Skip to main content
Erschienen in: Investigational New Drugs 4/2015

01.08.2015 | PRECLINICAL STUDIES

Amidation inhibitors 4-phenyl-3-butenoic acid and 5-(acetylamino)-4-oxo-6-phenyl-2-hexenoic acid methyl ester are novel HDAC inhibitors with anti-tumorigenic properties

verfasst von: Amna Ali, Timothy J. Burns, Jacob D. Lucrezi, Sheldon W. May, George R. Green, Diane F. Matesic

Erschienen in: Investigational New Drugs | Ausgabe 4/2015

Einloggen, um Zugang zu erhalten

Summary

4-Phenyl-3-butenoic acid (PBA) is an inhibitor of peptidylglycine alpha-amidating monooxygenase with anti-inflammatory properties that has been shown to inhibit the growth of ras-mutated epithelial and human lung carcinoma cells. In this report, we show that PBA also increases the acetylation levels of selected histone subtypes in a dose and time dependent manner, an effect that is attributable to the inhibition of histone deacetylase (HDAC) enzymes. Comparison studies with the known HDAC inhibitor suberoylanilide hydroxamic acid (SAHA) using high resolution two-dimensional polyacrylamide gels and Western analysis provide evidence that PBA acts as an HDAC inhibitor within cells. PBA and a more potent amidation inhibitor, 5-(acetylamino)-4-oxo-6-phenyl-2-hexenoic acid methyl ester (AOPHA-Me), inhibit HDAC enzymes in vitro at micromolar concentrations, with IC50 values approximately 30 fold lower for AOPHA-Me than PBA for selected HDAC isoforms. Overall, these results indicate that PBA and AOPHA-Me are novel anti-tumorigenic HDAC inhibitors.
Literatur
1.
Zurück zum Zitat Bradbury AF, Mistry J, Roos BA, Smyth DG (1990) 4-phenyl-3-butenoic acid, an in vivo inhibitor of peptidylglycine hydroxylase (peptide amidating enzyme). Eur J Biochem 189:363–368PubMedCrossRef Bradbury AF, Mistry J, Roos BA, Smyth DG (1990) 4-phenyl-3-butenoic acid, an in vivo inhibitor of peptidylglycine hydroxylase (peptide amidating enzyme). Eur J Biochem 189:363–368PubMedCrossRef
2.
Zurück zum Zitat Katopodis AG, May SW (1990) Novel substrates and inhibitors of peptidylglycine α-amidating monooxygenase. Biochemistry 29:4541–4548PubMedCrossRef Katopodis AG, May SW (1990) Novel substrates and inhibitors of peptidylglycine α-amidating monooxygenase. Biochemistry 29:4541–4548PubMedCrossRef
3.
Zurück zum Zitat Ogonowski AA, May SW, Moore AB, Barrett LT, O’Bryant CL, Pollock SH (1997) Antiinflammatory and analgesic activity of an inhibitor of neuropeptide amidation. J Pharmacol Exp Ther 280:846–853PubMed Ogonowski AA, May SW, Moore AB, Barrett LT, O’Bryant CL, Pollock SH (1997) Antiinflammatory and analgesic activity of an inhibitor of neuropeptide amidation. J Pharmacol Exp Ther 280:846–853PubMed
4.
Zurück zum Zitat Sunman JA (2003) Inhibitors of neuropeptide synthesis: pharmacological effects and mechanisms in inflammation and tumorgenic cells. Mercer University Sunman JA (2003) Inhibitors of neuropeptide synthesis: pharmacological effects and mechanisms in inflammation and tumorgenic cells. Mercer University
5.
Zurück zum Zitat Bauer JD, Sunman JA, Foster MS, Thompson JR, Ogonowski AA, Cutler SJ, May SW, Pollock SH (2007) Anti-inflammatory effects of 4-phenyl-3-butenoic acid and 5-(acetylamino)-4-oxo-6-phenyl-2-hexenoic acid methyl ester, potential inhibitors of neuropeptide bioactivation. J Pharmacol Exp Ther 320:1171–1177PubMedCrossRef Bauer JD, Sunman JA, Foster MS, Thompson JR, Ogonowski AA, Cutler SJ, May SW, Pollock SH (2007) Anti-inflammatory effects of 4-phenyl-3-butenoic acid and 5-(acetylamino)-4-oxo-6-phenyl-2-hexenoic acid methyl ester, potential inhibitors of neuropeptide bioactivation. J Pharmacol Exp Ther 320:1171–1177PubMedCrossRef
6.
Zurück zum Zitat Sunman JA, Foster MS, Folse SL, May SW, Matesic DF (2004) Reversal of the transformed phenotype and inhibition of peptidylglycine α-monooxygenase in ras-transformed cells by 4-phenyl-3-butenoic acid. Mol Carcinog 41:231–246PubMedCrossRef Sunman JA, Foster MS, Folse SL, May SW, Matesic DF (2004) Reversal of the transformed phenotype and inhibition of peptidylglycine α-monooxygenase in ras-transformed cells by 4-phenyl-3-butenoic acid. Mol Carcinog 41:231–246PubMedCrossRef
7.
Zurück zum Zitat Matesic DF, Sidorova TS, Burns TJ, Bell AM, Tran PL, Ruch RJ, May SW (2012) p38 MAPK activation, JNK inhibition, neoplastic growth inhibition and increased gap junction communication in human lung carcinoma and Ras-transformed cells by 4-Phenyl-3-butenoic acid. J Cell Biochem 113:269–281PubMedCentralPubMedCrossRef Matesic DF, Sidorova TS, Burns TJ, Bell AM, Tran PL, Ruch RJ, May SW (2012) p38 MAPK activation, JNK inhibition, neoplastic growth inhibition and increased gap junction communication in human lung carcinoma and Ras-transformed cells by 4-Phenyl-3-butenoic acid. J Cell Biochem 113:269–281PubMedCentralPubMedCrossRef
8.
Zurück zum Zitat Feng J, Shi J, Sirimanne SR, Mounier-Lee CE, May SW (2000) Kinetic and stereochemical studies on novel inactivators of C-terminal amidation. Biochem J 350:521–530PubMedCentralPubMedCrossRef Feng J, Shi J, Sirimanne SR, Mounier-Lee CE, May SW (2000) Kinetic and stereochemical studies on novel inactivators of C-terminal amidation. Biochem J 350:521–530PubMedCentralPubMedCrossRef
9.
Zurück zum Zitat Moore AB, May SW (1999) Kinetic and inhibition studies on substrate channelling in the bifunctional enzyme catalysing C-terminal amidation. Biochem J 341:33–40PubMedCentralPubMedCrossRef Moore AB, May SW (1999) Kinetic and inhibition studies on substrate channelling in the bifunctional enzyme catalysing C-terminal amidation. Biochem J 341:33–40PubMedCentralPubMedCrossRef
10.
Zurück zum Zitat Lucrezi JD, Burns TJ, Matesic DF, Oldham CD, May SW (2014) Inhibition of JNK and p38 MAPK phosphorylation by 5-(acetylamino)-4-oxo-6-phenyl-2-hexenoic acid methyl ester and 4-phenyl-butenoic acid decreases substance P-induced TNF-α upregulation in macrophages. Int Immunopharmacol 21:44–50PubMedCentralPubMedCrossRef Lucrezi JD, Burns TJ, Matesic DF, Oldham CD, May SW (2014) Inhibition of JNK and p38 MAPK phosphorylation by 5-(acetylamino)-4-oxo-6-phenyl-2-hexenoic acid methyl ester and 4-phenyl-butenoic acid decreases substance P-induced TNF-α upregulation in macrophages. Int Immunopharmacol 21:44–50PubMedCentralPubMedCrossRef
11.
Zurück zum Zitat Nadal E, Ammerer G, Posas F (2011) Controlling gene expression in response to stress. Nat Rev Genet 12:833–845PubMed Nadal E, Ammerer G, Posas F (2011) Controlling gene expression in response to stress. Nat Rev Genet 12:833–845PubMed
12.
Zurück zum Zitat Nowak SJ, Corces VG (2004) Phosphorylation of histone H3: a balancing act between chromosome condensation and transcriptional activation. Trends Genet 20:214–220PubMedCrossRef Nowak SJ, Corces VG (2004) Phosphorylation of histone H3: a balancing act between chromosome condensation and transcriptional activation. Trends Genet 20:214–220PubMedCrossRef
13.
Zurück zum Zitat Bolden JE, Peart MJ, Johnstone RW (2006) Anticancer activities of histone deacetylase inhibitors. Nat Rev Drug Discov 5:769–784PubMedCrossRef Bolden JE, Peart MJ, Johnstone RW (2006) Anticancer activities of histone deacetylase inhibitors. Nat Rev Drug Discov 5:769–784PubMedCrossRef
14.
Zurück zum Zitat Cheung P, Tanner KG, Cheung WL, Sassone-Corsi P, Denu JM, Allis CD (2000) Synergistic coupling of histone H3 phosphorylation and acetylation in response to epidermal growth factor stimulation. Mol Cell 5:905–915PubMedCrossRef Cheung P, Tanner KG, Cheung WL, Sassone-Corsi P, Denu JM, Allis CD (2000) Synergistic coupling of histone H3 phosphorylation and acetylation in response to epidermal growth factor stimulation. Mol Cell 5:905–915PubMedCrossRef
15.
Zurück zum Zitat Yang W, Xia Y, Hawke D, Li X, Liang J, Xing D, Aldape K, Hunter T, Alfred Yung WK, Lu Z (2012) PKM2 phosphorylates histone H3 and promotes gene transcription and tumorigenesis. Cell 150:685–696PubMedCentralPubMedCrossRef Yang W, Xia Y, Hawke D, Li X, Liang J, Xing D, Aldape K, Hunter T, Alfred Yung WK, Lu Z (2012) PKM2 phosphorylates histone H3 and promotes gene transcription and tumorigenesis. Cell 150:685–696PubMedCentralPubMedCrossRef
16.
17.
Zurück zum Zitat Richon VM, O’Brien JP (2002) Histone deacetylase inhibitors: a new class of potential therapeutic agents for cancer treatment. Clin Cancer Res 8:662–664PubMed Richon VM, O’Brien JP (2002) Histone deacetylase inhibitors: a new class of potential therapeutic agents for cancer treatment. Clin Cancer Res 8:662–664PubMed
18.
Zurück zum Zitat de Ruijter AJ, van Gennip AH, Caron HN, Kemp S, van Kuilenburg AB (2003) Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem J 370:737–749PubMedCentralPubMedCrossRef de Ruijter AJ, van Gennip AH, Caron HN, Kemp S, van Kuilenburg AB (2003) Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem J 370:737–749PubMedCentralPubMedCrossRef
19.
Zurück zum Zitat Taddei A, Roche D, Bickmore WA, Almouzni G (2005) The effects of histone deacetylase inhibitors on heterochromatin: implications for anticancer therapy. EMBO Rep 6:520–524PubMedCentralPubMedCrossRef Taddei A, Roche D, Bickmore WA, Almouzni G (2005) The effects of histone deacetylase inhibitors on heterochromatin: implications for anticancer therapy. EMBO Rep 6:520–524PubMedCentralPubMedCrossRef
20.
Zurück zum Zitat Carew JS, Giles FJ, Nawrocki ST (2008) Histone deacetylase inhibitors: mechanisms of cell death and promise in combination cancer therapy. Cancer Lett 269:7–17PubMedCrossRef Carew JS, Giles FJ, Nawrocki ST (2008) Histone deacetylase inhibitors: mechanisms of cell death and promise in combination cancer therapy. Cancer Lett 269:7–17PubMedCrossRef
22.
Zurück zum Zitat Green GR, Do DP (2009) Purification and analysis of variant and modified histones using 2D PAGE. Methods Mol Biol 464:285–302PubMedCrossRef Green GR, Do DP (2009) Purification and analysis of variant and modified histones using 2D PAGE. Methods Mol Biol 464:285–302PubMedCrossRef
23.
Zurück zum Zitat Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. J Comput Chem 31:455–461PubMedCentralPubMed Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. J Comput Chem 31:455–461PubMedCentralPubMed
24.
Zurück zum Zitat Karagiannis TC, El-Osta A (2007) Will broad-spectrum histone deacetylase inhibitors be superseded by more specific compounds? Leukemia 21:61–65PubMedCrossRef Karagiannis TC, El-Osta A (2007) Will broad-spectrum histone deacetylase inhibitors be superseded by more specific compounds? Leukemia 21:61–65PubMedCrossRef
25.
Zurück zum Zitat Marks PA, Breslow R (2007) Dimethyl sulfoxide to vorinostat: development of this histone deacetylase inhibitor as an anticancer drug. Nat Biotechnol 25:84–90PubMedCrossRef Marks PA, Breslow R (2007) Dimethyl sulfoxide to vorinostat: development of this histone deacetylase inhibitor as an anticancer drug. Nat Biotechnol 25:84–90PubMedCrossRef
27.
Zurück zum Zitat Dallavalle S, Pisano C, Zunino F (2012) Development and therapeutic impact of HDAC6-selective inhibitors. Biochem Pharmacol 84:756–765PubMedCrossRef Dallavalle S, Pisano C, Zunino F (2012) Development and therapeutic impact of HDAC6-selective inhibitors. Biochem Pharmacol 84:756–765PubMedCrossRef
28.
Zurück zum Zitat Lee JH, Mahendran A, Yao Y, Ngo L, Venta-Perez G, Choy ML, Kim N, Ham WS, Breslow R, Marks PA (2013) Development of a histone deacetylase 6 inhibitor and its biological effects. Proc Natl Acad Sci U S A 110:15704–15709PubMedCentralPubMedCrossRef Lee JH, Mahendran A, Yao Y, Ngo L, Venta-Perez G, Choy ML, Kim N, Ham WS, Breslow R, Marks PA (2013) Development of a histone deacetylase 6 inhibitor and its biological effects. Proc Natl Acad Sci U S A 110:15704–15709PubMedCentralPubMedCrossRef
29.
Zurück zum Zitat Namdar M, Perez G, Ngo L, Marks PA (2010) Selective inhibition of histone deacetylase 6 (HDAC6) induces DNA damage and sensitizes transformed cells to anticancer agents. Proc Natl Acad Sci U S A 107:20003–20008PubMedCentralPubMedCrossRef Namdar M, Perez G, Ngo L, Marks PA (2010) Selective inhibition of histone deacetylase 6 (HDAC6) induces DNA damage and sensitizes transformed cells to anticancer agents. Proc Natl Acad Sci U S A 107:20003–20008PubMedCentralPubMedCrossRef
31.
Zurück zum Zitat Fischer JJ, Michaelis S, Schrey AK, Diehl A, Graebner OY, Ungewiss J, Horzowski S, Glinski M, Kroll F, Dreger M, Koester H (2011) SAHA capture compound–a novel tool for the profiling of histone deacetylases and the identification of additional vorinostat binders. Proteomics 11:4096–4104PubMedCrossRef Fischer JJ, Michaelis S, Schrey AK, Diehl A, Graebner OY, Ungewiss J, Horzowski S, Glinski M, Kroll F, Dreger M, Koester H (2011) SAHA capture compound–a novel tool for the profiling of histone deacetylases and the identification of additional vorinostat binders. Proteomics 11:4096–4104PubMedCrossRef
32.
Zurück zum Zitat Bantscheff M, Hopf C, Savitski MM, Dittmann A, Grandi P, Michon AM, Schlegl J, Abraham Y, Becher I, Bergamini G, Boesche M, Delling M, Dümpelfeld B, Eberhard D, Huthmacher C, Mathieson T, Poeckel D, Reader V, Strunk K, Sweetman G, Kruse U, Neubauer G, Ramsden NG, Drewes G (2011) Chemoproteomics profiling of HDAC inhibitors reveals selective targeting of HDAC complexes. Nat Biotechnol 29:255–265PubMedCrossRef Bantscheff M, Hopf C, Savitski MM, Dittmann A, Grandi P, Michon AM, Schlegl J, Abraham Y, Becher I, Bergamini G, Boesche M, Delling M, Dümpelfeld B, Eberhard D, Huthmacher C, Mathieson T, Poeckel D, Reader V, Strunk K, Sweetman G, Kruse U, Neubauer G, Ramsden NG, Drewes G (2011) Chemoproteomics profiling of HDAC inhibitors reveals selective targeting of HDAC complexes. Nat Biotechnol 29:255–265PubMedCrossRef
Metadaten
Titel
Amidation inhibitors 4-phenyl-3-butenoic acid and 5-(acetylamino)-4-oxo-6-phenyl-2-hexenoic acid methyl ester are novel HDAC inhibitors with anti-tumorigenic properties
verfasst von
Amna Ali
Timothy J. Burns
Jacob D. Lucrezi
Sheldon W. May
George R. Green
Diane F. Matesic
Publikationsdatum
01.08.2015
Verlag
Springer US
Erschienen in
Investigational New Drugs / Ausgabe 4/2015
Print ISSN: 0167-6997
Elektronische ISSN: 1573-0646
DOI
https://doi.org/10.1007/s10637-015-0254-2

Weitere Artikel der Ausgabe 4/2015

Investigational New Drugs 4/2015 Zur Ausgabe

Adjuvante Immuntherapie verlängert Leben bei RCC

25.04.2024 Nierenkarzinom Nachrichten

Nun gibt es auch Resultate zum Gesamtüberleben: Eine adjuvante Pembrolizumab-Therapie konnte in einer Phase-3-Studie das Leben von Menschen mit Nierenzellkarzinom deutlich verlängern. Die Sterberate war im Vergleich zu Placebo um 38% geringer.

Alectinib verbessert krankheitsfreies Überleben bei ALK-positivem NSCLC

25.04.2024 NSCLC Nachrichten

Das Risiko für Rezidiv oder Tod von Patienten und Patientinnen mit reseziertem ALK-positivem NSCLC ist unter einer adjuvanten Therapie mit dem Tyrosinkinase-Inhibitor Alectinib signifikant geringer als unter platinbasierter Chemotherapie.

Bei Senioren mit Prostatakarzinom auf Anämie achten!

24.04.2024 DGIM 2024 Nachrichten

Patienten, die zur Behandlung ihres Prostatakarzinoms eine Androgendeprivationstherapie erhalten, entwickeln nicht selten eine Anämie. Wer ältere Patienten internistisch mitbetreut, sollte auf diese Nebenwirkung achten.

ICI-Therapie in der Schwangerschaft wird gut toleriert

Müssen sich Schwangere einer Krebstherapie unterziehen, rufen Immuncheckpointinhibitoren offenbar nicht mehr unerwünschte Wirkungen hervor als andere Mittel gegen Krebs.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.