Skip to main content
Erschienen in: Cancer and Metastasis Reviews 1/2011

01.03.2011

Angiogenesis and immunity: a bidirectional link potentially relevant for the monitoring of antiangiogenic therapy and the development of novel therapeutic combination with immunotherapy

verfasst von: Eric Tartour, H. Pere, B. Maillere, M. Terme, N. Merillon, J. Taieb, F. Sandoval, F. Quintin-Colonna, K. Lacerda, A. Karadimou, C. Badoual, A. Tedgui, W. H. Fridman, S. Oudard

Erschienen in: Cancer and Metastasis Reviews | Ausgabe 1/2011

Einloggen, um Zugang zu erhalten

Abstract

The immune system regulates angiogenesis in cancer with both pro- and antiangiogenic activities. The induction of angiogenesis is mediated by tumor-associated macrophages and myeloid-derived suppressor cells (MDSC) which produce proinflammatory cytokines, endothelial growth factors (VEGF, bFGF…), and protease (MMP9) implicated in neoangiogenesis. Some cytokines (IL-6, IL-17…) activated Stat3 which also led to the production of VEGF and bFGF. In contrast, other cytokines (IFN, IL-12, IL-21, and IL-27) display an antiangiogenic activity. Recently, it has been shown that some antiangiogenic molecules alleviates immunosuppression associated with cancer by decreasing immunosuppressive cells (MDSC, regulatory T cells), immunosuppressive cytokines (IL-10, TGFβ), and inhibitory molecules on T cells (PD-1). Some of these broad effects may result from the ability of some antiangiogenic molecules, especially cytokines to inhibit the Stat3 transcription factor. The association often observed between angiogenesis and immunosuppression may be related to hypoxia which induces both neoangiogenesis via activation of HIF-1 and VEGF and favors the intratumor recruitment and differentiation of regulatory T cells and MDSC. Preliminary studies suggest that modulation of immune markers (intratumoral MDSC and IL-8, peripheral regulatory T cells…) may predict clinical response to antiangiogenic therapy. In preclinical models, a synergy has been observed between antiangiogenic molecules and immunotherapy which may be explained by an improvement of immune status in tumor-bearing mice after antiangiogenic therapy. In preclinical models, antiangiogenic molecules promoted intratumor trafficking of effector cells, enhance endogenous anti-tumor response, and synergyzed with immunotherapy protocols to cure established murine tumors. All these results warrant the development of clinical trials combining antiangiogenic drugs and immunotherapy.
Literatur
1.
Zurück zum Zitat Oudard, S., George, D., Medioni, J., & Motzer, R. (2007). Treatment options in renal cell carcinoma: Past, present and future. Annals of Oncology, 18(Suppl 10), x25–x31.PubMed Oudard, S., George, D., Medioni, J., & Motzer, R. (2007). Treatment options in renal cell carcinoma: Past, present and future. Annals of Oncology, 18(Suppl 10), x25–x31.PubMed
2.
Zurück zum Zitat Rini, B. I., Campbell, S. C., & Escudier, B. (2009). Renal cell carcinoma. Lancet, 373, 1119–1132.PubMed Rini, B. I., Campbell, S. C., & Escudier, B. (2009). Renal cell carcinoma. Lancet, 373, 1119–1132.PubMed
3.
Zurück zum Zitat Oudard, S., Medioni, J., Aylllon, J., Barrascourt, E., Elaidi, R. T., Balcaceres, J., et al. (2009). Everolimus (RAD001): An mTOR inhibitor for the treatment of metastatic renal cell carcinoma. Expert Review of Anticancer Therapy, 9, 705–717.PubMed Oudard, S., Medioni, J., Aylllon, J., Barrascourt, E., Elaidi, R. T., Balcaceres, J., et al. (2009). Everolimus (RAD001): An mTOR inhibitor for the treatment of metastatic renal cell carcinoma. Expert Review of Anticancer Therapy, 9, 705–717.PubMed
4.
Zurück zum Zitat Motzer, R. J., Hutson, T. E., Tomczak, P., Michaelson, M. D., Bukowski, R. M., Rixe, O., et al. (2007). Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. The New England Journal of Medicine, 356, 115–124.PubMed Motzer, R. J., Hutson, T. E., Tomczak, P., Michaelson, M. D., Bukowski, R. M., Rixe, O., et al. (2007). Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. The New England Journal of Medicine, 356, 115–124.PubMed
5.
Zurück zum Zitat Barrascout, E., Medioni, J., Scotte, F., Ayllon, J., Mejean, A., Cuenod, C. A., et al. (2010). Angiogenesis inhibition: Review of the activity of sorafenib, sunitinib and bevacizumab. Bulletin du Cancer, 97, 29–43.PubMed Barrascout, E., Medioni, J., Scotte, F., Ayllon, J., Mejean, A., Cuenod, C. A., et al. (2010). Angiogenesis inhibition: Review of the activity of sorafenib, sunitinib and bevacizumab. Bulletin du Cancer, 97, 29–43.PubMed
6.
Zurück zum Zitat Escudier, B., Bellmunt, J., Negrier, S., Bajetta, E., Melichar, B., Bracarda, S., et al. (2010). Phase III trial of bevacizumab plus interferon alfa-2a in patients with metastatic renal cell carcinoma (AVOREN): Final analysis of overall survival. Journal of Clinical Oncology, 28, 2144–2150.PubMed Escudier, B., Bellmunt, J., Negrier, S., Bajetta, E., Melichar, B., Bracarda, S., et al. (2010). Phase III trial of bevacizumab plus interferon alfa-2a in patients with metastatic renal cell carcinoma (AVOREN): Final analysis of overall survival. Journal of Clinical Oncology, 28, 2144–2150.PubMed
7.
Zurück zum Zitat Rini, B. I., Halabi, S., Rosenberg, J. E., Stadler, W. M., Vaena, D. A., Archer, L., et al. (2010). Phase III trial of bevacizumab plus interferon alfa versus interferon alfa monotherapy in patients with metastatic renal cell carcinoma: Final results of CALGB 90206. Journal of Clinical Oncology, 28, 2137–2143.PubMed Rini, B. I., Halabi, S., Rosenberg, J. E., Stadler, W. M., Vaena, D. A., Archer, L., et al. (2010). Phase III trial of bevacizumab plus interferon alfa versus interferon alfa monotherapy in patients with metastatic renal cell carcinoma: Final results of CALGB 90206. Journal of Clinical Oncology, 28, 2137–2143.PubMed
8.
Zurück zum Zitat Motzer, R. J., Escudier, B., Oudard, S., Hutson, T. E., Porta, C., Bracarda, S., et al. (2008). Efficacy of everolimus in advanced renal cell carcinoma: A double-blind, randomised, placebo-controlled phase III trial. Lancet, 372, 449–456.PubMed Motzer, R. J., Escudier, B., Oudard, S., Hutson, T. E., Porta, C., Bracarda, S., et al. (2008). Efficacy of everolimus in advanced renal cell carcinoma: A double-blind, randomised, placebo-controlled phase III trial. Lancet, 372, 449–456.PubMed
9.
Zurück zum Zitat Van Meter, M. E., & Kim, E. S. (2010). Bevacizumab: Current updates in treatment. Current Opinion in Oncology, 22, 586–591.PubMed Van Meter, M. E., & Kim, E. S. (2010). Bevacizumab: Current updates in treatment. Current Opinion in Oncology, 22, 586–591.PubMed
10.
Zurück zum Zitat Paez-Ribes, M., Allen, E., Hudock, J., Takeda, T., Okuyama, H., Vinals, F., et al. (2009). Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell, 15, 220–231.PubMed Paez-Ribes, M., Allen, E., Hudock, J., Takeda, T., Okuyama, H., Vinals, F., et al. (2009). Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell, 15, 220–231.PubMed
11.
Zurück zum Zitat Ebos, J. M., Lee, C. R., Cruz-Munoz, W., Bjarnason, G. A., Christensen, J. G., & Kerbel, R. S. (2009). Accelerated metastasis after short-term treatment with a potent inhibitor of tumor angiogenesis. Cancer Cell, 15, 232–239.PubMed Ebos, J. M., Lee, C. R., Cruz-Munoz, W., Bjarnason, G. A., Christensen, J. G., & Kerbel, R. S. (2009). Accelerated metastasis after short-term treatment with a potent inhibitor of tumor angiogenesis. Cancer Cell, 15, 232–239.PubMed
12.
Zurück zum Zitat Rini, B. I., & Flaherty, K. (2008). Clinical effect and future considerations for molecularly-targeted therapy in renal cell carcinoma. Urologic Oncology, 26, 543–549.PubMed Rini, B. I., & Flaherty, K. (2008). Clinical effect and future considerations for molecularly-targeted therapy in renal cell carcinoma. Urologic Oncology, 26, 543–549.PubMed
13.
Zurück zum Zitat Albini, A., Tosetti, F., Benelli, R., & Noonan, D. M. (2005). Tumor inflammatory angiogenesis and its chemoprevention. Cancer Research, 65, 10637–10641.PubMed Albini, A., Tosetti, F., Benelli, R., & Noonan, D. M. (2005). Tumor inflammatory angiogenesis and its chemoprevention. Cancer Research, 65, 10637–10641.PubMed
14.
Zurück zum Zitat de Visser, K. E., Eichten, A., & Coussens, L. M. (2006). Paradoxical roles of the immune system during cancer development. Nature Reviews. Cancer, 6, 24–37.PubMed de Visser, K. E., Eichten, A., & Coussens, L. M. (2006). Paradoxical roles of the immune system during cancer development. Nature Reviews. Cancer, 6, 24–37.PubMed
15.
Zurück zum Zitat Murdoch, C., Muthana, M., Coffelt, S. B., & Lewis, C. E. (2008). The role of myeloid cells in the promotion of tumour angiogenesis. Nature Reviews. Cancer, 8, 618–631.PubMed Murdoch, C., Muthana, M., Coffelt, S. B., & Lewis, C. E. (2008). The role of myeloid cells in the promotion of tumour angiogenesis. Nature Reviews. Cancer, 8, 618–631.PubMed
16.
Zurück zum Zitat Sunderkotter, C., Steinbrink, K., Goebeler, M., Bhardwaj, R., & Sorg, C. (1994). Macrophages and angiogenesis. Journal of Leukocyte Biology, 55, 410–422.PubMed Sunderkotter, C., Steinbrink, K., Goebeler, M., Bhardwaj, R., & Sorg, C. (1994). Macrophages and angiogenesis. Journal of Leukocyte Biology, 55, 410–422.PubMed
17.
Zurück zum Zitat Kimura, Y. N., Watari, K., Fotovati, A., Hosoi, F., Yasumoto, K., Izumi, H., et al. (2007). Inflammatory stimuli from macrophages and cancer cells synergistically promote tumor growth and angiogenesis. Cancer Science, 98, 2009–2018.PubMed Kimura, Y. N., Watari, K., Fotovati, A., Hosoi, F., Yasumoto, K., Izumi, H., et al. (2007). Inflammatory stimuli from macrophages and cancer cells synergistically promote tumor growth and angiogenesis. Cancer Science, 98, 2009–2018.PubMed
18.
Zurück zum Zitat Lewis, C. E., Leek, R., Harris, A., & McGee, J. O. (1995). Cytokine regulation of angiogenesis in breast cancer: The role of tumor-associated macrophages. Journal of Leukocyte Biology, 57, 747–751.PubMed Lewis, C. E., Leek, R., Harris, A., & McGee, J. O. (1995). Cytokine regulation of angiogenesis in breast cancer: The role of tumor-associated macrophages. Journal of Leukocyte Biology, 57, 747–751.PubMed
19.
Zurück zum Zitat Mantovani, A., Schioppa, T., Porta, C., Allavena, P., & Sica, A. (2006). Role of tumor-associated macrophages in tumor progression and invasion. Cancer and Metastasis Reviews, 25, 315–322.PubMed Mantovani, A., Schioppa, T., Porta, C., Allavena, P., & Sica, A. (2006). Role of tumor-associated macrophages in tumor progression and invasion. Cancer and Metastasis Reviews, 25, 315–322.PubMed
20.
Zurück zum Zitat Grunewald, M., Avraham, I., Dor, Y., Bachar-Lustig, E., Itin, A., Jung, S., et al. (2006). VEGF-induced adult neovascularization: Recruitment, retention, and role of accessory cells. Cell, 124, 175–189.PubMed Grunewald, M., Avraham, I., Dor, Y., Bachar-Lustig, E., Itin, A., Jung, S., et al. (2006). VEGF-induced adult neovascularization: Recruitment, retention, and role of accessory cells. Cell, 124, 175–189.PubMed
21.
Zurück zum Zitat Du, R., Lu, K. V., Petritsch, C., Liu, P., Ganss, R., Passegue, E., et al. (2008). HIF1alpha induces the recruitment of bone marrow-derived vascular modulatory cells to regulate tumor angiogenesis and invasion. Cancer Cell, 13, 206–220.PubMed Du, R., Lu, K. V., Petritsch, C., Liu, P., Ganss, R., Passegue, E., et al. (2008). HIF1alpha induces the recruitment of bone marrow-derived vascular modulatory cells to regulate tumor angiogenesis and invasion. Cancer Cell, 13, 206–220.PubMed
22.
Zurück zum Zitat Giraudo, E., Inoue, M., & Hanahan, D. (2004). An amino-bisphosphonate targets MMP-9-expressing macrophages and angiogenesis to impair cervical carcinogenesis. The Journal of Clinical Investigation, 114, 623–633.PubMed Giraudo, E., Inoue, M., & Hanahan, D. (2004). An amino-bisphosphonate targets MMP-9-expressing macrophages and angiogenesis to impair cervical carcinogenesis. The Journal of Clinical Investigation, 114, 623–633.PubMed
23.
Zurück zum Zitat Neufeld, G., & Kessler, O. (2006). Pro-angiogenic cytokines and their role in tumor angiogenesis. Cancer and Metastasis Reviews, 25, 373–385.PubMed Neufeld, G., & Kessler, O. (2006). Pro-angiogenic cytokines and their role in tumor angiogenesis. Cancer and Metastasis Reviews, 25, 373–385.PubMed
24.
Zurück zum Zitat Kim, Y. M., Lee, Y. M., Kim, H. S., Kim, J. D., Choi, Y., Kim, K. W., et al. (2002). TNF-related activation-induced cytokine (TRANCE) induces angiogenesis through the activation of Src and phospholipase C (PLC) in human endothelial cells. The Journal of Biological Chemistry, 277, 6799–6805.PubMed Kim, Y. M., Lee, Y. M., Kim, H. S., Kim, J. D., Choi, Y., Kim, K. W., et al. (2002). TNF-related activation-induced cytokine (TRANCE) induces angiogenesis through the activation of Src and phospholipase C (PLC) in human endothelial cells. The Journal of Biological Chemistry, 277, 6799–6805.PubMed
25.
Zurück zum Zitat Silva-Santos, B. (2010). Promoting angiogenesis within the tumor microenvironment: The secret life of murine lymphoid IL-17-producing gammadelta T cells. European Journal of Immunology, 40, 1873–1876.PubMed Silva-Santos, B. (2010). Promoting angiogenesis within the tumor microenvironment: The secret life of murine lymphoid IL-17-producing gammadelta T cells. European Journal of Immunology, 40, 1873–1876.PubMed
26.
Zurück zum Zitat Numasaki, M., Fukushi, J., Ono, M., Narula, S. K., Zavodny, P. J., Kudo, T., et al. (2003). Interleukin-17 promotes angiogenesis and tumor growth. Blood, 101, 2620–2627.PubMed Numasaki, M., Fukushi, J., Ono, M., Narula, S. K., Zavodny, P. J., Kudo, T., et al. (2003). Interleukin-17 promotes angiogenesis and tumor growth. Blood, 101, 2620–2627.PubMed
27.
Zurück zum Zitat Zou, W., & Restifo, N. P. (2010). T(H)17 cells in tumour immunity and immunotherapy. Nature Reviews. Immunology, 10, 248–256.PubMed Zou, W., & Restifo, N. P. (2010). T(H)17 cells in tumour immunity and immunotherapy. Nature Reviews. Immunology, 10, 248–256.PubMed
28.
Zurück zum Zitat Numasaki, M., Watanabe, M., Suzuki, T., Takahashi, H., Nakamura, A., McAllister, F., et al. (2005). IL-17 enhances the net angiogenic activity and in vivo growth of human non-small cell lung cancer in SCID mice through promoting CXCR-2-dependent angiogenesis. Journal of Immunology, 175, 6177–6189. Numasaki, M., Watanabe, M., Suzuki, T., Takahashi, H., Nakamura, A., McAllister, F., et al. (2005). IL-17 enhances the net angiogenic activity and in vivo growth of human non-small cell lung cancer in SCID mice through promoting CXCR-2-dependent angiogenesis. Journal of Immunology, 175, 6177–6189.
29.
Zurück zum Zitat Ciree, A., Michel, L., Camilleri-Broet, S., Jean Louis, F., Oster, M., Flageul, B., et al. (2004). Expression and activity of IL-17 in cutaneous T-cell lymphomas (mycosis fungoides and Sezary syndrome). International Journal of Cancer, 112, 113–120. Ciree, A., Michel, L., Camilleri-Broet, S., Jean Louis, F., Oster, M., Flageul, B., et al. (2004). Expression and activity of IL-17 in cutaneous T-cell lymphomas (mycosis fungoides and Sezary syndrome). International Journal of Cancer, 112, 113–120.
30.
Zurück zum Zitat Pickens, S. R., Volin, M. V., Mandelin, A. M., 2nd, Kolls, J. K., Pope, R. M., & Shahrara, S. (2010). IL-17 contributes to angiogenesis in rheumatoid arthritis. Journal of Immunology, 184, 3233–3241. Pickens, S. R., Volin, M. V., Mandelin, A. M., 2nd, Kolls, J. K., Pope, R. M., & Shahrara, S. (2010). IL-17 contributes to angiogenesis in rheumatoid arthritis. Journal of Immunology, 184, 3233–3241.
31.
Zurück zum Zitat Kuniyasu, H., Ohmori, H., Sasaki, T., Sasahira, T., Yoshida, K., Kitadai, Y., et al. (2003). Production of interleukin 15 by human colon cancer cells is associated with induction of mucosal hyperplasia, angiogenesis, and metastasis. Clinical Cancer Research, 9, 4802–4810.PubMed Kuniyasu, H., Ohmori, H., Sasaki, T., Sasahira, T., Yoshida, K., Kitadai, Y., et al. (2003). Production of interleukin 15 by human colon cancer cells is associated with induction of mucosal hyperplasia, angiogenesis, and metastasis. Clinical Cancer Research, 9, 4802–4810.PubMed
32.
Zurück zum Zitat Badoual, C., Bouchaud, G., Agueznay Nel, H., Mortier, E., Hans, S., Gey, A., et al. (2008). The soluble alpha chain of interleukin-15 receptor: A proinflammatory molecule associated with tumor progression in head and neck cancer. Cancer Research, 68, 3907–3914.PubMed Badoual, C., Bouchaud, G., Agueznay Nel, H., Mortier, E., Hans, S., Gey, A., et al. (2008). The soluble alpha chain of interleukin-15 receptor: A proinflammatory molecule associated with tumor progression in head and neck cancer. Cancer Research, 68, 3907–3914.PubMed
33.
Zurück zum Zitat Yu, H., Kortylewski, M., & Pardoll, D. (2007). Crosstalk between cancer and immune cells: Role of STAT3 in the tumour microenvironment. Nature Reviews. Immunology, 7, 41–51.PubMed Yu, H., Kortylewski, M., & Pardoll, D. (2007). Crosstalk between cancer and immune cells: Role of STAT3 in the tumour microenvironment. Nature Reviews. Immunology, 7, 41–51.PubMed
34.
Zurück zum Zitat Badoual, C., Sandoval, F., Pere, H., Hans, S., Gey, A., Merillon, N., et al. (2010). Better understanding tumor-host interaction in head and neck cancer to improve the design and development of immunotherapeutic strategies. Head & Neck, 32, 946–958. Badoual, C., Sandoval, F., Pere, H., Hans, S., Gey, A., Merillon, N., et al. (2010). Better understanding tumor-host interaction in head and neck cancer to improve the design and development of immunotherapeutic strategies. Head & Neck, 32, 946–958.
35.
Zurück zum Zitat Voest, E. E., Kenyon, B. M., O’Reilly, M. S., Truitt, G., D’Amato, R. J., & Folkman, J. (1995). Inhibition of angiogenesis in vivo by interleukin 12. Journal of the National Cancer Institute, 87, 581–586.PubMed Voest, E. E., Kenyon, B. M., O’Reilly, M. S., Truitt, G., D’Amato, R. J., & Folkman, J. (1995). Inhibition of angiogenesis in vivo by interleukin 12. Journal of the National Cancer Institute, 87, 581–586.PubMed
36.
Zurück zum Zitat Sgadari, C., Angiolillo, A. L., & Tosato, G. (1996). Inhibition of angiogenesis by interleukin-12 is mediated by the interferon-inducible protein 10. Blood, 87, 3877–3882.PubMed Sgadari, C., Angiolillo, A. L., & Tosato, G. (1996). Inhibition of angiogenesis by interleukin-12 is mediated by the interferon-inducible protein 10. Blood, 87, 3877–3882.PubMed
37.
Zurück zum Zitat Haicheur, N., Escudier, B., Dorval, T., Negrier, S., De Mulder, P. H., Dupuy, J. M., et al. (2000). Cytokines and soluble cytokine receptor induction after IL-12 administration in cancer patients. Clinical and Experimental Immunology, 119, 28–37.PubMed Haicheur, N., Escudier, B., Dorval, T., Negrier, S., De Mulder, P. H., Dupuy, J. M., et al. (2000). Cytokines and soluble cytokine receptor induction after IL-12 administration in cancer patients. Clinical and Experimental Immunology, 119, 28–37.PubMed
38.
Zurück zum Zitat Dias, S., Boyd, R., & Balkwill, F. (1998). IL-12 regulates VEGF and MMPs in a murine breast cancer model. International Journal of Cancer, 78, 361–365. Dias, S., Boyd, R., & Balkwill, F. (1998). IL-12 regulates VEGF and MMPs in a murine breast cancer model. International Journal of Cancer, 78, 361–365.
39.
Zurück zum Zitat Dinney, C. P., Bielenberg, D. R., Perrotte, P., Reich, R., Eve, B. Y., Bucana, C. D., et al. (1998). Inhibition of basic fibroblast growth factor expression, angiogenesis, and growth of human bladder carcinoma in mice by systemic interferon-alpha administration. Cancer Research, 58, 808–814.PubMed Dinney, C. P., Bielenberg, D. R., Perrotte, P., Reich, R., Eve, B. Y., Bucana, C. D., et al. (1998). Inhibition of basic fibroblast growth factor expression, angiogenesis, and growth of human bladder carcinoma in mice by systemic interferon-alpha administration. Cancer Research, 58, 808–814.PubMed
40.
Zurück zum Zitat Mitola, S., Strasly, M., Prato, M., Ghia, P., & Bussolino, F. (2003). IL-12 regulates an endothelial cell-lymphocyte network: Effect on metalloproteinase-9 production. Journal of Immunology, 171, 3725–3733. Mitola, S., Strasly, M., Prato, M., Ghia, P., & Bussolino, F. (2003). IL-12 regulates an endothelial cell-lymphocyte network: Effect on metalloproteinase-9 production. Journal of Immunology, 171, 3725–3733.
41.
Zurück zum Zitat Shimizu, M., Shimamura, M., Owaki, T., Asakawa, M., Fujita, K., Kudo, M., et al. (2006). Antiangiogenic and antitumor activities of IL-27. Journal of Immunology, 176, 7317–7324. Shimizu, M., Shimamura, M., Owaki, T., Asakawa, M., Fujita, K., Kudo, M., et al. (2006). Antiangiogenic and antitumor activities of IL-27. Journal of Immunology, 176, 7317–7324.
42.
Zurück zum Zitat Castermans, K., Tabruyn, S. P., Zeng, R., van Beijnum, J. R., Eppolito, C., Leonard, W. J., et al. (2008). Angiostatic activity of the antitumor cytokine interleukin-21. Blood, 112, 4940–4947.PubMed Castermans, K., Tabruyn, S. P., Zeng, R., van Beijnum, J. R., Eppolito, C., Leonard, W. J., et al. (2008). Angiostatic activity of the antitumor cytokine interleukin-21. Blood, 112, 4940–4947.PubMed
43.
Zurück zum Zitat Tartour, E., Mathiot, C., & Fridman, W. H. (1992). Current status of interleukin-2 therapy in cancer. Biomedicine & Pharmacotherapy, 46, 473–484. Tartour, E., Mathiot, C., & Fridman, W. H. (1992). Current status of interleukin-2 therapy in cancer. Biomedicine & Pharmacotherapy, 46, 473–484.
44.
Zurück zum Zitat Ellis, L. M., & Hicklin, D. J. (2008). VEGF-targeted therapy: Mechanisms of anti-tumour activity. Nature Reviews. Cancer, 8, 579–591.PubMed Ellis, L. M., & Hicklin, D. J. (2008). VEGF-targeted therapy: Mechanisms of anti-tumour activity. Nature Reviews. Cancer, 8, 579–591.PubMed
45.
Zurück zum Zitat Belkaid, Y., & Oldenhove, G. (2008). Tuning microenvironments: Induction of regulatory T cells by dendritic cells. Immunity, 29, 362–371.PubMed Belkaid, Y., & Oldenhove, G. (2008). Tuning microenvironments: Induction of regulatory T cells by dendritic cells. Immunity, 29, 362–371.PubMed
46.
Zurück zum Zitat Curiel, T. J. (2007). Tregs and rethinking cancer immunotherapy. The Journal of Clinical Investigation, 117, 1167–1174.PubMed Curiel, T. J. (2007). Tregs and rethinking cancer immunotherapy. The Journal of Clinical Investigation, 117, 1167–1174.PubMed
47.
Zurück zum Zitat Oyama, T., Ran, S., Ishida, T., Nadaf, S., Kerr, L., Carbone, D. P., et al. (1998). Vascular endothelial growth factor affects dendritic cell maturation through the inhibition of nuclear factor-kappa B activation in hemopoietic progenitor cells. Journal of Immunology, 160, 1224–1232. Oyama, T., Ran, S., Ishida, T., Nadaf, S., Kerr, L., Carbone, D. P., et al. (1998). Vascular endothelial growth factor affects dendritic cell maturation through the inhibition of nuclear factor-kappa B activation in hemopoietic progenitor cells. Journal of Immunology, 160, 1224–1232.
48.
Zurück zum Zitat Dikov, M. M., Ohm, J. E., Ray, N., Tchekneva, E. E., Burlison, J., Moghanaki, D., et al. (2005). Differential roles of vascular endothelial growth factor receptors 1 and 2 in dendritic cell differentiation. Journal of Immunology, 174, 215–222. Dikov, M. M., Ohm, J. E., Ray, N., Tchekneva, E. E., Burlison, J., Moghanaki, D., et al. (2005). Differential roles of vascular endothelial growth factor receptors 1 and 2 in dendritic cell differentiation. Journal of Immunology, 174, 215–222.
49.
Zurück zum Zitat Gabrilovich, D. I., Ishida, T., Nadaf, S., Ohm, J. E., & Carbone, D. P. (1999). Antibodies to vascular endothelial growth factor enhance the efficacy of cancer immunotherapy by improving endogenous dendritic cell function. Clinical Cancer Research, 5, 2963–2970.PubMed Gabrilovich, D. I., Ishida, T., Nadaf, S., Ohm, J. E., & Carbone, D. P. (1999). Antibodies to vascular endothelial growth factor enhance the efficacy of cancer immunotherapy by improving endogenous dendritic cell function. Clinical Cancer Research, 5, 2963–2970.PubMed
50.
Zurück zum Zitat Batchelor, T. T., Sorensen, A. G., di Tomaso, E., Zhang, W. T., Duda, D. G., Cohen, K. S., et al. (2007). AZD2171, a pan-VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients. Cancer Cell, 11, 83–95.PubMed Batchelor, T. T., Sorensen, A. G., di Tomaso, E., Zhang, W. T., Duda, D. G., Cohen, K. S., et al. (2007). AZD2171, a pan-VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients. Cancer Cell, 11, 83–95.PubMed
51.
Zurück zum Zitat Laxmanan, S., Robertson, S. W., Wang, E., Lau, J. S., Briscoe, D. M., & Mukhopadhyay, D. (2005). Vascular endothelial growth factor impairs the functional ability of dendritic cells through Id pathways. Biochemical and Biophysical Research Communications, 334, 193–198.PubMed Laxmanan, S., Robertson, S. W., Wang, E., Lau, J. S., Briscoe, D. M., & Mukhopadhyay, D. (2005). Vascular endothelial growth factor impairs the functional ability of dendritic cells through Id pathways. Biochemical and Biophysical Research Communications, 334, 193–198.PubMed
52.
Zurück zum Zitat Ohm, J. E., Shurin, M. R., Esche, C., Lotze, M. T., Carbone, D. P., & Gabrilovich, D. I. (1999). Effect of vascular endothelial growth factor and FLT3 ligand on dendritic cell generation in vivo. Journal of Immunology, 163, 3260–3268. Ohm, J. E., Shurin, M. R., Esche, C., Lotze, M. T., Carbone, D. P., & Gabrilovich, D. I. (1999). Effect of vascular endothelial growth factor and FLT3 ligand on dendritic cell generation in vivo. Journal of Immunology, 163, 3260–3268.
53.
Zurück zum Zitat Gabrilovich, D. I., Chen, H. L., Girgis, K. R., Cunningham, H. T., Meny, G. M., Nadaf, S., et al. (1996). Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells. Natural Medicines, 2, 1096–1103. Gabrilovich, D. I., Chen, H. L., Girgis, K. R., Cunningham, H. T., Meny, G. M., Nadaf, S., et al. (1996). Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells. Natural Medicines, 2, 1096–1103.
54.
Zurück zum Zitat Ishida, T., Oyama, T., Carbone, D. P., & Gabrilovich, D. I. (1998). Defective function of Langerhans cells in tumor-bearing animals is the result of defective maturation from hemopoietic progenitors. Journal of Immunology, 161, 4842–4851. Ishida, T., Oyama, T., Carbone, D. P., & Gabrilovich, D. I. (1998). Defective function of Langerhans cells in tumor-bearing animals is the result of defective maturation from hemopoietic progenitors. Journal of Immunology, 161, 4842–4851.
55.
Zurück zum Zitat Osada, T., Chong, G., Tansik, R., Hong, T., Spector, N., Kumar, R., et al. (2008). The effect of anti-VEGF therapy on immature myeloid cell and dendritic cells in cancer patients. Cancer Immunology, Immunotherapy, 57, 1115–1124.PubMed Osada, T., Chong, G., Tansik, R., Hong, T., Spector, N., Kumar, R., et al. (2008). The effect of anti-VEGF therapy on immature myeloid cell and dendritic cells in cancer patients. Cancer Immunology, Immunotherapy, 57, 1115–1124.PubMed
56.
Zurück zum Zitat Fricke, I., Mirza, N., Dupont, J., Lockhart, C., Jackson, A., Lee, J. H., et al. (2007). Vascular endothelial growth factor-trap overcomes defects in dendritic cell differentiation but does not improve antigen-specific immune responses. Clinical Cancer Research, 13, 4840–4848.PubMed Fricke, I., Mirza, N., Dupont, J., Lockhart, C., Jackson, A., Lee, J. H., et al. (2007). Vascular endothelial growth factor-trap overcomes defects in dendritic cell differentiation but does not improve antigen-specific immune responses. Clinical Cancer Research, 13, 4840–4848.PubMed
57.
Zurück zum Zitat Strauss, L., Volland, D., Kunkel, M., & Reichert, T. E. (2005). Dual role of VEGF family members in the pathogenesis of head and neck cancer (HNSCC): Possible link between angiogenesis and immune tolerance. Medical Science Monitor, 11, BR280–292.PubMed Strauss, L., Volland, D., Kunkel, M., & Reichert, T. E. (2005). Dual role of VEGF family members in the pathogenesis of head and neck cancer (HNSCC): Possible link between angiogenesis and immune tolerance. Medical Science Monitor, 11, BR280–292.PubMed
58.
Zurück zum Zitat Almand, B., Resser, J. R., Lindman, B., Nadaf, S., Clark, J. I., Kwon, E. D., et al. (2000). Clinical significance of defective dendritic cell differentiation in cancer. Clinical Cancer Research, 6, 1755–1766.PubMed Almand, B., Resser, J. R., Lindman, B., Nadaf, S., Clark, J. I., Kwon, E. D., et al. (2000). Clinical significance of defective dendritic cell differentiation in cancer. Clinical Cancer Research, 6, 1755–1766.PubMed
59.
Zurück zum Zitat Boissel, N., Rousselot, P., Raffoux, E., Cayuela, J. M., Maarek, O., Charron, D., et al. (2004). Defective blood dendritic cells in chronic myeloid leukemia correlate with high plasmatic VEGF and are not normalized by imatinib mesylate. Leukemia, 18, 1656–1661.PubMed Boissel, N., Rousselot, P., Raffoux, E., Cayuela, J. M., Maarek, O., Charron, D., et al. (2004). Defective blood dendritic cells in chronic myeloid leukemia correlate with high plasmatic VEGF and are not normalized by imatinib mesylate. Leukemia, 18, 1656–1661.PubMed
60.
Zurück zum Zitat Finke, J. H., Rini, B., Ireland, J., Rayman, P., Richmond, A., Golshayan, A., et al. (2008). Sunitinib reverses type-1 immune suppression and decreases T-regulatory cells in renal cell carcinoma patients. Clinical Cancer Research, 14, 6674–6682.PubMed Finke, J. H., Rini, B., Ireland, J., Rayman, P., Richmond, A., Golshayan, A., et al. (2008). Sunitinib reverses type-1 immune suppression and decreases T-regulatory cells in renal cell carcinoma patients. Clinical Cancer Research, 14, 6674–6682.PubMed
61.
Zurück zum Zitat Hipp, M. M., Hilf, N., Walter, S., Werth, D., Brauer, K. M., Radsak, M. P., et al. (2008). Sorafenib, but not sunitinib, affects function of dendritic cells and induction of primary immune responses. Blood, 111, 5610–5620.PubMed Hipp, M. M., Hilf, N., Walter, S., Werth, D., Brauer, K. M., Radsak, M. P., et al. (2008). Sorafenib, but not sunitinib, affects function of dendritic cells and induction of primary immune responses. Blood, 111, 5610–5620.PubMed
62.
Zurück zum Zitat Adotevi, O., Pere, H., Ravel, P., Haicheur, N., Badoual, C., Merillon, N., et al. (2010). A decrease of regulatory T cells correlates with overall survival after sunitinib-based antiangiogenic therapy in metastatic renal cancer patients. J Immunother, 33, 991–998. Adotevi, O., Pere, H., Ravel, P., Haicheur, N., Badoual, C., Merillon, N., et al. (2010). A decrease of regulatory T cells correlates with overall survival after sunitinib-based antiangiogenic therapy in metastatic renal cancer patients. J Immunother, 33, 991–998.
63.
Zurück zum Zitat Abe, F., Younos, I., Westphal, S., Samson, H., Scholar, E., Dafferner, A., et al. (2010). Therapeutic activity of sunitinib for Her2/neu induced mammary cancer in FVB mice. International Immunopharmacology, 10, 140–145.PubMed Abe, F., Younos, I., Westphal, S., Samson, H., Scholar, E., Dafferner, A., et al. (2010). Therapeutic activity of sunitinib for Her2/neu induced mammary cancer in FVB mice. International Immunopharmacology, 10, 140–145.PubMed
64.
Zurück zum Zitat Badoual, C., Hans, S., Rodriguez, J., Peyrard, S., Klein, C., Agueznay Nel, H., et al. (2006). Prognostic value of tumor-infiltrating CD4+ T-cell subpopulations in head and neck cancers. Clinical Cancer Research, 12, 465–472.PubMed Badoual, C., Hans, S., Rodriguez, J., Peyrard, S., Klein, C., Agueznay Nel, H., et al. (2006). Prognostic value of tumor-infiltrating CD4+ T-cell subpopulations in head and neck cancers. Clinical Cancer Research, 12, 465–472.PubMed
65.
Zurück zum Zitat Badoual, C., Hans, S., Fridman, W. H., Brasnu, D., Erdman, S., & Tartour, E. (2009). Revisiting the prognostic value of regulatory T cells in patients with cancer. Journal of Clinical Oncology, 27, e5–6. author reply e7.PubMed Badoual, C., Hans, S., Fridman, W. H., Brasnu, D., Erdman, S., & Tartour, E. (2009). Revisiting the prognostic value of regulatory T cells in patients with cancer. Journal of Clinical Oncology, 27, e5–6. author reply e7.PubMed
66.
Zurück zum Zitat Suzuki, H., Onishi, H., Wada, J., Yamasaki, A., Tanaka, H., Nakano, K., et al. (2010). VEGFR2 is selectively expressed by FOXP3high CD4+ Treg. European Journal of Immunology, 40, 197–203.PubMed Suzuki, H., Onishi, H., Wada, J., Yamasaki, A., Tanaka, H., Nakano, K., et al. (2010). VEGFR2 is selectively expressed by FOXP3high CD4+ Treg. European Journal of Immunology, 40, 197–203.PubMed
67.
Zurück zum Zitat Ko, J. S., Zea, A. H., Rini, B. I., Ireland, J. L., Elson, P., Cohen, P., et al. (2009). Sunitinib mediates reversal of myeloid-derived suppressor cell accumulation in renal cell carcinoma patients. Clinical Cancer Research, 15, 2148–2157.PubMed Ko, J. S., Zea, A. H., Rini, B. I., Ireland, J. L., Elson, P., Cohen, P., et al. (2009). Sunitinib mediates reversal of myeloid-derived suppressor cell accumulation in renal cell carcinoma patients. Clinical Cancer Research, 15, 2148–2157.PubMed
68.
Zurück zum Zitat Huang, B., Pan, P. Y., Li, Q., Sato, A. I., Levy, D. E., Bromberg, J., et al. (2006). Gr-1+CD115+ immature myeloid suppressor cells mediate the development of tumor-induced T regulatory cells and T-cell anergy in tumor-bearing host. Cancer Research, 66, 1123–1131.PubMed Huang, B., Pan, P. Y., Li, Q., Sato, A. I., Levy, D. E., Bromberg, J., et al. (2006). Gr-1+CD115+ immature myeloid suppressor cells mediate the development of tumor-induced T regulatory cells and T-cell anergy in tumor-bearing host. Cancer Research, 66, 1123–1131.PubMed
69.
Zurück zum Zitat Gabrilovich, D., Ishida, T., Oyama, T., Ran, S., Kravtsov, V., Nadaf, S., et al. (1998). Vascular endothelial growth factor inhibits the development of dendritic cells and dramatically affects the differentiation of multiple hematopoietic lineages in vivo. Blood, 92, 4150–4166.PubMed Gabrilovich, D., Ishida, T., Oyama, T., Ran, S., Kravtsov, V., Nadaf, S., et al. (1998). Vascular endothelial growth factor inhibits the development of dendritic cells and dramatically affects the differentiation of multiple hematopoietic lineages in vivo. Blood, 92, 4150–4166.PubMed
70.
Zurück zum Zitat Ohm, J. E., & Carbone, D. P. (2001). VEGF as a mediator of tumor-associated immunodeficiency. Immunologic Research, 23, 263–272.PubMed Ohm, J. E., & Carbone, D. P. (2001). VEGF as a mediator of tumor-associated immunodeficiency. Immunologic Research, 23, 263–272.PubMed
71.
Zurück zum Zitat Shojaei, F., Wu, X., Zhong, C., Yu, L., Liang, X. H., Yao, J., et al. (2007). Bv8 regulates myeloid-cell-dependent tumour angiogenesis. Nature, 450, 825–831.PubMed Shojaei, F., Wu, X., Zhong, C., Yu, L., Liang, X. H., Yao, J., et al. (2007). Bv8 regulates myeloid-cell-dependent tumour angiogenesis. Nature, 450, 825–831.PubMed
72.
Zurück zum Zitat Pan, P. Y., Wang, G. X., Yin, B., Ozao, J., Ku, T., Divino, C. M., et al. (2008). Reversion of immune tolerance in advanced malignancy: Modulation of myeloid-derived suppressor cell development by blockade of stem-cell factor function. Blood, 111, 219–228.PubMed Pan, P. Y., Wang, G. X., Yin, B., Ozao, J., Ku, T., Divino, C. M., et al. (2008). Reversion of immune tolerance in advanced malignancy: Modulation of myeloid-derived suppressor cell development by blockade of stem-cell factor function. Blood, 111, 219–228.PubMed
73.
Zurück zum Zitat Curti, A., Fogli, M., Ratta, M., Tura, S., & Lemoli, R. M. (2001). Stem cell factor and FLT3-ligand are strictly required to sustain the long-term expansion of primitive CD34+DR- dendritic cell precursors. Journal of Immunology, 166, 848–854. Curti, A., Fogli, M., Ratta, M., Tura, S., & Lemoli, R. M. (2001). Stem cell factor and FLT3-ligand are strictly required to sustain the long-term expansion of primitive CD34+DR- dendritic cell precursors. Journal of Immunology, 166, 848–854.
74.
Zurück zum Zitat Filipazzi, P., Valenti, R., Huber, V., Pilla, L., Canese, P., Iero, M., et al. (2007). Identification of a new subset of myeloid suppressor cells in peripheral blood of melanoma patients with modulation by a granulocyte-macrophage colony-stimulation factor-based antitumor vaccine. Journal of Clinical Oncology, 25, 2546–2553.PubMed Filipazzi, P., Valenti, R., Huber, V., Pilla, L., Canese, P., Iero, M., et al. (2007). Identification of a new subset of myeloid suppressor cells in peripheral blood of melanoma patients with modulation by a granulocyte-macrophage colony-stimulation factor-based antitumor vaccine. Journal of Clinical Oncology, 25, 2546–2553.PubMed
75.
Zurück zum Zitat Gabrilovich, D. I., & Nagaraj, S. (2009). Myeloid-derived suppressor cells as regulators of the immune system. Nature Reviews. Immunology, 9, 162–174.PubMed Gabrilovich, D. I., & Nagaraj, S. (2009). Myeloid-derived suppressor cells as regulators of the immune system. Nature Reviews. Immunology, 9, 162–174.PubMed
76.
Zurück zum Zitat Serafini, P., Carbley, R., Noonan, K. A., Tan, G., Bronte, V., & Borrello, I. (2004). High-dose granulocyte-macrophage colony-stimulating factor-producing vaccines impair the immune response through the recruitment of myeloid suppressor cells. Cancer Research, 64, 6337–6343.PubMed Serafini, P., Carbley, R., Noonan, K. A., Tan, G., Bronte, V., & Borrello, I. (2004). High-dose granulocyte-macrophage colony-stimulating factor-producing vaccines impair the immune response through the recruitment of myeloid suppressor cells. Cancer Research, 64, 6337–6343.PubMed
77.
Zurück zum Zitat Marigo, I., Dolcetti, L., Serafini, P., Zanovello, P., & Bronte, V. (2008). Tumor-induced tolerance and immune suppression by myeloid derived suppressor cells. Immunological Reviews, 222, 162–179.PubMed Marigo, I., Dolcetti, L., Serafini, P., Zanovello, P., & Bronte, V. (2008). Tumor-induced tolerance and immune suppression by myeloid derived suppressor cells. Immunological Reviews, 222, 162–179.PubMed
78.
Zurück zum Zitat Costantino, L., & Barlocco, D. (2008). STAT 3 as a target for cancer drug discovery. Current Medicinal Chemistry, 15, 834–843.PubMed Costantino, L., & Barlocco, D. (2008). STAT 3 as a target for cancer drug discovery. Current Medicinal Chemistry, 15, 834–843.PubMed
79.
Zurück zum Zitat Kortylewski, M., Kujawski, M., Wang, T., Wei, S., Zhang, S., Pilon-Thomas, S., et al. (2005). Inhibiting Stat3 signaling in the hematopoietic system elicits multicomponent antitumor immunity. Natural Medicines, 11, 1314–1321. Kortylewski, M., Kujawski, M., Wang, T., Wei, S., Zhang, S., Pilon-Thomas, S., et al. (2005). Inhibiting Stat3 signaling in the hematopoietic system elicits multicomponent antitumor immunity. Natural Medicines, 11, 1314–1321.
80.
Zurück zum Zitat Kortylewski, M., & Yu, H. (2008). Role of Stat3 in suppressing anti-tumor immunity. Current Opinion in Immunology, 20, 228–233.PubMed Kortylewski, M., & Yu, H. (2008). Role of Stat3 in suppressing anti-tumor immunity. Current Opinion in Immunology, 20, 228–233.PubMed
81.
Zurück zum Zitat Yu, H., & Jove, R. (2004). The STATs of cancer—New molecular targets come of age. Nature Reviews. Cancer, 4, 97–105.PubMed Yu, H., & Jove, R. (2004). The STATs of cancer—New molecular targets come of age. Nature Reviews. Cancer, 4, 97–105.PubMed
82.
Zurück zum Zitat Xie, T. X., Wei, D., Liu, M., Gao, A. C., Ali-Osman, F., Sawaya, R., et al. (2004). Stat3 activation regulates the expression of matrix metalloproteinase-2 and tumor invasion and metastasis. Oncogene, 23, 3550–3560.PubMed Xie, T. X., Wei, D., Liu, M., Gao, A. C., Ali-Osman, F., Sawaya, R., et al. (2004). Stat3 activation regulates the expression of matrix metalloproteinase-2 and tumor invasion and metastasis. Oncogene, 23, 3550–3560.PubMed
83.
Zurück zum Zitat Noman, M. Z., Buart, S., Van Pelt, J., Richon, C., Hasmim, M., Leleu, N., et al. (2009). The cooperative induction of hypoxia-inducible factor-1alpha and STAT3 during hypoxia induced an impairment of tumor susceptibility to CTL-mediated cell lysis. Journal of Immunology, 182, 3510–3521. Noman, M. Z., Buart, S., Van Pelt, J., Richon, C., Hasmim, M., Leleu, N., et al. (2009). The cooperative induction of hypoxia-inducible factor-1alpha and STAT3 during hypoxia induced an impairment of tumor susceptibility to CTL-mediated cell lysis. Journal of Immunology, 182, 3510–3521.
84.
Zurück zum Zitat Kujawski, M., Kortylewski, M., Lee, H., Herrmann, A., Kay, H., & Yu, H. (2008). Stat3 mediates myeloid cell-dependent tumor angiogenesis in mice. The Journal of Clinical Investigation, 118, 3367–3377.PubMed Kujawski, M., Kortylewski, M., Lee, H., Herrmann, A., Kay, H., & Yu, H. (2008). Stat3 mediates myeloid cell-dependent tumor angiogenesis in mice. The Journal of Clinical Investigation, 118, 3367–3377.PubMed
85.
Zurück zum Zitat Xin, H., Zhang, C., Herrmann, A., Du, Y., Figlin, R., & Yu, H. (2009). Sunitinib inhibition of Stat3 induces renal cell carcinoma tumor cell apoptosis and reduces immunosuppressive cells. Cancer Research, 69, 2506–2513.PubMed Xin, H., Zhang, C., Herrmann, A., Du, Y., Figlin, R., & Yu, H. (2009). Sunitinib inhibition of Stat3 induces renal cell carcinoma tumor cell apoptosis and reduces immunosuppressive cells. Cancer Research, 69, 2506–2513.PubMed
86.
Zurück zum Zitat Kim, D. W., Jo, Y. S., Jung, H. S., Chung, H. K., Song, J. H., Park, K. C., et al. (2006). An orally administered multitarget tyrosine kinase inhibitor, SU11248, is a novel potent inhibitor of thyroid oncogenic RET/papillary thyroid cancer kinases. The Journal of Clinical Endocrinology and Metabolism, 91, 4070–4076.PubMed Kim, D. W., Jo, Y. S., Jung, H. S., Chung, H. K., Song, J. H., Park, K. C., et al. (2006). An orally administered multitarget tyrosine kinase inhibitor, SU11248, is a novel potent inhibitor of thyroid oncogenic RET/papillary thyroid cancer kinases. The Journal of Clinical Endocrinology and Metabolism, 91, 4070–4076.PubMed
87.
Zurück zum Zitat Ozao-Choy, J., Ma, G., Kao, J., Wang, G. X., Meseck, M., Sung, M., et al. (2009). The novel role of tyrosine kinase inhibitor in the reversal of immune suppression and modulation of tumor microenvironment for immune-based cancer therapies. Cancer Research, 69, 2514–2522.PubMed Ozao-Choy, J., Ma, G., Kao, J., Wang, G. X., Meseck, M., Sung, M., et al. (2009). The novel role of tyrosine kinase inhibitor in the reversal of immune suppression and modulation of tumor microenvironment for immune-based cancer therapies. Cancer Research, 69, 2514–2522.PubMed
88.
Zurück zum Zitat Inman, B. A., Frigola, X., Dong, H., & Kwon, E. D. (2007). Costimulation, coinhibition and cancer. Current Cancer Drug Targets, 7, 15–30.PubMed Inman, B. A., Frigola, X., Dong, H., & Kwon, E. D. (2007). Costimulation, coinhibition and cancer. Current Cancer Drug Targets, 7, 15–30.PubMed
89.
Zurück zum Zitat Fox, S. B., Launchbury, R., Bates, G. J., Han, C., Shaida, N., Malone, P. R., et al. (2007). The number of regulatory T cells in prostate cancer is associated with the androgen receptor and hypoxia-inducible factor (HIF)-2alpha but not HIF-1alpha. The Prostate, 67, 623–629.PubMed Fox, S. B., Launchbury, R., Bates, G. J., Han, C., Shaida, N., Malone, P. R., et al. (2007). The number of regulatory T cells in prostate cancer is associated with the androgen receptor and hypoxia-inducible factor (HIF)-2alpha but not HIF-1alpha. The Prostate, 67, 623–629.PubMed
90.
Zurück zum Zitat Aghi, M., Cohen, K. S., Klein, R. J., Scadden, D. T., & Chiocca, E. A. (2006). Tumor stromal-derived factor-1 recruits vascular progenitors to mitotic neovasculature, where microenvironment influences their differentiated phenotypes. Cancer Research, 66, 9054–9064.PubMed Aghi, M., Cohen, K. S., Klein, R. J., Scadden, D. T., & Chiocca, E. A. (2006). Tumor stromal-derived factor-1 recruits vascular progenitors to mitotic neovasculature, where microenvironment influences their differentiated phenotypes. Cancer Research, 66, 9054–9064.PubMed
91.
Zurück zum Zitat Ben-Shoshan, J., Maysel-Auslender, S., Mor, A., Keren, G., & George, J. (2008). Hypoxia controls CD4+CD25+ regulatory T-cell homeostasis via hypoxia-inducible factor-1alpha. European Journal of Immunology, 38, 2412–2418.PubMed Ben-Shoshan, J., Maysel-Auslender, S., Mor, A., Keren, G., & George, J. (2008). Hypoxia controls CD4+CD25+ regulatory T-cell homeostasis via hypoxia-inducible factor-1alpha. European Journal of Immunology, 38, 2412–2418.PubMed
92.
Zurück zum Zitat Dayan, F., Mazure, N. M., Brahimi-Horn, M. C., & Pouyssegur, J. (2008). A dialogue between the hypoxia-inducible factor and the tumor microenvironment. Cancer Microenviron, 1, 53–68.PubMed Dayan, F., Mazure, N. M., Brahimi-Horn, M. C., & Pouyssegur, J. (2008). A dialogue between the hypoxia-inducible factor and the tumor microenvironment. Cancer Microenviron, 1, 53–68.PubMed
93.
Zurück zum Zitat Sitkovsky, M. V., Kjaergaard, J., Lukashev, D., & Ohta, A. (2008). Hypoxia-adenosinergic immunosuppression: Tumor protection by T regulatory cells and cancerous tissue hypoxia. Clinical Cancer Research, 14, 5947–5952.PubMed Sitkovsky, M. V., Kjaergaard, J., Lukashev, D., & Ohta, A. (2008). Hypoxia-adenosinergic immunosuppression: Tumor protection by T regulatory cells and cancerous tissue hypoxia. Clinical Cancer Research, 14, 5947–5952.PubMed
94.
Zurück zum Zitat Harizi, H., Juzan, M., Pitard, V., Moreau, J. F., & Gualde, N. (2002). Cyclooxygenase-2-issued prostaglandin e(2) enhances the production of endogenous IL-10, which down-regulates dendritic cell functions. Journal of Immunology, 168, 2255–2263. Harizi, H., Juzan, M., Pitard, V., Moreau, J. F., & Gualde, N. (2002). Cyclooxygenase-2-issued prostaglandin e(2) enhances the production of endogenous IL-10, which down-regulates dendritic cell functions. Journal of Immunology, 168, 2255–2263.
95.
Zurück zum Zitat Baratelli, F., Lin, Y., Zhu, L., Yang, S. C., Heuze-Vourc’h, N., Zeng, G., et al. (2005). Prostaglandin E2 induces FOXP3 gene expression and T regulatory cell function in human CD4+ T cells. Journal of Immunology, 175, 1483–1490. Baratelli, F., Lin, Y., Zhu, L., Yang, S. C., Heuze-Vourc’h, N., Zeng, G., et al. (2005). Prostaglandin E2 induces FOXP3 gene expression and T regulatory cell function in human CD4+ T cells. Journal of Immunology, 175, 1483–1490.
96.
Zurück zum Zitat Akasaki, Y., Liu, G., Chung, N. H., Ehtesham, M., Black, K. L., & Yu, J. S. (2004). Induction of a CD4+ T regulatory type 1 response by cyclooxygenase-2-overexpressing glioma. Journal of Immunology, 173, 4352–4359. Akasaki, Y., Liu, G., Chung, N. H., Ehtesham, M., Black, K. L., & Yu, J. S. (2004). Induction of a CD4+ T regulatory type 1 response by cyclooxygenase-2-overexpressing glioma. Journal of Immunology, 173, 4352–4359.
97.
Zurück zum Zitat Bergmann, C., Strauss, L., Zeidler, R., Lang, S., & Whiteside, T. L. (2007). Expansion of human T regulatory type 1 cells in the microenvironment of cyclooxygenase 2 overexpressing head and neck squamous cell carcinoma. Cancer Research, 67, 8865–8873.PubMed Bergmann, C., Strauss, L., Zeidler, R., Lang, S., & Whiteside, T. L. (2007). Expansion of human T regulatory type 1 cells in the microenvironment of cyclooxygenase 2 overexpressing head and neck squamous cell carcinoma. Cancer Research, 67, 8865–8873.PubMed
98.
Zurück zum Zitat Rodriguez, P. C., Hernandez, C. P., Quiceno, D., Dubinett, S. M., Zabaleta, J., Ochoa, J. B., et al. (2005). Arginase I in myeloid suppressor cells is induced by COX-2 in lung carcinoma. The Journal of Experimental Medicine, 202, 931–939.PubMed Rodriguez, P. C., Hernandez, C. P., Quiceno, D., Dubinett, S. M., Zabaleta, J., Ochoa, J. B., et al. (2005). Arginase I in myeloid suppressor cells is induced by COX-2 in lung carcinoma. The Journal of Experimental Medicine, 202, 931–939.PubMed
99.
Zurück zum Zitat Murakami, A., & Ohigashi, H. (2007). Targeting NOX, INOS and COX-2 in inflammatory cells: Chemoprevention using food phytochemicals. International Journal of Cancer, 121, 2357–2363. Murakami, A., & Ohigashi, H. (2007). Targeting NOX, INOS and COX-2 in inflammatory cells: Chemoprevention using food phytochemicals. International Journal of Cancer, 121, 2357–2363.
100.
Zurück zum Zitat Gately, S., & Li, W. W. (2004). Multiple roles of COX-2 in tumor angiogenesis: A target for antiangiogenic therapy. Seminars in Oncology, 31, 2–11.PubMed Gately, S., & Li, W. W. (2004). Multiple roles of COX-2 in tumor angiogenesis: A target for antiangiogenic therapy. Seminars in Oncology, 31, 2–11.PubMed
101.
Zurück zum Zitat Sharma, S., Yang, S. C., Zhu, L., Reckamp, K., Gardner, B., Baratelli, F., et al. (2005). Tumor cyclooxygenase-2/prostaglandin E2-dependent promotion of FOXP3 expression and CD4+ CD25+ T regulatory cell activities in lung cancer. Cancer Research, 65, 5211–5220.PubMed Sharma, S., Yang, S. C., Zhu, L., Reckamp, K., Gardner, B., Baratelli, F., et al. (2005). Tumor cyclooxygenase-2/prostaglandin E2-dependent promotion of FOXP3 expression and CD4+ CD25+ T regulatory cell activities in lung cancer. Cancer Research, 65, 5211–5220.PubMed
102.
Zurück zum Zitat Haas, A. R., Sun, J., Vachani, A., Wallace, A. F., Silverberg, M., Kapoor, V., et al. (2006). Cycloxygenase-2 inhibition augments the efficacy of a cancer vaccine. Clinical Cancer Research, 12, 214–222.PubMed Haas, A. R., Sun, J., Vachani, A., Wallace, A. F., Silverberg, M., Kapoor, V., et al. (2006). Cycloxygenase-2 inhibition augments the efficacy of a cancer vaccine. Clinical Cancer Research, 12, 214–222.PubMed
103.
Zurück zum Zitat Greenhough, A., Smartt, H. J., Moore, A. E., Roberts, H. R., Williams, A. C., Paraskeva, C., et al. (2009). The COX-2/PGE2 pathway: Key roles in the hallmarks of cancer and adaptation to the tumour microenvironment. Carcinogenesis, 30, 377–386.PubMed Greenhough, A., Smartt, H. J., Moore, A. E., Roberts, H. R., Williams, A. C., Paraskeva, C., et al. (2009). The COX-2/PGE2 pathway: Key roles in the hallmarks of cancer and adaptation to the tumour microenvironment. Carcinogenesis, 30, 377–386.PubMed
104.
Zurück zum Zitat Motzer, R. J., Michaelson, M. D., Redman, B. G., Hudes, G. R., Wilding, G., Figlin, R. A., et al. (2006). Activity of SU11248, a multitargeted inhibitor of vascular endothelial growth factor receptor and platelet-derived growth factor receptor, in patients with metastatic renal cell carcinoma. Journal of Clinical Oncology, 24, 16–24.PubMed Motzer, R. J., Michaelson, M. D., Redman, B. G., Hudes, G. R., Wilding, G., Figlin, R. A., et al. (2006). Activity of SU11248, a multitargeted inhibitor of vascular endothelial growth factor receptor and platelet-derived growth factor receptor, in patients with metastatic renal cell carcinoma. Journal of Clinical Oncology, 24, 16–24.PubMed
105.
Zurück zum Zitat Norden-Zfoni, A., Desai, J., Manola, J., Beaudry, P., Force, J., Maki, R., et al. (2007). Blood-based biomarkers of SU11248 activity and clinical outcome in patients with metastatic imatinib-resistant gastrointestinal stromal tumor. Clinical Cancer Research, 13, 2643–2650.PubMed Norden-Zfoni, A., Desai, J., Manola, J., Beaudry, P., Force, J., Maki, R., et al. (2007). Blood-based biomarkers of SU11248 activity and clinical outcome in patients with metastatic imatinib-resistant gastrointestinal stromal tumor. Clinical Cancer Research, 13, 2643–2650.PubMed
106.
Zurück zum Zitat Dellapasqua, S., Bertolini, F., Bagnardi, V., Campagnoli, E., Scarano, E., Torrisi, R., et al. (2008). Metronomic cyclophosphamide and capecitabine combined with bevacizumab in advanced breast cancer. Journal of Clinical Oncology, 26, 4899–4905.PubMed Dellapasqua, S., Bertolini, F., Bagnardi, V., Campagnoli, E., Scarano, E., Torrisi, R., et al. (2008). Metronomic cyclophosphamide and capecitabine combined with bevacizumab in advanced breast cancer. Journal of Clinical Oncology, 26, 4899–4905.PubMed
107.
Zurück zum Zitat Bertolini, F., Shaked, Y., Mancuso, P., & Kerbel, R. S. (2006). The multifaceted circulating endothelial cell in cancer: Towards marker and target identification. Nature Reviews. Cancer, 6, 835–845.PubMed Bertolini, F., Shaked, Y., Mancuso, P., & Kerbel, R. S. (2006). The multifaceted circulating endothelial cell in cancer: Towards marker and target identification. Nature Reviews. Cancer, 6, 835–845.PubMed
108.
Zurück zum Zitat Farace, F., Massard, C., Borghi, E., Bidart, J. M., & Soria, J. C. (2007). Vascular disrupting therapy-induced mobilization of circulating endothelial progenitor cells. Annals of Oncology, 18, 1421–1422.PubMed Farace, F., Massard, C., Borghi, E., Bidart, J. M., & Soria, J. C. (2007). Vascular disrupting therapy-induced mobilization of circulating endothelial progenitor cells. Annals of Oncology, 18, 1421–1422.PubMed
109.
Zurück zum Zitat Ebos, J. M., Lee, C. R., Christensen, J. G., Mutsaers, A. J., & Kerbel, R. S. (2007). Multiple circulating proangiogenic factors induced by sunitinib malate are tumor-independent and correlate with antitumor efficacy. Proceedings of the National Academy of Sciences of the United States of America, 104, 17069–17074.PubMed Ebos, J. M., Lee, C. R., Christensen, J. G., Mutsaers, A. J., & Kerbel, R. S. (2007). Multiple circulating proangiogenic factors induced by sunitinib malate are tumor-independent and correlate with antitumor efficacy. Proceedings of the National Academy of Sciences of the United States of America, 104, 17069–17074.PubMed
110.
Zurück zum Zitat Brown, A. P., Citrin, D. E., & Camphausen, K. A. (2008). Clinical biomarkers of angiogenesis inhibition. Cancer and Metastasis Reviews, 27, 415–434.PubMed Brown, A. P., Citrin, D. E., & Camphausen, K. A. (2008). Clinical biomarkers of angiogenesis inhibition. Cancer and Metastasis Reviews, 27, 415–434.PubMed
111.
Zurück zum Zitat Rini, B. I., Michaelson, M. D., Rosenberg, J. E., Bukowski, R. M., Sosman, J. A., Stadler, W. M., et al. (2008). Antitumor activity and biomarker analysis of sunitinib in patients with bevacizumab-refractory metastatic renal cell carcinoma. Journal of Clinical Oncology, 26, 3743–3748.PubMed Rini, B. I., Michaelson, M. D., Rosenberg, J. E., Bukowski, R. M., Sosman, J. A., Stadler, W. M., et al. (2008). Antitumor activity and biomarker analysis of sunitinib in patients with bevacizumab-refractory metastatic renal cell carcinoma. Journal of Clinical Oncology, 26, 3743–3748.PubMed
112.
Zurück zum Zitat Prior, J. O., Montemurro, M., Orcurto, M. V., Michielin, O., Luthi, F., Benhattar, J., et al. (2009). Early prediction of response to sunitinib after imatinib failure by 18F-fluorodeoxyglucose positron emission tomography in patients with gastrointestinal stromal tumor. Journal of Clinical Oncology, 27, 439–445.PubMed Prior, J. O., Montemurro, M., Orcurto, M. V., Michielin, O., Luthi, F., Benhattar, J., et al. (2009). Early prediction of response to sunitinib after imatinib failure by 18F-fluorodeoxyglucose positron emission tomography in patients with gastrointestinal stromal tumor. Journal of Clinical Oncology, 27, 439–445.PubMed
113.
Zurück zum Zitat Michael, A., Relph, K., & Pandha, H. (2010). Emergence of potential biomarkers of response to anti-angiogenic anti-tumour agents. International Journal of Cancer, 127, 1251–1258. Michael, A., Relph, K., & Pandha, H. (2010). Emergence of potential biomarkers of response to anti-angiogenic anti-tumour agents. International Journal of Cancer, 127, 1251–1258.
114.
Zurück zum Zitat Lamuraglia, M., Escudier, B., Chami, L., Schwartz, B., Leclere, J., Roche, A., et al. (2006). To predict progression-free survival and overall survival in metastatic renal cancer treated with sorafenib: Pilot study using dynamic contrast-enhanced Doppler ultrasound. European Journal of Cancer, 42, 2472–2479.PubMed Lamuraglia, M., Escudier, B., Chami, L., Schwartz, B., Leclere, J., Roche, A., et al. (2006). To predict progression-free survival and overall survival in metastatic renal cancer treated with sorafenib: Pilot study using dynamic contrast-enhanced Doppler ultrasound. European Journal of Cancer, 42, 2472–2479.PubMed
115.
Zurück zum Zitat Fournier, L. S., Oudard, S., Thiam, R., Trinquart, L., Banu, E., Medioni, J., et al. (2010). Metastatic renal carcinoma: Evaluation of antiangiogenic therapy with dynamic contrast-enhanced CT. Radiology, 256, 511–518.PubMed Fournier, L. S., Oudard, S., Thiam, R., Trinquart, L., Banu, E., Medioni, J., et al. (2010). Metastatic renal carcinoma: Evaluation of antiangiogenic therapy with dynamic contrast-enhanced CT. Radiology, 256, 511–518.PubMed
116.
Zurück zum Zitat Thiam, R., Fournier, L. S., Trinquart, L., Medioni, J., Chatellier, G., Balvay, D., et al. (2010). Optimizing the size variation threshold for the CT evaluation of response in metastatic renal cell carcinoma treated with sunitinib. Annals of Oncology, 21, 936–941.PubMed Thiam, R., Fournier, L. S., Trinquart, L., Medioni, J., Chatellier, G., Balvay, D., et al. (2010). Optimizing the size variation threshold for the CT evaluation of response in metastatic renal cell carcinoma treated with sunitinib. Annals of Oncology, 21, 936–941.PubMed
117.
Zurück zum Zitat Escudier, B., Pluzanska, A., Koralewski, P., Ravaud, A., Bracarda, S., Szczylik, C., et al. (2007). Bevacizumab plus interferon alfa-2a for treatment of metastatic renal cell carcinoma: A randomised, double-blind phase III trial. Lancet, 370, 2103–2111.PubMed Escudier, B., Pluzanska, A., Koralewski, P., Ravaud, A., Bracarda, S., Szczylik, C., et al. (2007). Bevacizumab plus interferon alfa-2a for treatment of metastatic renal cell carcinoma: A randomised, double-blind phase III trial. Lancet, 370, 2103–2111.PubMed
118.
Zurück zum Zitat Rixe, O., Bukowski, R. M., Michaelson, M. D., Wilding, G., Hudes, G. R., Bolte, O., et al. (2007). Axitinib treatment in patients with cytokine-refractory metastatic renal-cell cancer: A phase II study. The Lancet Oncology, 8, 975–984.PubMed Rixe, O., Bukowski, R. M., Michaelson, M. D., Wilding, G., Hudes, G. R., Bolte, O., et al. (2007). Axitinib treatment in patients with cytokine-refractory metastatic renal-cell cancer: A phase II study. The Lancet Oncology, 8, 975–984.PubMed
119.
Zurück zum Zitat Yang, J. C., Haworth, L., Sherry, R. M., Hwu, P., Schwartzentruber, D. J., Topalian, S. L., et al. (2003). A randomized trial of bevacizumab, an anti-vascular endothelial growth factor antibody, for metastatic renal cancer. The New England Journal of Medicine, 349, 427–434.PubMed Yang, J. C., Haworth, L., Sherry, R. M., Hwu, P., Schwartzentruber, D. J., Topalian, S. L., et al. (2003). A randomized trial of bevacizumab, an anti-vascular endothelial growth factor antibody, for metastatic renal cancer. The New England Journal of Medicine, 349, 427–434.PubMed
120.
Zurück zum Zitat Faivre, S., Delbaldo, C., Vera, K., Robert, C., Lozahic, S., Lassau, N., et al. (2006). Safety, pharmacokinetic, and antitumor activity of SU11248, a novel oral multitarget tyrosine kinase inhibitor, in patients with cancer. Journal of Clinical Oncology, 24, 25–35.PubMed Faivre, S., Delbaldo, C., Vera, K., Robert, C., Lozahic, S., Lassau, N., et al. (2006). Safety, pharmacokinetic, and antitumor activity of SU11248, a novel oral multitarget tyrosine kinase inhibitor, in patients with cancer. Journal of Clinical Oncology, 24, 25–35.PubMed
121.
Zurück zum Zitat van Cruijsen, H., van der Veldt, A. A., Vroling, L., Oosterhoff, D., Broxterman, H. J., Scheper, R. J., et al. (2008). Sunitinib-induced myeloid lineage redistribution in renal cell cancer patients: CD1c+ dendritic cell frequency predicts progression-free survival. Clinical Cancer Research, 14, 5884–5892.PubMed van Cruijsen, H., van der Veldt, A. A., Vroling, L., Oosterhoff, D., Broxterman, H. J., Scheper, R. J., et al. (2008). Sunitinib-induced myeloid lineage redistribution in renal cell cancer patients: CD1c+ dendritic cell frequency predicts progression-free survival. Clinical Cancer Research, 14, 5884–5892.PubMed
122.
Zurück zum Zitat George, S., Richmond, A., Elson, P., Jin, T., Wood, L., Garcia, J. A., et al. (2007). WBC changes as a pharmacodynamic marker of outcome in metastatic renal cell carcinoma (mRCC) patients (Pts) receiving sunitinib (p. 5043). Chicago: ASCO. George, S., Richmond, A., Elson, P., Jin, T., Wood, L., Garcia, J. A., et al. (2007). WBC changes as a pharmacodynamic marker of outcome in metastatic renal cell carcinoma (mRCC) patients (Pts) receiving sunitinib (p. 5043). Chicago: ASCO.
123.
Zurück zum Zitat Griffiths, R. W., Elkord, E., Gilham, D. E., Ramani, V., Clarke, N., Stern, P. L., et al. (2007). Frequency of regulatory T cells in renal cell carcinoma patients and investigation of correlation with survival. Cancer Immunology, Immunotherapy, 56, 1743–1753.PubMed Griffiths, R. W., Elkord, E., Gilham, D. E., Ramani, V., Clarke, N., Stern, P. L., et al. (2007). Frequency of regulatory T cells in renal cell carcinoma patients and investigation of correlation with survival. Cancer Immunology, Immunotherapy, 56, 1743–1753.PubMed
124.
Zurück zum Zitat Shojaei, F., Wu, X., Malik, A. K., Zhong, C., Baldwin, M. E., Schanz, S., et al. (2007). Tumor refractoriness to anti-VEGF treatment is mediated by CD11b+Gr1+ myeloid cells. Nature Biotechnology, 25, 911–920.PubMed Shojaei, F., Wu, X., Malik, A. K., Zhong, C., Baldwin, M. E., Schanz, S., et al. (2007). Tumor refractoriness to anti-VEGF treatment is mediated by CD11b+Gr1+ myeloid cells. Nature Biotechnology, 25, 911–920.PubMed
125.
Zurück zum Zitat Huang, D., Ding, Y., Zhou, M., Rini, B. I., Petillo, D., Qian, C. N., et al. (2010). Interleukin-8 mediates resistance to antiangiogenic agent sunitinib in renal cell carcinoma. Cancer Research, 70, 1063–1071.PubMed Huang, D., Ding, Y., Zhou, M., Rini, B. I., Petillo, D., Qian, C. N., et al. (2010). Interleukin-8 mediates resistance to antiangiogenic agent sunitinib in renal cell carcinoma. Cancer Research, 70, 1063–1071.PubMed
126.
Zurück zum Zitat Nikolinakos, P. G., Altorki, N., Yankelevitz, D., Tran, H. T., Yan, S., Rajagopalan, D., et al. (2010). Plasma cytokine and angiogenic factor profiling identifies markers associated with tumor shrinkage in early-stage non-small cell lung cancer patients treated with pazopanib. Cancer Research, 70, 2171–2179.PubMed Nikolinakos, P. G., Altorki, N., Yankelevitz, D., Tran, H. T., Yan, S., Rajagopalan, D., et al. (2010). Plasma cytokine and angiogenic factor profiling identifies markers associated with tumor shrinkage in early-stage non-small cell lung cancer patients treated with pazopanib. Cancer Research, 70, 2171–2179.PubMed
127.
Zurück zum Zitat Hanrahan, E. O., Lin, H. Y., Kim, E. S., Yan, S., Du, D. Z., McKee, K. S., et al. (2010). Distinct patterns of cytokine and angiogenic factor modulation and markers of benefit for vandetanib and/or chemotherapy in patients with non-small-cell lung cancer. Journal of Clinical Oncology, 28, 193–201.PubMed Hanrahan, E. O., Lin, H. Y., Kim, E. S., Yan, S., Du, D. Z., McKee, K. S., et al. (2010). Distinct patterns of cytokine and angiogenic factor modulation and markers of benefit for vandetanib and/or chemotherapy in patients with non-small-cell lung cancer. Journal of Clinical Oncology, 28, 193–201.PubMed
128.
Zurück zum Zitat Tartour, E., Mosseri, V., Jouffroy, T., Deneux, L., Jaulerry, C., Brunin, F., et al. (2001). Serum soluble interleukin-2 receptor concentrations as an independent prognostic marker in head and neck cancer. Lancet, 357, 1263–1264.PubMed Tartour, E., Mosseri, V., Jouffroy, T., Deneux, L., Jaulerry, C., Brunin, F., et al. (2001). Serum soluble interleukin-2 receptor concentrations as an independent prognostic marker in head and neck cancer. Lancet, 357, 1263–1264.PubMed
129.
Zurück zum Zitat Tartour, E., Deneux, L., Mosseri, V., Jaulerry, C., Brunin, F., Point, D., et al. (1997). Soluble interleukin-2 receptor serum level as a predictor of locoregional control and survival for patients with head and neck carcinoma: Results of a multivariate prospective study. Cancer, 79, 1401–1408.PubMed Tartour, E., Deneux, L., Mosseri, V., Jaulerry, C., Brunin, F., Point, D., et al. (1997). Soluble interleukin-2 receptor serum level as a predictor of locoregional control and survival for patients with head and neck carcinoma: Results of a multivariate prospective study. Cancer, 79, 1401–1408.PubMed
130.
Zurück zum Zitat Saltz, L. B., Rosen, L. S., Marshall, J. L., Belt, R. J., Hurwitz, H. I., Eckhardt, S. G., et al. (2007). Phase II trial of sunitinib in patients with metastatic colorectal cancer after failure of standard therapy. Journal of Clinical Oncology, 25, 4793–4799.PubMed Saltz, L. B., Rosen, L. S., Marshall, J. L., Belt, R. J., Hurwitz, H. I., Eckhardt, S. G., et al. (2007). Phase II trial of sunitinib in patients with metastatic colorectal cancer after failure of standard therapy. Journal of Clinical Oncology, 25, 4793–4799.PubMed
131.
Zurück zum Zitat Bergers, G., & Hanahan, D. (2008). Modes of resistance to anti-angiogenic therapy. Nature Reviews. Cancer, 8, 592–603.PubMed Bergers, G., & Hanahan, D. (2008). Modes of resistance to anti-angiogenic therapy. Nature Reviews. Cancer, 8, 592–603.PubMed
132.
Zurück zum Zitat Willett, C. G., Boucher, Y., di Tomaso, E., Duda, D. G., Munn, L. L., Tong, R. T., et al. (2004). Direct evidence that the VEGF-specific antibody bevacizumab has antivascular effects in human rectal cancer. Natural Medicines, 10, 145–147. Willett, C. G., Boucher, Y., di Tomaso, E., Duda, D. G., Munn, L. L., Tong, R. T., et al. (2004). Direct evidence that the VEGF-specific antibody bevacizumab has antivascular effects in human rectal cancer. Natural Medicines, 10, 145–147.
133.
Zurück zum Zitat Hamzah, J., Jugold, M., Kiessling, F., Rigby, P., Manzur, M., Marti, H. H., et al. (2008). Vascular normalization in Rgs5-deficient tumours promotes immune destruction. Nature, 453, 410–414.PubMed Hamzah, J., Jugold, M., Kiessling, F., Rigby, P., Manzur, M., Marti, H. H., et al. (2008). Vascular normalization in Rgs5-deficient tumours promotes immune destruction. Nature, 453, 410–414.PubMed
134.
Zurück zum Zitat Dirkx, A. E., oude Egbrink, M. G., Castermans, K., van der Schaft, D. W., Thijssen, V. L., Dings, R. P., et al. (2006). Anti-angiogenesis therapy can overcome endothelial cell anergy and promote leukocyte-endothelium interactions and infiltration in tumors. FASEB Journal, 20, 621–630.PubMed Dirkx, A. E., oude Egbrink, M. G., Castermans, K., van der Schaft, D. W., Thijssen, V. L., Dings, R. P., et al. (2006). Anti-angiogenesis therapy can overcome endothelial cell anergy and promote leukocyte-endothelium interactions and infiltration in tumors. FASEB Journal, 20, 621–630.PubMed
135.
Zurück zum Zitat Li, B., Lalani, A. S., Harding, T. C., Luan, B., Koprivnikar, K., Huan Tu, G., et al. (2006). Vascular endothelial growth factor blockade reduces intratumoral regulatory T cells and enhances the efficacy of a GM-CSF-secreting cancer immunotherapy. Clinical Cancer Research, 12, 6808–6816.PubMed Li, B., Lalani, A. S., Harding, T. C., Luan, B., Koprivnikar, K., Huan Tu, G., et al. (2006). Vascular endothelial growth factor blockade reduces intratumoral regulatory T cells and enhances the efficacy of a GM-CSF-secreting cancer immunotherapy. Clinical Cancer Research, 12, 6808–6816.PubMed
136.
Zurück zum Zitat Manning, E. A., Ullman, J. G., Leatherman, J. M., Asquith, J. M., Hansen, T. R., Armstrong, T. D., et al. (2007). A vascular endothelial growth factor receptor-2 inhibitor enhances antitumor immunity through an immune-based mechanism. Clinical Cancer Research, 13, 3951–3959.PubMed Manning, E. A., Ullman, J. G., Leatherman, J. M., Asquith, J. M., Hansen, T. R., Armstrong, T. D., et al. (2007). A vascular endothelial growth factor receptor-2 inhibitor enhances antitumor immunity through an immune-based mechanism. Clinical Cancer Research, 13, 3951–3959.PubMed
137.
Zurück zum Zitat Shrimali, R. K., Yu, Z., Theoret, M. R., Chinnasamy, D., Restifo, N. P., & Rosenberg, S. A. (2010). Antiangiogenic agents can increase lymphocyte infiltration into tumor and enhance the effectiveness of adoptive immunotherapy of cancer. Cancer Research, 70, 6171–6180.PubMed Shrimali, R. K., Yu, Z., Theoret, M. R., Chinnasamy, D., Restifo, N. P., & Rosenberg, S. A. (2010). Antiangiogenic agents can increase lymphocyte infiltration into tumor and enhance the effectiveness of adoptive immunotherapy of cancer. Cancer Research, 70, 6171–6180.PubMed
138.
Zurück zum Zitat Nair, S., Boczkowski, D., Moeller, B., Dewhirst, M., Vieweg, J., & Gilboa, E. (2003). Synergy between tumor immunotherapy and antiangiogenic therapy. Blood, 102, 964–971.PubMed Nair, S., Boczkowski, D., Moeller, B., Dewhirst, M., Vieweg, J., & Gilboa, E. (2003). Synergy between tumor immunotherapy and antiangiogenic therapy. Blood, 102, 964–971.PubMed
139.
Zurück zum Zitat Bercovici, N., Haicheur, N., Massicard, S., Vernel-Pauillac, F., Adotevi, O., Landais, D., et al. (2008). Analysis and characterization of antitumor T-cell response after administration of dendritic cells loaded with allogeneic tumor lysate to metastatic melanoma patients. Journal of Immunotherapy, 31, 101–112.PubMed Bercovici, N., Haicheur, N., Massicard, S., Vernel-Pauillac, F., Adotevi, O., Landais, D., et al. (2008). Analysis and characterization of antitumor T-cell response after administration of dendritic cells loaded with allogeneic tumor lysate to metastatic melanoma patients. Journal of Immunotherapy, 31, 101–112.PubMed
140.
Zurück zum Zitat Huang, K. W., Wu, H. L., Lin, H. L., Liang, P. C., Chen, P. J., Chen, S. H., et al. (2010). Combining antiangiogenic therapy with immunotherapy exerts better therapeutical effects on large tumors in a woodchuck hepatoma model. Proceedings of the National Academy of Sciences of the United States of America, 107, 14769–14774.PubMed Huang, K. W., Wu, H. L., Lin, H. L., Liang, P. C., Chen, P. J., Chen, S. H., et al. (2010). Combining antiangiogenic therapy with immunotherapy exerts better therapeutical effects on large tumors in a woodchuck hepatoma model. Proceedings of the National Academy of Sciences of the United States of America, 107, 14769–14774.PubMed
141.
Zurück zum Zitat Kerzerho, J., Adotevi, O., Castelli, F. A., Dosset, M., Bernardeau, K., Szely, N., et al. (2010). The angiogenic growth factor and biomarker midkine is a tumor-shared antigen. Journal of Immunology, 185, 418–423. Kerzerho, J., Adotevi, O., Castelli, F. A., Dosset, M., Bernardeau, K., Szely, N., et al. (2010). The angiogenic growth factor and biomarker midkine is a tumor-shared antigen. Journal of Immunology, 185, 418–423.
142.
Zurück zum Zitat Molhoek, K. R., McSkimming, C. C., Olson, W. C., Brautigan, D. L., & Slingluff, C. L., Jr. (2009). Apoptosis of CD4(+)CD25(high) T cells in response to Sirolimus requires activation of T cell receptor and is modulated by IL-2. Cancer Immunology, Immunotherapy, 58, 867–876.PubMed Molhoek, K. R., McSkimming, C. C., Olson, W. C., Brautigan, D. L., & Slingluff, C. L., Jr. (2009). Apoptosis of CD4(+)CD25(high) T cells in response to Sirolimus requires activation of T cell receptor and is modulated by IL-2. Cancer Immunology, Immunotherapy, 58, 867–876.PubMed
143.
Zurück zum Zitat Albini, A., Brigati, C., Ventura, A., Lorusso, G., Pinter, M., Morini, M., et al. (2009). Angiostatin anti-angiogenesis requires IL-12: The innate immune system as a key target. Journal of Translational Medicine, 7, 5.PubMed Albini, A., Brigati, C., Ventura, A., Lorusso, G., Pinter, M., Morini, M., et al. (2009). Angiostatin anti-angiogenesis requires IL-12: The innate immune system as a key target. Journal of Translational Medicine, 7, 5.PubMed
144.
Zurück zum Zitat Rini, B. I., Halabi, S., Rosenberg, J. E., Stadler, W. M., Vaena, D. A., Ou, S. S., et al. (2008). Bevacizumab plus interferon alfa compared with interferon alfa monotherapy in patients with metastatic renal cell carcinoma: CALGB 90206. Journal of Clinical Oncology, 26, 5422–5428.PubMed Rini, B. I., Halabi, S., Rosenberg, J. E., Stadler, W. M., Vaena, D. A., Ou, S. S., et al. (2008). Bevacizumab plus interferon alfa compared with interferon alfa monotherapy in patients with metastatic renal cell carcinoma: CALGB 90206. Journal of Clinical Oncology, 26, 5422–5428.PubMed
145.
Zurück zum Zitat Flaherty, K. T. (2010). Where does the combination of sorafenib and interferon in renal cell carcinoma stand? Cancer, 116, 4–7.PubMed Flaherty, K. T. (2010). Where does the combination of sorafenib and interferon in renal cell carcinoma stand? Cancer, 116, 4–7.PubMed
146.
Zurück zum Zitat Zhao, W., Gu, Y. H., Song, R., Qu, B. Q., & Xu, Q. (2008). Sorafenib inhibits activation of human peripheral blood T cells by targeting LCK phosphorylation. Leukemia, 22, 1226–1233.PubMed Zhao, W., Gu, Y. H., Song, R., Qu, B. Q., & Xu, Q. (2008). Sorafenib inhibits activation of human peripheral blood T cells by targeting LCK phosphorylation. Leukemia, 22, 1226–1233.PubMed
147.
Zurück zum Zitat Houben, R., Voigt, H., Noelke, C., Hofmeister, V., Becker, J. C., & Schrama, D. (2009). MAPK-independent impairment of T-cell responses by the multikinase inhibitor sorafenib. Molecular Cancer Therapeutics, 8, 433–440.PubMed Houben, R., Voigt, H., Noelke, C., Hofmeister, V., Becker, J. C., & Schrama, D. (2009). MAPK-independent impairment of T-cell responses by the multikinase inhibitor sorafenib. Molecular Cancer Therapeutics, 8, 433–440.PubMed
Metadaten
Titel
Angiogenesis and immunity: a bidirectional link potentially relevant for the monitoring of antiangiogenic therapy and the development of novel therapeutic combination with immunotherapy
verfasst von
Eric Tartour
H. Pere
B. Maillere
M. Terme
N. Merillon
J. Taieb
F. Sandoval
F. Quintin-Colonna
K. Lacerda
A. Karadimou
C. Badoual
A. Tedgui
W. H. Fridman
S. Oudard
Publikationsdatum
01.03.2011
Verlag
Springer US
Erschienen in
Cancer and Metastasis Reviews / Ausgabe 1/2011
Print ISSN: 0167-7659
Elektronische ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-011-9281-4

Weitere Artikel der Ausgabe 1/2011

Cancer and Metastasis Reviews 1/2011 Zur Ausgabe

Adjuvante Immuntherapie verlängert Leben bei RCC

25.04.2024 Nierenkarzinom Nachrichten

Nun gibt es auch Resultate zum Gesamtüberleben: Eine adjuvante Pembrolizumab-Therapie konnte in einer Phase-3-Studie das Leben von Menschen mit Nierenzellkarzinom deutlich verlängern. Die Sterberate war im Vergleich zu Placebo um 38% geringer.

Alectinib verbessert krankheitsfreies Überleben bei ALK-positivem NSCLC

25.04.2024 NSCLC Nachrichten

Das Risiko für Rezidiv oder Tod von Patienten und Patientinnen mit reseziertem ALK-positivem NSCLC ist unter einer adjuvanten Therapie mit dem Tyrosinkinase-Inhibitor Alectinib signifikant geringer als unter platinbasierter Chemotherapie.

Bei Senioren mit Prostatakarzinom auf Anämie achten!

24.04.2024 DGIM 2024 Nachrichten

Patienten, die zur Behandlung ihres Prostatakarzinoms eine Androgendeprivationstherapie erhalten, entwickeln nicht selten eine Anämie. Wer ältere Patienten internistisch mitbetreut, sollte auf diese Nebenwirkung achten.

ICI-Therapie in der Schwangerschaft wird gut toleriert

Müssen sich Schwangere einer Krebstherapie unterziehen, rufen Immuncheckpointinhibitoren offenbar nicht mehr unerwünschte Wirkungen hervor als andere Mittel gegen Krebs.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.