Skip to main content
Erschienen in: Sport Sciences for Health 2/2017

05.06.2017 | Original Article

An optimal control solution to the predictive dynamics of cycling

verfasst von: Andrea Zignoli, Francesco Biral, Barbara Pellegrini, Azim Jinha, Walter Herzog, Federico Schena

Erschienen in: Sport Sciences for Health | Ausgabe 2/2017

Einloggen, um Zugang zu erhalten

Abstract

Purpose

Pure predictive dynamics aims at predicting the set of driving inputs in the absence of any a priori data and can be applied in movement science to generate biomechanical variables in many different what-if scenarios. The objective of this research was to solve the problem of the predictive dynamics of sub-maximal cycling by means of an optimal control computational algorithm that makes use of an indirect method.

Methods

To this, a 2D two-legged seven bodies three degrees of freedom model of the lower limbs of a cyclist has been developed and validated against the average behaviour of eight well-trained cyclists pedalling at different sub-maximal intensities (100, 220, 300 W) at constant cadence (90 rpm). Experimental data adopted in model validation consists of the hip, knee, ankle joint centre and crank kinematics and the right/left crank torques.

Results

It has been found that the model can replicate the major features of pedalling biomechanics and the ability of a cyclist to deliver a larger torque if a larger power output is required and the cadence is kept constant. The reported mismatches with experimental data get smaller as the power output increases.

Conclusions

It is suggested that: (1) an optimal control based on an indirect method approach can provide a solution to the predictive dynamics of sub-maximal cycling, (2) predictive dynamics adapts accordingly to real data for changes in power output.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
2.
Zurück zum Zitat Anderson DE, Madigan ML, Nussbaum MA (2007) Maximum voluntary joint torque as a function of joint angle and angular velocity: model development and application to the lower limb. J Biomech 40:3105–3113CrossRefPubMed Anderson DE, Madigan ML, Nussbaum MA (2007) Maximum voluntary joint torque as a function of joint angle and angular velocity: model development and application to the lower limb. J Biomech 40:3105–3113CrossRefPubMed
3.
Zurück zum Zitat Arnold EM, Ward SR, Lieber RL, Delp SL (2010) A model of the lower limb for analysis of human movement. Ann Biomed Eng 38:269–279CrossRefPubMed Arnold EM, Ward SR, Lieber RL, Delp SL (2010) A model of the lower limb for analysis of human movement. Ann Biomed Eng 38:269–279CrossRefPubMed
5.
Zurück zum Zitat Bertucci W, Grappe F, Girard A et al (2005) Effects on the crank torque profile when changing pedalling cadence in level ground and uphill road cycling. J Biomech 38:1003–1010CrossRefPubMed Bertucci W, Grappe F, Girard A et al (2005) Effects on the crank torque profile when changing pedalling cadence in level ground and uphill road cycling. J Biomech 38:1003–1010CrossRefPubMed
6.
Zurück zum Zitat Biral F, Bertolazzi E, Bosetti P (2015) Notes on numerical methods for solving optimal control problems. IEEE J Ind Appl 5:154–166 Biral F, Bertolazzi E, Bosetti P (2015) Notes on numerical methods for solving optimal control problems. IEEE J Ind Appl 5:154–166
7.
Zurück zum Zitat Davy D, Audu M (1987) A dynamic optimization technique for predicting muscle forces in the swing phase of gait. J Biomech 20:187–201CrossRefPubMed Davy D, Audu M (1987) A dynamic optimization technique for predicting muscle forces in the swing phase of gait. J Biomech 20:187–201CrossRefPubMed
9.
Zurück zum Zitat De Leva P (1996) Adjustments to Zatsiorsky–Seluyanov’s segment inertia parameters. J Biomech 29:1223–1230CrossRefPubMed De Leva P (1996) Adjustments to Zatsiorsky–Seluyanov’s segment inertia parameters. J Biomech 29:1223–1230CrossRefPubMed
10.
Zurück zum Zitat De Pauw K, Roelands B, Cheung SS et al (2013) Guidelines to classify subject groups in sport-science research. Int J Sports Physiol Perform 8:111–122CrossRefPubMed De Pauw K, Roelands B, Cheung SS et al (2013) Guidelines to classify subject groups in sport-science research. Int J Sports Physiol Perform 8:111–122CrossRefPubMed
11.
Zurück zum Zitat Delp SL, Loan JP, Hoy MG et al (1990) An interactive graphics-based model of the lower extremity to study orthopaedic surgical procedures. Biomed Eng IEEE Trans 37:757–767CrossRef Delp SL, Loan JP, Hoy MG et al (1990) An interactive graphics-based model of the lower extremity to study orthopaedic surgical procedures. Biomed Eng IEEE Trans 37:757–767CrossRef
12.
Zurück zum Zitat Dorn TW, Wang JM, Hicks JL, Delp SL (2015) Predictive simulation generates human adaptations during loaded and inclined walking. PLoS One 10:e0121407CrossRefPubMedPubMedCentral Dorn TW, Wang JM, Hicks JL, Delp SL (2015) Predictive simulation generates human adaptations during loaded and inclined walking. PLoS One 10:e0121407CrossRefPubMedPubMedCentral
13.
Zurück zum Zitat Earnest CP, Wharton RP, Church TS, Lucia A (2005) Reliability of the lode excalibur sport ergometer and applicability to computrainer electromagnetically braked cycling training device. J Strength Cond Res 19:344–348PubMed Earnest CP, Wharton RP, Church TS, Lucia A (2005) Reliability of the lode excalibur sport ergometer and applicability to computrainer electromagnetically braked cycling training device. J Strength Cond Res 19:344–348PubMed
14.
Zurück zum Zitat Erdemir A, McLean S, Herzog W, van den Bogert AJ (2007) Model-based estimation of muscle forces exerted during movements. Clin Biomech 22:131–154CrossRef Erdemir A, McLean S, Herzog W, van den Bogert AJ (2007) Model-based estimation of muscle forces exerted during movements. Clin Biomech 22:131–154CrossRef
15.
Zurück zum Zitat Erez T, Todorov E (2012) Trajectory optimization for domains with contacts using inverse dynamics. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, pp 4914–4919 Erez T, Todorov E (2012) Trajectory optimization for domains with contacts using inverse dynamics. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, pp 4914–4919
16.
Zurück zum Zitat Ericson MO, Nisell R, Németh G (1988) Joint motions of the lower limb during ergometer cycling. J Orthop Sports Phys Ther 9:273–278CrossRef Ericson MO, Nisell R, Németh G (1988) Joint motions of the lower limb during ergometer cycling. J Orthop Sports Phys Ther 9:273–278CrossRef
17.
Zurück zum Zitat Farahani SD, Bertucci W, Andersen MS et al (2015) Prediction of crank torque and pedal angle profiles during pedaling movements by biomechanical optimization. Struct Multidiscip Optim 51:251–266CrossRef Farahani SD, Bertucci W, Andersen MS et al (2015) Prediction of crank torque and pedal angle profiles during pedaling movements by biomechanical optimization. Struct Multidiscip Optim 51:251–266CrossRef
18.
Zurück zum Zitat Fregly BJ, Zajac FE (1996) A state-space analysis of mechanical energy generation, absorption, and transfer during pedaling. J Biomech 29:81–90CrossRefPubMed Fregly BJ, Zajac FE (1996) A state-space analysis of mechanical energy generation, absorption, and transfer during pedaling. J Biomech 29:81–90CrossRefPubMed
19.
Zurück zum Zitat Fregly BJ, Zajac FE, Dairaghi CA (1996) Crank inertial load has little effect on steady-state pedaling coordination. J Biomech 29:1559–1567CrossRefPubMed Fregly BJ, Zajac FE, Dairaghi CA (1996) Crank inertial load has little effect on steady-state pedaling coordination. J Biomech 29:1559–1567CrossRefPubMed
20.
Zurück zum Zitat Gonzalez H, Hull M (1989) Multivariable optimization of cycling biomechanics. J Biomech 22:1151–1161CrossRefPubMed Gonzalez H, Hull M (1989) Multivariable optimization of cycling biomechanics. J Biomech 22:1151–1161CrossRefPubMed
21.
Zurück zum Zitat Gregor R, Cavanagh P, LaFortune M (1985) Knee flexor moments during propulsion in cycling: a creative solution to Lombard’s Paradox. J Biomech 18:307–316CrossRefPubMed Gregor R, Cavanagh P, LaFortune M (1985) Knee flexor moments during propulsion in cycling: a creative solution to Lombard’s Paradox. J Biomech 18:307–316CrossRefPubMed
22.
Zurück zum Zitat Jorge M, Hull M (1986) Analysis of EMG measurements during bicycle pedalling. J Biomech 19:683–694CrossRefPubMed Jorge M, Hull M (1986) Analysis of EMG measurements during bicycle pedalling. J Biomech 19:683–694CrossRefPubMed
23.
Zurück zum Zitat Kaplan ML, Heegaard JH (2001) Predictive algorithms for neuromuscular control of human locomotion. J Biomech 34:1077–1083CrossRefPubMed Kaplan ML, Heegaard JH (2001) Predictive algorithms for neuromuscular control of human locomotion. J Biomech 34:1077–1083CrossRefPubMed
24.
Zurück zum Zitat Kautz S, Hull M (1995) Dynamic optimization analysis for equipment setup problems in endurance cycling. J Biomech 28:1391–1401CrossRefPubMed Kautz S, Hull M (1995) Dynamic optimization analysis for equipment setup problems in endurance cycling. J Biomech 28:1391–1401CrossRefPubMed
25.
Zurück zum Zitat Kurosawa H, Walker P, Abe S et al (1985) Geometry and motion of the knee for implant and orthotic design. J Biomech 18:487–499CrossRefPubMed Kurosawa H, Walker P, Abe S et al (1985) Geometry and motion of the knee for implant and orthotic design. J Biomech 18:487–499CrossRefPubMed
26.
Zurück zum Zitat Leardini A, Cappozzo A, Catani F et al (1999) Validation of a functional method for the estimation of hip joint centre location. J Biomech 32:99–103CrossRefPubMed Leardini A, Cappozzo A, Catani F et al (1999) Validation of a functional method for the estimation of hip joint centre location. J Biomech 32:99–103CrossRefPubMed
27.
28.
Zurück zum Zitat Lot R, Da Lio M (2004) A symbolic approach for automatic generation of the equations of motion of multibody systems. Multibody Syst Dyn 12:147–172CrossRef Lot R, Da Lio M (2004) A symbolic approach for automatic generation of the equations of motion of multibody systems. Multibody Syst Dyn 12:147–172CrossRef
29.
Zurück zum Zitat Marsh AP, Martin PE, Sanderson DJ (2000) Is a joint moment-based cost function associated with preferred cycling cadence? J Biomech 33:173–180CrossRefPubMed Marsh AP, Martin PE, Sanderson DJ (2000) Is a joint moment-based cost function associated with preferred cycling cadence? J Biomech 33:173–180CrossRefPubMed
30.
Zurück zum Zitat Mognoni P, Di Prampero PE (2003) Gear, inertial work and road slopes as determinants of biomechanics in cycling. Eur J Appl Physiol 90:372–376CrossRefPubMed Mognoni P, Di Prampero PE (2003) Gear, inertial work and road slopes as determinants of biomechanics in cycling. Eur J Appl Physiol 90:372–376CrossRefPubMed
32.
Zurück zum Zitat Mullineaux DR, Bartlett RM, Bennett S (2001) Research design and statistics in biomechanics and motor control. J Sports Sci 19:739–760CrossRefPubMed Mullineaux DR, Bartlett RM, Bennett S (2001) Research design and statistics in biomechanics and motor control. J Sports Sci 19:739–760CrossRefPubMed
33.
Zurück zum Zitat Neptune R, Hull M (1998) Evaluation of performance criteria for simulation of submaximal steady-state cycling using a forward dynamic model. J Biomech Eng 120:334–341CrossRefPubMed Neptune R, Hull M (1998) Evaluation of performance criteria for simulation of submaximal steady-state cycling using a forward dynamic model. J Biomech Eng 120:334–341CrossRefPubMed
34.
Zurück zum Zitat Neptune R, Van den Bogert A (1997) Standard mechanical energy analyses do not correlate with muscle work in cycling. J Biomech 31:239–245CrossRef Neptune R, Van den Bogert A (1997) Standard mechanical energy analyses do not correlate with muscle work in cycling. J Biomech 31:239–245CrossRef
35.
Zurück zum Zitat Neptune RR, Hull ML (1996) Methods for determining hip movement in seated cycling and their effect on kinematics and kinetics. J Appl Biomech 12:493–507CrossRef Neptune RR, Hull ML (1996) Methods for determining hip movement in seated cycling and their effect on kinematics and kinetics. J Appl Biomech 12:493–507CrossRef
36.
Zurück zum Zitat Neumann DA (2013) Kinesiology of the musculoskeletal system: foundations for rehabilitation. Elsevier Health Sciences, Amsterdam Neumann DA (2013) Kinesiology of the musculoskeletal system: foundations for rehabilitation. Elsevier Health Sciences, Amsterdam
37.
Zurück zum Zitat Olney SJ, Winter DA (1985) Predictions of knee and ankle moments of force in walking from EMG and kinematic data. J Biomech 18:9–20CrossRefPubMed Olney SJ, Winter DA (1985) Predictions of knee and ankle moments of force in walking from EMG and kinematic data. J Biomech 18:9–20CrossRefPubMed
38.
Zurück zum Zitat Pandy MG (2001) Computer modeling and simulation of human movement. Annu Rev Biomed Eng 3:245–273CrossRefPubMed Pandy MG (2001) Computer modeling and simulation of human movement. Annu Rev Biomed Eng 3:245–273CrossRefPubMed
39.
Zurück zum Zitat Pandy MG, Zajac FE, Sim E, Levine WS (1990) An optimal control model for maximum-height human jumping. J Biomech 23:1185–1198CrossRefPubMed Pandy MG, Zajac FE, Sim E, Levine WS (1990) An optimal control model for maximum-height human jumping. J Biomech 23:1185–1198CrossRefPubMed
40.
Zurück zum Zitat Patriarco A, Mann R, Simon S, Mansour J (1981) An evaluation of the approaches of optimization models in the prediction of muscle forces during human gait. J Biomech 14:513–525CrossRefPubMed Patriarco A, Mann R, Simon S, Mansour J (1981) An evaluation of the approaches of optimization models in the prediction of muscle forces during human gait. J Biomech 14:513–525CrossRefPubMed
41.
Zurück zum Zitat Porsa S, Lin Y-C, Pandy MG (2016) Direct methods for predicting movement biomechanics based upon optimal control theory with implementation in Opensim. Ann Biomed Eng 44(8):2542–2557CrossRefPubMed Porsa S, Lin Y-C, Pandy MG (2016) Direct methods for predicting movement biomechanics based upon optimal control theory with implementation in Opensim. Ann Biomed Eng 44(8):2542–2557CrossRefPubMed
42.
Zurück zum Zitat Raasch CC, Zajac FE (1999) Locomotor strategy for pedaling: muscle groups and biomechanical functions. J Neurophysiol 82:515–525PubMed Raasch CC, Zajac FE (1999) Locomotor strategy for pedaling: muscle groups and biomechanical functions. J Neurophysiol 82:515–525PubMed
43.
Zurück zum Zitat Raasch CC, Zajac FE, Ma B, Levine WS (1997) Muscle coordination of maximum-speed pedaling. J Biomech 30:595–602CrossRefPubMed Raasch CC, Zajac FE, Ma B, Levine WS (1997) Muscle coordination of maximum-speed pedaling. J Biomech 30:595–602CrossRefPubMed
44.
Zurück zum Zitat Rao AV (2009) A survey of numerical methods for optimal control. Adv Astronaut Sci 135:497–528 Rao AV (2009) A survey of numerical methods for optimal control. Adv Astronaut Sci 135:497–528
45.
Zurück zum Zitat Redfield R, Hull M (1986) Prediction of pedal forces in bicycling using optimization methods. J Biomech 19:523–540CrossRefPubMed Redfield R, Hull M (1986) Prediction of pedal forces in bicycling using optimization methods. J Biomech 19:523–540CrossRefPubMed
46.
Zurück zum Zitat Reiser M, Meyer T, Kindermann W, Daugs R (2000) Transferability of workload measurements between three different types of ergometer. Eur J Appl Physiol 82:245–249CrossRefPubMed Reiser M, Meyer T, Kindermann W, Daugs R (2000) Transferability of workload measurements between three different types of ergometer. Eur J Appl Physiol 82:245–249CrossRefPubMed
47.
Zurück zum Zitat Ren L, Jones RK, Howard D (2007) Predictive modelling of human walking over a complete gait cycle. J Biomech 40:1567–1574CrossRefPubMed Ren L, Jones RK, Howard D (2007) Predictive modelling of human walking over a complete gait cycle. J Biomech 40:1567–1574CrossRefPubMed
48.
Zurück zum Zitat Riener R, Edrich T (1999) Identification of passive elastic joint moments in the lower extremities. J Biomech 32:539–544CrossRefPubMed Riener R, Edrich T (1999) Identification of passive elastic joint moments in the lower extremities. J Biomech 32:539–544CrossRefPubMed
49.
Zurück zum Zitat Sassi A, Rampinini E, Martin DT, Morelli A (2009) Effects of gradient and speed on freely chosen cadence: the key role of crank inertial load. J Biomech 42:171–177CrossRefPubMed Sassi A, Rampinini E, Martin DT, Morelli A (2009) Effects of gradient and speed on freely chosen cadence: the key role of crank inertial load. J Biomech 42:171–177CrossRefPubMed
52.
Zurück zum Zitat Tassa Y, Mansard N, Todorov E (2014) Control-limited differential dynamic programming. In: IEEE conference on robotics and automation (ICRA) Tassa Y, Mansard N, Todorov E (2014) Control-limited differential dynamic programming. In: IEEE conference on robotics and automation (ICRA)
53.
Zurück zum Zitat Thelen DG, Anderson FC, Delp SL (2003) Generating dynamic simulations of movement using computed muscle control. J Biomech 36:321–328CrossRefPubMed Thelen DG, Anderson FC, Delp SL (2003) Generating dynamic simulations of movement using computed muscle control. J Biomech 36:321–328CrossRefPubMed
57.
Zurück zum Zitat van Ingen Schenau G, van Bobbert M, Rozendal R (1987) The unique action of bi-articular muscles in complex movements. J Anat 155:1 van Ingen Schenau G, van Bobbert M, Rozendal R (1987) The unique action of bi-articular muscles in complex movements. J Anat 155:1
59.
Zurück zum Zitat Voigt B, von Kiparski R (1989) The influence of the rotational energy of a flywheel on the load pulse sum during pedalling on a cycle ergometer. Eur J Appl Physiol 58:681–686CrossRef Voigt B, von Kiparski R (1989) The influence of the rotational energy of a flywheel on the load pulse sum during pedalling on a cycle ergometer. Eur J Appl Physiol 58:681–686CrossRef
60.
61.
Zurück zum Zitat Yamaguchi GT (2005) Dynamic modeling of musculoskeletal motion: a vectorized approach for biomechanical analysis in three dimensions. Springer Science & Business Media, Berlin Yamaguchi GT (2005) Dynamic modeling of musculoskeletal motion: a vectorized approach for biomechanical analysis in three dimensions. Springer Science & Business Media, Berlin
Metadaten
Titel
An optimal control solution to the predictive dynamics of cycling
verfasst von
Andrea Zignoli
Francesco Biral
Barbara Pellegrini
Azim Jinha
Walter Herzog
Federico Schena
Publikationsdatum
05.06.2017
Verlag
Springer Milan
Erschienen in
Sport Sciences for Health / Ausgabe 2/2017
Print ISSN: 1824-7490
Elektronische ISSN: 1825-1234
DOI
https://doi.org/10.1007/s11332-017-0370-9

Weitere Artikel der Ausgabe 2/2017

Sport Sciences for Health 2/2017 Zur Ausgabe

Arthropedia

Grundlagenwissen der Arthroskopie und Gelenkchirurgie. Erweitert durch Fallbeispiele, Videos und Abbildungen. 
» Jetzt entdecken

Notfall-TEP der Hüfte ist auch bei 90-Jährigen machbar

26.04.2024 Hüft-TEP Nachrichten

Ob bei einer Notfalloperation nach Schenkelhalsfraktur eine Hemiarthroplastik oder eine totale Endoprothese (TEP) eingebaut wird, sollte nicht allein vom Alter der Patientinnen und Patienten abhängen. Auch über 90-Jährige können von der TEP profitieren.

Arthroskopie kann Knieprothese nicht hinauszögern

25.04.2024 Gonarthrose Nachrichten

Ein arthroskopischer Eingriff bei Kniearthrose macht im Hinblick darauf, ob und wann ein Gelenkersatz fällig wird, offenbar keinen Unterschied.

Therapiestart mit Blutdrucksenkern erhöht Frakturrisiko

25.04.2024 Hypertonie Nachrichten

Beginnen ältere Männer im Pflegeheim eine Antihypertensiva-Therapie, dann ist die Frakturrate in den folgenden 30 Tagen mehr als verdoppelt. Besonders häufig stürzen Demenzkranke und Männer, die erstmals Blutdrucksenker nehmen. Dafür spricht eine Analyse unter US-Veteranen.

Ärztliche Empathie hilft gegen Rückenschmerzen

23.04.2024 Leitsymptom Rückenschmerzen Nachrichten

Personen mit chronischen Rückenschmerzen, die von einfühlsamen Ärzten und Ärztinnen betreut werden, berichten über weniger Beschwerden und eine bessere Lebensqualität.

Update Orthopädie und Unfallchirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.