel 1 (TASK1) and TASK3 critically influence T lymphocyte effector functions. J Biol Chem. 2008;283(21):14559–70.PubMed
57.
Zurück zum Zitat Pottosin II, Bonales-Alatorre E, Valencia-Cruz G, Mendoza-Magaña ML, Dobrovinskaya OR. TRESK-like potassium channels in leukemic T cells. Pflug Arch. 2008;456(6):1037–48. Pottosin II, Bonales-Alatorre E, Valencia-Cruz G, Mendoza-Magaña ML, Dobrovinskaya OR. TRESK-like potassium channels in leukemic T cells. Pflug Arch. 2008;456(6):1037–48.
58.
Zurück zum Zitat Sánchez-Miguel DS, García-Dolores F, Flores-Márquez MR, Delgado-Enciso I, Pottosin I, Dobrovinskaya O. TRESK potassium channel in human T lymphoblasts. Biochem Biophys Res Commun. 2013;434(2):273–9.PubMed Sánchez-Miguel DS, García-Dolores F, Flores-Márquez MR, Delgado-Enciso I, Pottosin I, Dobrovinskaya O. TRESK potassium channel in human T lymphoblasts. Biochem Biophys Res Commun. 2013;434(2):273–9.PubMed
59.
Zurück zum Zitat Es-Salah-Lamoureux Z, Steele DF, Fedida D. Research into the therapeutic roles of two-pore-domain potassium channels. Trends Pharmacol Sci. 2010;31(12):587–95.PubMed Es-Salah-Lamoureux Z, Steele DF, Fedida D. Research into the therapeutic roles of two-pore-domain potassium channels. Trends Pharmacol Sci. 2010;31(12):587–95.PubMed
60.
Zurück zum Zitat Semenova SB, Vassilieva IO, Fomina AF, Runov AL, Negulyaev YA. Endogenous expression of TRPV5 and TRPV6 calcium channels in human leukemia K562 cells. Am J Physiol Cell Physiol. 2009;296(5):C1098–104.PubMed Semenova SB, Vassilieva IO, Fomina AF, Runov AL, Negulyaev YA. Endogenous expression of TRPV5 and TRPV6 calcium channels in human leukemia K562 cells. Am J Physiol Cell Physiol. 2009;296(5):C1098–104.PubMed
61.
Zurück zum Zitat Feske S, Skolnik EY, Prakriya M. Ion channels and transporters in lymphocyte function and immunity. Nat Rev Immunol. 2012;12(7):532.PubMedCentralPubMed Feske S, Skolnik EY, Prakriya M. Ion channels and transporters in lymphocyte function and immunity. Nat Rev Immunol. 2012;12(7):532.PubMedCentralPubMed
62.
Zurück zum Zitat Monteith GR, Davis FM, Roberts-Thomson SJ. Calcium channels and pumps in cancer: changes and consequences. J Biol Chem. 2012;287(38):31666–73.PubMedCentralPubMed Monteith GR, Davis FM, Roberts-Thomson SJ. Calcium channels and pumps in cancer: changes and consequences. J Biol Chem. 2012;287(38):31666–73.PubMedCentralPubMed
63.
Zurück zum Zitat Lehen’Kyi V, Flourakis M, Skryma R, Prevarskaya N. TRPV6 channel controls prostate cancer cell proliferation via Ca 2 +/NFAT-dependent pathways. Oncogene. 2007;26(52):7380.PubMed Lehen’Kyi V, Flourakis M, Skryma R, Prevarskaya N. TRPV6 channel controls prostate cancer cell proliferation via Ca 2 +/NFAT-dependent pathways. Oncogene. 2007;26(52):7380.PubMed
64.
Zurück zum Zitat Heise N, Palme D, Misovic M, Koka S, Rudner J, Lang F, et al. Non-selective cation channel-mediated Ca2 + -entry and activation of Ca2 +/calmodulin-dependent kinase II contribute to G2/M cell cycle arrest and survival of irradiated leukemia cells. Cell Physiol Biochem. 2010;26(4–5):597–608.PubMed Heise N, Palme D, Misovic M, Koka S, Rudner J, Lang F, et al. Non-selective cation channel-mediated Ca2 + -entry and activation of Ca2 +/calmodulin-dependent kinase II contribute to G2/M cell cycle arrest and survival of irradiated leukemia cells. Cell Physiol Biochem. 2010;26(4–5):597–608.PubMed
65.
Zurück zum Zitat Vassilieva IO, Tomilin VN, Marakhova II, Shatrova AN, Negulyaev YA, Semenova SB. Expression of transient receptor potential vanilloid channels TRPV5 and TRPV6 in human blood lymphocytes and Jurkat leukemia T cells. J Membr Biol. 2013;246(2):131–40.PubMed Vassilieva IO, Tomilin VN, Marakhova II, Shatrova AN, Negulyaev YA, Semenova SB. Expression of transient receptor potential vanilloid channels TRPV5 and TRPV6 in human blood lymphocytes and Jurkat leukemia T cells. J Membr Biol. 2013;246(2):131–40.PubMed
66.
Zurück zum Zitat Morelli BM, Liberati S, Amantini C, Nabiss M, Santoni M, Farfariello V, et al. Expression and function of the transient receptor potential ion channel family in the hematologic malignancies. Curr Mol Pharmacol. 2013;6(3):137–48.PubMed Morelli BM, Liberati S, Amantini C, Nabiss M, Santoni M, Farfariello V, et al. Expression and function of the transient receptor potential ion channel family in the hematologic malignancies. Curr Mol Pharmacol. 2013;6(3):137–48.PubMed
67.
Zurück zum Zitat Feng W, Wang L, Zheng G. Expression and function of P2 receptors in hematopoietic stem and progenitor cells. Stem Cell Investig. 2015;30(2):14. Feng W, Wang L, Zheng G. Expression and function of P2 receptors in hematopoietic stem and progenitor cells. Stem Cell Investig. 2015;30(2):14.
68.
Zurück zum Zitat Guven Maiorov E, Keskin O, Hatirnaz Ng O, Ozbek U, Gursoy A. Identification of interconnected markers for T-cell acute lymphoblastic leukemia. Biomed Res Int. 2013;2013:210253.PubMedCentral Guven Maiorov E, Keskin O, Hatirnaz Ng O, Ozbek U, Gursoy A. Identification of interconnected markers for T-cell acute lymphoblastic leukemia. Biomed Res Int. 2013;2013:210253.PubMedCentral
69.
Zurück zum Zitat Roger S, Potier M, Vandier C, Besson P, Le Guennec J-Y. Voltage-gated sodium channels: new targets in cancer therapy? Curr Pharm Des. 2006;12(28):3681–95.PubMed Roger S, Potier M, Vandier C, Besson P, Le Guennec J-Y. Voltage-gated sodium channels: new targets in cancer therapy? Curr Pharm Des. 2006;12(28):3681–95.PubMed
70.
Zurück zum Zitat Fraser SP, Diss JK, Lloyd LJ, Pani F, Chioni A-M, George AJ, et al. T-lymphocyte invasiveness: control by voltage-gated Na + channel activity. FEBS Lett. 2004;569(1–3):191–4.PubMed Fraser SP, Diss JK, Lloyd LJ, Pani F, Chioni A-M, George AJ, et al. T-lymphocyte invasiveness: control by voltage-gated Na + channel activity. FEBS Lett. 2004;569(1–3):191–4.PubMed
71.
Zurück zum Zitat Sudarikova A, Vassilieva I, Morachevskaya E, Negulyaev YA. Molecular and functional identification of sodium channels in K562 cells. Cell Tissue Biol. 2012;6(5–6):435–41. Sudarikova A, Vassilieva I, Morachevskaya E, Negulyaev YA. Molecular and functional identification of sodium channels in K562 cells. Cell Tissue Biol. 2012;6(5–6):435–41.
72.
Zurück zum Zitat Sudarikova AV, Tsaplina OA, Chubinskiy-Nadezhdin VI, Morachevskaya EA, Negulyaev YA. Amiloride-insensitive sodium channels are directly regulated by actin cytoskeleton dynamics in human lymphoma cells. Biochem Biophys Res Commun. 2015;461(1):54–8.PubMed Sudarikova AV, Tsaplina OA, Chubinskiy-Nadezhdin VI, Morachevskaya EA, Negulyaev YA. Amiloride-insensitive sodium channels are directly regulated by actin cytoskeleton dynamics in human lymphoma cells. Biochem Biophys Res Commun. 2015;461(1):54–8.PubMed
73.
Zurück zum Zitat Fraser SP, Ozerlat-Gunduz I, Brackenbury WJ, Fitzgerald EM, Campbell TM, Coombes RC, et al. Regulation of voltage-gated sodium channel expression in cancer: hormones, growth factors and auto-regulation. Philos Trans R Soc Lond B Biol Sci. 2014;369(1638):20130105.PubMedCentralPubMed Fraser SP, Ozerlat-Gunduz I, Brackenbury WJ, Fitzgerald EM, Campbell TM, Coombes RC, et al. Regulation of voltage-gated sodium channel expression in cancer: hormones, growth factors and auto-regulation. Philos Trans R Soc Lond B Biol Sci. 2014;369(1638):20130105.PubMedCentralPubMed
74.
Zurück zum Zitat Hesselink JMK. Moving targets in sodium channel blocker development: the case of raxatrigine: from a central NaV1. 3 blocker via a peripheral NaV1. 7 blocker to a less selective sodium channel blocker. J Med Ther. 2017;1(1):1–3. Hesselink JMK. Moving targets in sodium channel blocker development: the case of raxatrigine: from a central NaV1. 3 blocker via a peripheral NaV1. 7 blocker to a less selective sodium channel blocker. J Med Ther. 2017;1(1):1–3.
75.
Zurück zum Zitat Luiz AP, Wood JN. Sodium channels in pain and cancer: new therapeutic opportunities. Adv Pharmacol. 2016;75:153–78.PubMed Luiz AP, Wood JN. Sodium channels in pain and cancer: new therapeutic opportunities. Adv Pharmacol. 2016;75:153–78.PubMed
76.
Zurück zum Zitat Jensen MK, Sakakura T, Abe Y, Takamori H, Takasuna K, Tsurubuchi Y, et al. Use and state dependent Nav1. 5 blockers on QPatch X and in vivo assays. J Pharmacol Toxicol Methods. 2011;1(64):e8. Jensen MK, Sakakura T, Abe Y, Takamori H, Takasuna K, Tsurubuchi Y, et al. Use and state dependent Nav1. 5 blockers on QPatch X and in vivo assays. J Pharmacol Toxicol Methods. 2011;1(64):e8.
77.
Zurück zum Zitat Verkman AS, Galietta LJ. Chloride channels as drug targets. Nat Rev Drug Discov. 2009;8(2):153.PubMed Verkman AS, Galietta LJ. Chloride channels as drug targets. Nat Rev Drug Discov. 2009;8(2):153.PubMed
78.
Zurück zum Zitat Cao G, Zuo W, Fan A, Zhang H, Yang L, Zhu L, et al. Volume-sensitive chloride channels are involved in maintenance of basal cell volume in human acute lymphoblastic leukemia cells. J Membr Biol. 2011;240(2):111–9.PubMed Cao G, Zuo W, Fan A, Zhang H, Yang L, Zhu L, et al. Volume-sensitive chloride channels are involved in maintenance of basal cell volume in human acute lymphoblastic leukemia cells. J Membr Biol. 2011;240(2):111–9.PubMed
79.
Zurück zum Zitat Jiang B, Hattori N, Liu B, Nakayama Y, Kitagawa K, Inagaki C. Suppression of cell proliferation with induction of p21 by Cl− channel blockers in human leukemic cells. Eur J Pharmacol. 2004;488(1–3):27–34.PubMed Jiang B, Hattori N, Liu B, Nakayama Y, Kitagawa K, Inagaki C. Suppression of cell proliferation with induction of p21 by Cl channel blockers in human leukemic cells. Eur J Pharmacol. 2004;488(1–3):27–34.PubMed
80.
Zurück zum Zitat Kasinathan RS, Föller M, Lang C, Koka S, Lang F, Huber SM. Oxidation induces ClC-3-dependent anion channels in human leukaemia cells. FEBS Lett. 2007;581(28):5407–12.PubMed Kasinathan RS, Föller M, Lang C, Koka S, Lang F, Huber SM. Oxidation induces ClC-3-dependent anion channels in human leukaemia cells. FEBS Lett. 2007;581(28):5407–12.PubMed
81.
Zurück zum Zitat Renaudo A, L’Hoste S, Guizouarn H, Borgèse F, Soriani O. Cancer cell cycle modulated by a functional coupling between sigma-1 receptors and Cl–channels. J Biol Chem. 2007;282(4):2259–67.PubMed Renaudo A, L’Hoste S, Guizouarn H, Borgèse F, Soriani O. Cancer cell cycle modulated by a functional coupling between sigma-1 receptors and Cl–channels. J Biol Chem. 2007;282(4):2259–67.PubMed
82.
Zurück zum Zitat Zuo W, Zhu L, Bai Z, Zhang H, Mao J, Chen L, et al. Chloride channels involve in hydrogen peroxide-induced apoptosis of PC12 cells. Biochem Biophys Res Commun. 2009;387(4):666–70.PubMed Zuo W, Zhu L, Bai Z, Zhang H, Mao J, Chen L, et al. Chloride channels involve in hydrogen peroxide-induced apoptosis of PC12 cells. Biochem Biophys Res Commun. 2009;387(4):666–70.PubMed
83.
Zurück zum Zitat de Tassigny ADA, Berdeaux A, Souktani R, Henry P, Ghaleh B. The volume-sensitive chloride channel inhibitors prevent both contractile dysfunction and apoptosis induced by doxorubicin through PI3kinase, Akt and Erk 1/2. Eur J Heart Fail. 2008;10(1):39–46. de Tassigny ADA, Berdeaux A, Souktani R, Henry P, Ghaleh B. The volume-sensitive chloride channel inhibitors prevent both contractile dysfunction and apoptosis induced by doxorubicin through PI3kinase, Akt and Erk 1/2. Eur J Heart Fail. 2008;10(1):39–46.
84.
Zurück zum Zitat Pedersen SF, Hoffmann EK, Novak I. Cell volume regulation in epithelial physiology and cancer. Front Physiol. 2013;4:233.PubMedCentralPubMed Pedersen SF, Hoffmann EK, Novak I. Cell volume regulation in epithelial physiology and cancer. Front Physiol. 2013;4:233.PubMedCentralPubMed
85.
Zurück zum Zitat Chae YK, Kang SK, Kim MS, Woo J, Lee J, Chang S, et al. Human AQP5 plays a role in the progression of chronic myelogenous leukemia (CML). PLoS One. 2008;3(7):e2594.PubMedCentralPubMed Chae YK, Kang SK, Kim MS, Woo J, Lee J, Chang S, et al. Human AQP5 plays a role in the progression of chronic myelogenous leukemia (CML). PLoS One. 2008;3(7):e2594.PubMedCentralPubMed
86.
Zurück zum Zitat Lowinus T, Heidel FH, Bose T, Nimmagadda SC, Schnöder T, Cammann C, et al. Memantine potentiates cytarabine-induced cell death of acute leukemia correlating with inhibition of K v 1.3 potassium channels, AKT and ERK1/2 signaling. Cell Commun Signal. 2019;17(1):5.PubMedCentralPubMed Lowinus T, Heidel FH, Bose T, Nimmagadda SC, Schnöder T, Cammann C, et al. Memantine potentiates cytarabine-induced cell death of acute leukemia correlating with inhibition of K v 1.3 potassium channels, AKT and ERK1/2 signaling. Cell Commun Signal. 2019;17(1):5.PubMedCentralPubMed
87.
Zurück zum Zitat Rahm AK, Gierten J, Kisselbach J, Staudacher I, Staudacher K, Schweizer PA, et al. PKC-dependent activation of human K2P18. 1 K + channels. Br J Pharmacol. 2012;166(2):764–73.PubMedCentralPubMed Rahm AK, Gierten J, Kisselbach J, Staudacher I, Staudacher K, Schweizer PA, et al. PKC-dependent activation of human K2P18. 1 K + channels. Br J Pharmacol. 2012;166(2):764–73.PubMedCentralPubMed
88.
Zurück zum Zitat Chong J-H, Zheng G-G, Ma Y-Y, Zhang H-Y, Nie K, Lin Y-M, et al. The hyposensitive N187D P2X7 mutant promotes malignant progression in nude mice. J Biol Chem. 2010;285(46):36179–87.PubMedCentralPubMed Chong J-H, Zheng G-G, Ma Y-Y, Zhang H-Y, Nie K, Lin Y-M, et al. The hyposensitive N187D P2X7 mutant promotes malignant progression in nude mice. J Biol Chem. 2010;285(46):36179–87.PubMedCentralPubMed
89.
Zurück zum Zitat Gulbins E, Sassi N, Grassme H, Zoratti M, Szabo I. Role of Kv.13 mitochondrial potassium channel in apoptotic signalling in lymphocytes. Biochim Biophys Acta. 2010;1797(6–7):1251–9.PubMed Gulbins E, Sassi N, Grassme H, Zoratti M, Szabo I. Role of Kv.13 mitochondrial potassium channel in apoptotic signalling in lymphocytes. Biochim Biophys Acta. 2010;1797(6–7):1251–9.PubMed
Metadaten
Titel
Altered expression and functional role of ion channels in leukemia: bench to bedside
verfasst von
H. Rafieemehr
A. Samimi
M. Maleki Behzad
M. Ghanavat
S. Shahrabi
Publikationsdatum
06.07.2019
Verlag
Springer International Publishing
Erschienen in
Clinical and Translational Oncology / Ausgabe 3/2020
Print ISSN: 1699-048X
Elektronische ISSN: 1699-3055
DOI
https://doi.org/10.1007/s12094-019-02147-2

Weitere Artikel der Ausgabe 3/2020

Clinical and Translational Oncology 3/2020 Zur Ausgabe

Adjuvante Immuntherapie verlängert Leben bei RCC

25.04.2024 Nierenkarzinom Nachrichten

Nun gibt es auch Resultate zum Gesamtüberleben: Eine adjuvante Pembrolizumab-Therapie konnte in einer Phase-3-Studie das Leben von Menschen mit Nierenzellkarzinom deutlich verlängern. Die Sterberate war im Vergleich zu Placebo um 38% geringer.

Alectinib verbessert krankheitsfreies Überleben bei ALK-positivem NSCLC

25.04.2024 NSCLC Nachrichten

Das Risiko für Rezidiv oder Tod von Patienten und Patientinnen mit reseziertem ALK-positivem NSCLC ist unter einer adjuvanten Therapie mit dem Tyrosinkinase-Inhibitor Alectinib signifikant geringer als unter platinbasierter Chemotherapie.

Bei Senioren mit Prostatakarzinom auf Anämie achten!

24.04.2024 DGIM 2024 Nachrichten

Patienten, die zur Behandlung ihres Prostatakarzinoms eine Androgendeprivationstherapie erhalten, entwickeln nicht selten eine Anämie. Wer ältere Patienten internistisch mitbetreut, sollte auf diese Nebenwirkung achten.

ICI-Therapie in der Schwangerschaft wird gut toleriert

Müssen sich Schwangere einer Krebstherapie unterziehen, rufen Immuncheckpointinhibitoren offenbar nicht mehr unerwünschte Wirkungen hervor als andere Mittel gegen Krebs.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.