Skip to main content
Erschienen in: Inflammation 5/2018

14.06.2018 | ORIGINAL ARTICLE

Andrographolide Ameliorates Atherosclerosis by Suppressing Pro-Inflammation and ROS Generation-Mediated Foam Cell Formation

verfasst von: Teng Wu, Yuan Peng, Sishan Yan, Ning Li, Yinghua Chen, Tian Lan

Erschienen in: Inflammation | Ausgabe 5/2018

Einloggen, um Zugang zu erhalten

Abstract

Inflammation, oxidative stress, and dyslipidemia are major factors in the pathogenesis of atherosclerosis. Andrographolide, a bioactive component of Andrographis paniculata, has several biological activities, including anti-inflammatory, antioxidant, and anticancer effects. This study shows that andrographolide downregulates the oxidized low-density lipoprotein (oxLDL)-induced expression of the pro-inflammatory molecules monocyte chemotactic protein (MCP)-1 and interleukin (IL)-6 and blocks the nuclear factor-κB signaling pathway in macrophages. Additionally, andrographolide treatment decreased reactive oxygen species (ROS) generation in oxLDL-induced macrophages, indicating that the compound can decrease oxidative stress. The results also suggest that andrographolide suppresses oxLDL-induced foam cell formation and inhibits oxLDL-induced CD36 expression in vitro. Furthermore, in vivo studies have indicated that andrographolide treatment ameliorates atherosclerosis pathogenesis in apolipoprotein E knockout mice. Therefore, by suppressing inflammation, ROS generation, and foam cell formation, andrographolide may ameliorate the progression of atherosclerosis, suggesting its potential as a therapeutic drug for the prevention and/or treatment of this disease.
Literatur
1.
Zurück zum Zitat Falk, E., M. Nakano, J.F. Bentzon, A.V. Finn, and R. Virmani. 2013. Update on acute coronary syndromes: the pathologists’ view. European Heart Journal 34: 719–728.CrossRefPubMed Falk, E., M. Nakano, J.F. Bentzon, A.V. Finn, and R. Virmani. 2013. Update on acute coronary syndromes: the pathologists’ view. European Heart Journal 34: 719–728.CrossRefPubMed
3.
Zurück zum Zitat Collins, R., C. Reith, J. Emberson, J. Armitage, C. Baigent, L. Blackwell, R. Blumenthal, J. Danesh, G.D. Smith, D. DeMets, S. Evans, M. Law, S. MacMahon, S. Martin, B. Neal, N. Poulter, D. Preiss, P. Ridker, I. Roberts, A. Rodgers, P. Sandercock, K. Schulz, P. Sever, J. Simes, L. Smeeth, N. Wald, S. Yusuf, and R. Peto. 2016. Interpretation of the evidence for the efficacy and safety of statin therapy. Lancet 388: 2532–2561.CrossRefPubMed Collins, R., C. Reith, J. Emberson, J. Armitage, C. Baigent, L. Blackwell, R. Blumenthal, J. Danesh, G.D. Smith, D. DeMets, S. Evans, M. Law, S. MacMahon, S. Martin, B. Neal, N. Poulter, D. Preiss, P. Ridker, I. Roberts, A. Rodgers, P. Sandercock, K. Schulz, P. Sever, J. Simes, L. Smeeth, N. Wald, S. Yusuf, and R. Peto. 2016. Interpretation of the evidence for the efficacy and safety of statin therapy. Lancet 388: 2532–2561.CrossRefPubMed
4.
Zurück zum Zitat Colin, S., G. Chinetti-Gbaguidi, and B. Staels. 2014. Macrophage phenotypes in atherosclerosis. Immunological Reviews 262: 153–166.CrossRefPubMed Colin, S., G. Chinetti-Gbaguidi, and B. Staels. 2014. Macrophage phenotypes in atherosclerosis. Immunological Reviews 262: 153–166.CrossRefPubMed
5.
Zurück zum Zitat Kwon, G.P., J.L. Schroeder, M.J. Amar, A.T. Remaley, and R.S. Balaban. 2008. Contribution of macromolecular structure to the retention of low-density lipoprotein at arterial branch points. Circulation 117: 2919–2927.CrossRefPubMedPubMedCentral Kwon, G.P., J.L. Schroeder, M.J. Amar, A.T. Remaley, and R.S. Balaban. 2008. Contribution of macromolecular structure to the retention of low-density lipoprotein at arterial branch points. Circulation 117: 2919–2927.CrossRefPubMedPubMedCentral
6.
Zurück zum Zitat Gistera, A., and G.K. Hansson. 2017. The immunology of atherosclerosis. Nature Reviews. Nephrology 13: 368–380.CrossRefPubMed Gistera, A., and G.K. Hansson. 2017. The immunology of atherosclerosis. Nature Reviews. Nephrology 13: 368–380.CrossRefPubMed
7.
Zurück zum Zitat Fraley, A.E., and S. Tsimikas. 2006. Clinical applications of circulating oxidized low-density lipoprotein biomarkers in cardiovascular disease. Current Opinion in Lipidology 17: 502–509.CrossRefPubMed Fraley, A.E., and S. Tsimikas. 2006. Clinical applications of circulating oxidized low-density lipoprotein biomarkers in cardiovascular disease. Current Opinion in Lipidology 17: 502–509.CrossRefPubMed
8.
Zurück zum Zitat Siti, H.N., Y. Kamisah, and J. Kamsiah. 2015. The role of oxidative stress, antioxidants and vascular inflammation in cardiovascular disease (a review). Vascular Pharmacology 71: 40–56.CrossRefPubMed Siti, H.N., Y. Kamisah, and J. Kamsiah. 2015. The role of oxidative stress, antioxidants and vascular inflammation in cardiovascular disease (a review). Vascular Pharmacology 71: 40–56.CrossRefPubMed
9.
Zurück zum Zitat Rudijanto, A. 2007. The role of vascular smooth muscle cells on the pathogenesis of atherosclerosis. Acta Medica Indonesiana 39: 86–93.PubMed Rudijanto, A. 2007. The role of vascular smooth muscle cells on the pathogenesis of atherosclerosis. Acta Medica Indonesiana 39: 86–93.PubMed
10.
Zurück zum Zitat Zheng, L., T. Wu, C. Zeng, X. Li, X. Li, D. Wen, T. Ji, T. Lan, L. Xing, J. Li, X. He, and L. Wang. 2016. SAP deficiency mitigated atherosclerotic lesions in ApoE(-/-) mice. Atherosclerosis 244: 179–187.CrossRefPubMed Zheng, L., T. Wu, C. Zeng, X. Li, X. Li, D. Wen, T. Ji, T. Lan, L. Xing, J. Li, X. He, and L. Wang. 2016. SAP deficiency mitigated atherosclerotic lesions in ApoE(-/-) mice. Atherosclerosis 244: 179–187.CrossRefPubMed
12.
Zurück zum Zitat Wang, Y.J., J.T. Wang, Q.X. Fan, and J.G. Geng. 2007. Andrographolide inhibits NF-kappaBeta activation and attenuates neointimal hyperplasia in arterial restenosis. Cell Research 17: 933–941.CrossRefPubMed Wang, Y.J., J.T. Wang, Q.X. Fan, and J.G. Geng. 2007. Andrographolide inhibits NF-kappaBeta activation and attenuates neointimal hyperplasia in arterial restenosis. Cell Research 17: 933–941.CrossRefPubMed
13.
Zurück zum Zitat Ji, X., C. Li, Y. Ou, N. Li, K. Yuan, G. Yang, X. Chen, Z. Yang, B. Liu, W.W. Cheung, L. Wang, R. Huang, and T. Lan. 2016. Andrographolide ameliorates diabetic nephropathy by attenuating hyperglycemia-mediated renal oxidative stress and inflammation via Akt/NF-kappaB pathway. Molecular and Cellular Endocrinology 437: 268–279.CrossRefPubMed Ji, X., C. Li, Y. Ou, N. Li, K. Yuan, G. Yang, X. Chen, Z. Yang, B. Liu, W.W. Cheung, L. Wang, R. Huang, and T. Lan. 2016. Andrographolide ameliorates diabetic nephropathy by attenuating hyperglycemia-mediated renal oxidative stress and inflammation via Akt/NF-kappaB pathway. Molecular and Cellular Endocrinology 437: 268–279.CrossRefPubMed
14.
Zurück zum Zitat Lan, T., T. Wu, H. Gou, Q. Zhang, J. Li, C. Qi, X. He, P. Wu, and L. Wang. 2013. Andrographolide suppresses high glucose-induced fibronectin expression in mesangial cells via inhibiting the AP-1 pathway. Journal of Cellular Biochemistry 114: 2562–2568.CrossRefPubMed Lan, T., T. Wu, H. Gou, Q. Zhang, J. Li, C. Qi, X. He, P. Wu, and L. Wang. 2013. Andrographolide suppresses high glucose-induced fibronectin expression in mesangial cells via inhibiting the AP-1 pathway. Journal of Cellular Biochemistry 114: 2562–2568.CrossRefPubMed
15.
Zurück zum Zitat Dai, J., Y. Lin, Y. Duan, Z. Li, D. Zhou, W. Chen, L. Wang, and Q.Q. Zhang. 2017. Andrographolide inhibits angiogenesis by inhibiting the Mir-21-5p/TIMP3 signaling pathway. International Journal of Biological Sciences 13: 660–668.CrossRefPubMedPubMedCentral Dai, J., Y. Lin, Y. Duan, Z. Li, D. Zhou, W. Chen, L. Wang, and Q.Q. Zhang. 2017. Andrographolide inhibits angiogenesis by inhibiting the Mir-21-5p/TIMP3 signaling pathway. International Journal of Biological Sciences 13: 660–668.CrossRefPubMedPubMedCentral
16.
Zurück zum Zitat Xuan, Y., Y. Gao, H. Huang, X. Wang, Y. Cai, and Q.X. Luan. 2017. Tanshinone IIA attenuates atherosclerosis in apolipoprotein E knockout mice infected with Porphyromonas gingivalis. Inflammation 40: 1631–1642.CrossRefPubMed Xuan, Y., Y. Gao, H. Huang, X. Wang, Y. Cai, and Q.X. Luan. 2017. Tanshinone IIA attenuates atherosclerosis in apolipoprotein E knockout mice infected with Porphyromonas gingivalis. Inflammation 40: 1631–1642.CrossRefPubMed
17.
Zurück zum Zitat Zhao, N., R. Wang, L. Zhou, Y. Zhu, J. Gong, and S.M. Zhuang. 2014. MicroRNA-26b suppresses the NF-kappaB signaling and enhances the chemosensitivity of hepatocellular carcinoma cells by targeting TAK1 and TAB3. Molecular Cancer 13: 35.CrossRefPubMedPubMedCentral Zhao, N., R. Wang, L. Zhou, Y. Zhu, J. Gong, and S.M. Zhuang. 2014. MicroRNA-26b suppresses the NF-kappaB signaling and enhances the chemosensitivity of hepatocellular carcinoma cells by targeting TAK1 and TAB3. Molecular Cancer 13: 35.CrossRefPubMedPubMedCentral
18.
Zurück zum Zitat Ackers, I., C. Szymanski, K.J. Duckett, L.A. Consitt, M.J. Silver, and R. Malgor. 2018. Blocking Wnt5a signaling decreases CD36 expression and foam cell formation in atherosclerosis. Cardiovascular Pathology 34: 1–8.CrossRefPubMed Ackers, I., C. Szymanski, K.J. Duckett, L.A. Consitt, M.J. Silver, and R. Malgor. 2018. Blocking Wnt5a signaling decreases CD36 expression and foam cell formation in atherosclerosis. Cardiovascular Pathology 34: 1–8.CrossRefPubMed
19.
Zurück zum Zitat Al, B.R., F. Al-Bayaty, M.M. Al-Obaidi, S.F. Hussain, and T.Z. Mulok. 2014. Evaluation of the effect of andrographolide on atherosclerotic rabbits induced by Porphyromonas gingivalis. BioMed Research International 2014: 724718. Al, B.R., F. Al-Bayaty, M.M. Al-Obaidi, S.F. Hussain, and T.Z. Mulok. 2014. Evaluation of the effect of andrographolide on atherosclerotic rabbits induced by Porphyromonas gingivalis. BioMed Research International 2014: 724718.
20.
Zurück zum Zitat Gupta, S., K.P. Mishra, S.B. Singh, and L. Ganju. 2018. Inhibitory effects of andrographolide on activated macrophages and adjuvant-induced arthritis. Inflammopharmacology 26: 447–456.CrossRefPubMed Gupta, S., K.P. Mishra, S.B. Singh, and L. Ganju. 2018. Inhibitory effects of andrographolide on activated macrophages and adjuvant-induced arthritis. Inflammopharmacology 26: 447–456.CrossRefPubMed
21.
Zurück zum Zitat Rose-John, S. 2012. IL-6 trans-signaling via the soluble IL-6 receptor: importance for the pro-inflammatory activities of IL-6. International Journal of Biological Sciences 8: 1237–1247.CrossRefPubMedPubMedCentral Rose-John, S. 2012. IL-6 trans-signaling via the soluble IL-6 receptor: importance for the pro-inflammatory activities of IL-6. International Journal of Biological Sciences 8: 1237–1247.CrossRefPubMedPubMedCentral
22.
Zurück zum Zitat Jones, S.A., and S. Rose-John. 2002. The role of soluble receptors in cytokine biology: the agonistic properties of the sIL-6R/IL-6 complex. Biochimica et Biophysica Acta 1592: 251–263.CrossRefPubMed Jones, S.A., and S. Rose-John. 2002. The role of soluble receptors in cytokine biology: the agonistic properties of the sIL-6R/IL-6 complex. Biochimica et Biophysica Acta 1592: 251–263.CrossRefPubMed
23.
Zurück zum Zitat Li, Y., S. He, J. Tang, N. Ding, X. Chu, L. Cheng, X. Ding, T. Liang, S. Feng, S.U. Rahman, et al. 2017. Andrographolide inhibits inflammatory cytokines secretion in LPS-stimulated RAW264.7 cells through suppression of NF-kappaB/MAPK signaling pathway. Evidence-based Complementary and Alternative Medicine 2017: 8248142.PubMedPubMedCentral Li, Y., S. He, J. Tang, N. Ding, X. Chu, L. Cheng, X. Ding, T. Liang, S. Feng, S.U. Rahman, et al. 2017. Andrographolide inhibits inflammatory cytokines secretion in LPS-stimulated RAW264.7 cells through suppression of NF-kappaB/MAPK signaling pathway. Evidence-based Complementary and Alternative Medicine 2017: 8248142.PubMedPubMedCentral
24.
Zurück zum Zitat Zhu, T., D.X. Wang, W. Zhang, X.Q. Liao, X. Guan, H. Bo, J.Y. Sun, N.W. Huang, J. He, Y.K. Zhang, J. Tong, and C.Y. Li. 2013. Andrographolide protects against LPS-induced acute lung injury by inactivation of NF-kappaB. PLoS One 8: e56407.CrossRefPubMedPubMedCentral Zhu, T., D.X. Wang, W. Zhang, X.Q. Liao, X. Guan, H. Bo, J.Y. Sun, N.W. Huang, J. He, Y.K. Zhang, J. Tong, and C.Y. Li. 2013. Andrographolide protects against LPS-induced acute lung injury by inactivation of NF-kappaB. PLoS One 8: e56407.CrossRefPubMedPubMedCentral
25.
Zurück zum Zitat Touyz, R.M., and A.M. Briones. 2011. Reactive oxygen species and vascular biology: implications in human hypertension. Hypertension Research 34: 5–14.CrossRefPubMed Touyz, R.M., and A.M. Briones. 2011. Reactive oxygen species and vascular biology: implications in human hypertension. Hypertension Research 34: 5–14.CrossRefPubMed
26.
Zurück zum Zitat Cheng, Y.C., J.M. Sheen, W.L. Hu, and Y.C. Hung. 2017. Polyphenols and oxidative stress in atherosclerosis-related ischemic heart disease and stroke. Oxidative Medicine and Cellular Longevity 2017: 8526438.CrossRefPubMedPubMedCentral Cheng, Y.C., J.M. Sheen, W.L. Hu, and Y.C. Hung. 2017. Polyphenols and oxidative stress in atherosclerosis-related ischemic heart disease and stroke. Oxidative Medicine and Cellular Longevity 2017: 8526438.CrossRefPubMedPubMedCentral
27.
Zurück zum Zitat McLaren, J.E., D.R. Michael, T.G. Ashlin, and D.P. Ramji. 2011. Cytokines, macrophage lipid metabolism and foam cells: implications for cardiovascular disease therapy. Progress in Lipid Research 50: 331–347.CrossRefPubMed McLaren, J.E., D.R. Michael, T.G. Ashlin, and D.P. Ramji. 2011. Cytokines, macrophage lipid metabolism and foam cells: implications for cardiovascular disease therapy. Progress in Lipid Research 50: 331–347.CrossRefPubMed
28.
29.
Zurück zum Zitat Kunjathoor, V.V., M. Febbraio, E.A. Podrez, K.J. Moore, L. Andersson, S. Koehn, J.S. Rhee, R. Silverstein, H.F. Hoff, and M.W. Freeman. 2002. Scavenger receptors class A-I/II and CD36 are the principal receptors responsible for the uptake of modified low density lipoprotein leading to lipid loading in macrophages. The Journal of Biological Chemistry 277: 49982–49988.CrossRefPubMed Kunjathoor, V.V., M. Febbraio, E.A. Podrez, K.J. Moore, L. Andersson, S. Koehn, J.S. Rhee, R. Silverstein, H.F. Hoff, and M.W. Freeman. 2002. Scavenger receptors class A-I/II and CD36 are the principal receptors responsible for the uptake of modified low density lipoprotein leading to lipid loading in macrophages. The Journal of Biological Chemistry 277: 49982–49988.CrossRefPubMed
30.
Zurück zum Zitat Lin, H., C. Lii, H. Chen, A. Lin, Y. Yang, and H. Chen. 2018. Andrographolide inhibits oxidized LDL-induced cholesterol accumulation and foam cell formation in macrophages. The American Journal of Chinese Medicine 46: 87–106.CrossRefPubMed Lin, H., C. Lii, H. Chen, A. Lin, Y. Yang, and H. Chen. 2018. Andrographolide inhibits oxidized LDL-induced cholesterol accumulation and foam cell formation in macrophages. The American Journal of Chinese Medicine 46: 87–106.CrossRefPubMed
Metadaten
Titel
Andrographolide Ameliorates Atherosclerosis by Suppressing Pro-Inflammation and ROS Generation-Mediated Foam Cell Formation
verfasst von
Teng Wu
Yuan Peng
Sishan Yan
Ning Li
Yinghua Chen
Tian Lan
Publikationsdatum
14.06.2018
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 5/2018
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-018-0812-9

Weitere Artikel der Ausgabe 5/2018

Inflammation 5/2018 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.