Skip to main content
Erschienen in: World Journal of Surgical Oncology 1/2019

Open Access 01.12.2019 | Research

Angiogenic inflammation and formation of necrosis in the tumor microenvironment influence patient survival after radical surgery for de novo hepatocellular carcinoma in non-cirrhosis

verfasst von: Georgi Atanasov, Karoline Dino, Katrin Schierle, Corinna Dietel, Gabriela Aust, Johann Pratschke, Daniel Seehofer, Moritz Schmelzle, Hans-Michael Hau

Erschienen in: World Journal of Surgical Oncology | Ausgabe 1/2019

Abstract

Background

Tumor escape mechanisms mediated in the tumor microenvironment can significantly reduce the capacity of the anti-tumor function of the immune system. TIE2-expressing monocytes (TEMs), related angiopoietins, and tumor necrosis are considered to have a key role in this process. We aimed to investigate the abundance and clinical significance of these biomarkers in hepatocellular carcinoma (HCC).

Methods

In this retrospective study, 58 HCC patients received surgery with a curative intent. The abundance of TEMs, angiopoietin-1 and -2 were detected in tumor specimens of the HCC patients (n = 58), and together with the occurrence of histologic tumor necrosis, were associated with established clinicopathological characteristics and survival.

Results

Patients with HCC characterized by necrosis and TEMs revealed reduced both overall survival and recurrence-free survival (all p < 0.05). Angiopoietins and TEMs were associated with metastatic and recurrent HCC. Furthermore, the formation of histologic tumor necrosis was associated with advanced tumor stage and density of TEMs (all p < 0.05).

Conclusions

Histologic tumor necrosis, TEMs, and related angiopoietins were associated with multiple HCC parameters and patient survival. The tumor necrosis–TEM–angiopoietin axis may offer a novel diagnostic modality to predict patient outcome after surgery for HCC.
Hinweise

Supplementary information

Supplementary information accompanies this paper at https://​doi.​org/​10.​1186/​s12957-019-1756-8.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
AFP
Alpha-fetoprotein
Ang
Angiopoietin
CCA
Cholangiocarcinoma
CT
Computed tomography
HCC
Hepatocellular carcinoma
MRI
Magnetic resonance imaging
NASH
Non-alcoholic steatohepatitis
PDAC
Periductal adenocarcinoma of the pancreas
TAMs
Tumor-associated macrophages
TCA
Tumor central area
TEMs
TIE2-expressing monocytes
TIF
Tumor-infiltrating front
TNT
Tumor necrosis therapy
VEGF
Vascular endothelial growth factor

Background

Liver cirrhosis is an established risk factor for HCC. However, HCC also arises de novo in non-cirrhotic livers in approximately 20% of all cases, with host inflammatory responses having a key importance in hepatocarcinogenesis [13]. There is a rising clinical interest in patients with de novo HCC, because this subgroup commonly presents at an advanced stage, as surveillance is usually not performed in patients without liver disease. Tumor growth in these non-cirrhotic patients is clinically silent in its early stages because of the lack of symptoms and compensated hepatic function. On the other hand, the importance of non-alcoholic steatohepatitis (NASH) in driving the process of hepatocarcinogenesis has been recently recognized and put into a causal context with de novo HCC [4]. Of note, NASH-driven hepatocarcinogenesis is mechanistically involved in the process of necrosis formation in the tumor microenvironment, and the latter has also been related to enhanced infiltration with immune-competent cells [59]. Furthermore, experimental studies reported on novel angiogenic pathways playing a key role in de novo or NASH-driven hepatocarcinogenesis, implicating the complex immunologic mechanisms involved in cancer progression [1013].
The significance of complex angiogenic properties of the tumor microenvironment in HCC has come to the fore in recent years. Tumor angiogenesis has been validated as an attractive therapeutic target in the process of hepatocarcinogenesis, mainly in clinical trials targeting the vascular endothelial growth factor (VEGF) pathway [14]. However, a deeper insight into the biology of solid cancer reveals that the host cellular immune competence in the tumor microenvironment is mechanistically intertwined with angiogenesis and necrosis formation, and the blockade of only one functional pathway does not reach the desired long-term efficacy in cancer patients. Recently, the angiopoietin family of ligands, angiopoietin-1 and -2, has been demonstrated to selectively activate the endothelial cell membrane receptor tyrosine kinase TIE2 and to espouse tumor progression [15, 16]. In the scope of tumor angiogenesis and metastasis, this angiopoietin axis-TIE growth factor receptor pathway represents the key regulator of pathological vascular permeability and remodeling, and its pharmacological blockade is in clinical development in oncologic settings [14]. In this scenario, the role of novel angiomodulatory monocytes/macrophages subsets in hepatocarcinogenesis is vastly unknown. Angiogenic immune–competent cells represent a unique subpopulation of tumor-infiltrating bone marrow-derived myeloid cells, which differ from the classical tumor-associated macrophages (TAMs) [17]. These cellular effectors have immense angiogenic potential, express functionally active TIE2-expressing macrophages (TEMs) and directly respond to angiopoietin activity [18]. Interestingly, the tissue-infiltrating fraction of TEMs, which promotes angiogenesis and carcinogenesis, is localized only in the tumor microenvironment and not in healthy tissues [17, 18]. In line with this, our data demonstrated significant influence of TEMs on patient outcome in other cancer types [1921]. Thus, the study of TEMs in HCC may identify attractive targets for immunologic checkpoint inhibition.
In rapidly growing tumors, the formation of necrosis can be attributed to the relative hypoperfusion in the vicinity of the tumor. However, novel scientific results demonstrate that the nature of necrosis formation in the vicinity of the tumor is much more complex, as its occurrence is functionally mediated by infiltrating monocytes/macrophages and delineated its role as a prognosticator of aggressiveness in primary solid tumors [2224]. The presence of tumor necrosis in HCC may adequately characterize the tumor biology and provide additional beneficial prognostic information. Furthermore, we previously demonstrated the importance of histologic tumor necrosis and its relation to monocytes/macrophages in poorly vascularized human cholangiocarcinoma [25, 26]. However, HCC is in most cases a highly vascularized tumor [27]. Therefore, formation of necrosis might also be a typical feature of subsets of HCC. However, early stage and recurrence of HCC are difficult to detect by non-invasive imaging, and alpha-fetoprotein (AFP) as a surveillance biomarker has been removed from present guidelines because of its low sensitivity and specificity [28]. Novel biomarkers for the management and prognosis of HCC patients are needed, and thus, in the current work, we focused on the potential of tumor necrosis to be facilitated by immunological components of the tumor microenvironment (i.e., invading monocytes/macrophages).
Patients with de novo HCC are at enhanced risk for adverse disease outcome. Intriguingly, despite tumor necrosis induced by impaired tissue oxygen delivery, which is generally due to a compromised blood supply to cancerous tissue, recent studies also revealed that histologic tumor necrosis was associated with high levels of angiogenesis and increased inflammation in the tumor microenvironment [29, 30]. Interestingly, a strong association between liver steatosis and formation of tumor necrosis in de novo HCC in non-cirrhotic livers has been recently revealed [5]. Thus, possible immunologic coherence comprising tumor-infiltrating angiogenic monocytes/macrophages, associated molecular factors of angiogenesis and formation and extent of tumor necrosis could effectively characterize HCC patients. Recently, our group reported on the clinicopathologic characteristics of patients with de novo HCC and the clinical significance of tumor-infiltrating classical monocytes and lymphocytes in this hepatic pathology [31]. Insofar, the present work aimed to investigate the angiopoietin axis, related angiogenic TEMs, and tumor necrosis in de novo HCC in non-cirrhotic patients, and thus, deliver a deeper insight concerning the importance of novel immunologic biomarkers, which may help improve the personal risk and prognosis stratifications by defining subgroups of patients with beneficial or deleterious tumor characteristics.

Methods

Patients and tumor samples

The Institutional Ethics Committee approved the conduction of this study (no. 234-14-14072014). Patients (n = 58) with histopathologically confirmed HCC, who received a major hepatectomy with a curative intent, were included in our retrospective study (Additional file 3). HCC recurrence was diagnosed by a triphasic computed tomography (CT) scan and/or a magnetic resonance imaging (MRI) with a liver-specific contrast medium. We also routinely performed AFP serology. However, hepatocarcinogenesis is, in many cases, AFP silent [32]. Therefore, in our work, AFP negativity was not considered a reliable tool to exclude recurrent disease. In addition, in case of suspected tumor recurrence, CT and MRI were routinely conducted. None of the HCC patients in our study had liver cirrhosis, history of viral hepatitis, or was subjected to neoadjuvant radio- and/or chemotherapy before tumor resection. The complete inclusion and exclusion criteria of our study are described in the Additional file 3. Paraffin-embedded tissue blocks containing a representative HCC sample were retrieved from the archives of the Institute of Pathology. Histological assessment of frequencies of cellular infiltrates and angiopoietins and the presence of tumor necrosis in the HCC specimens was carried out by two investigators (KD and GA), with training in histopathology, and an independent pathologist (KS), without knowledge of the patient outcome or the corresponding clinicopathological characteristics.

Immunohistology and quantification of TIE2-expressing monocytes and angiopoietins

Protocols for immunohistology and density quantification of cellular infiltrates were carried out as described [68]. Briefly, tissue TEMs were double immunostained for CD14 and TIE2, and antibodies for angiopoietin-1 and -2 were used to evaluate their abundance. The tumor-infiltrating front (TIF) and tumor central area (TCA) of the HCC specimens were analyzed separately. Cellular infiltrates and angiopoietin-positive staining were referred to as negative/absent in up to 5% positive cells (0–5% positive cells, score 0) and positive/present (>  5% positive cells, score 1). Next, patients were assigned to two different groups (negative or positive for TEMs, and angiopoietin-1- or -2-positive tumor cells). The Additional file 3 provides detailed information on antibodies, chemicals, reagents, and the process of histological evaluation in the current work.

Occurrence of tumor necrosis

The presence of histological tumor necrosis in the studied HCC specimens was classified into two categories: 1, negative or 2, positive, as previously described [25, 26]. Patients were categorized into two groups (necrosis+ and necrosis groups) according to their “positive” or “negative” necrosis scores. In addition, the presence of liver steatosis was categorized into four degrees: absence of steatosis (0–5%), mild steatosis (>  5% and < 30%), moderate steatosis (30–60%), and severe steatosis (> 60%) [33], according to established histopathologic criteria [33].

Statistical analysis

The IBM SPSS Statistics (Version 25/Year 2017) software program was used to perform the univariate and Kaplan–Meier survival analyses. The chi-squared (χ2) test was applied to determine whether there was a significant difference between the observed frequencies in the categorical variables (clinicopathologic characteristics) in our study. The Fischer test was applied when the number of patients in the subgroups was less than five (n < 5) in more than 25% of cases. Survival data were analyzed using the log-rank test. To investigate whether the studied variables and biomarkers qualify as independent prognostic factors, we performed a multivariate analysis in a step-wise manner. Parameters that significantly affected survival rates or showed a strong trend for significance in the univariate analysis were entered into a step-wise Cox regression hazard model. A difference was considered significant for p ≤ 0.05.

Results

TIE2-expressing monocytes and angiopoietins are associated with advanced histologic grading and tumor recurrence in patients with HCC

Typical images for monocytes/macrophages and angiopoietins in HCC are shown in Figs. 1 and 2. The statistical data of the patients is summarized in Tables 1, 2, 3, and 4 and in the Additional file 3. In our study, the presence of TEMs was associated with enhanced incidences of both local tumor recurrence and overall tumor recurrence and worse histologic differentiation of HCC (Fig. 1a, b; Table 1). In the TEM group, 4/19 (21.1%) patients had an overall tumor recurrence, and in the TEM+ group, 19/39 (48.7%) patients exhibited this feature (p = 0.043). Moreover, the presence of TEMs was also associated with an unfavorable histologic differentiation of the tumor. In the TEM+ group, 35/39 (89.7%) patients were diagnosed with an advanced histologic grading, whereas in the TEM group, 12/19 (63.2%) patients had this feature (p = 0.015). In the current work, the presence of angiopoietin-1 in the TIF was associated with an enhanced incidence of local tumor recurrence (p = 0.007) (Fig. 1c, d; Table 2). After liver resection for HCC, in the ANG1high group, 6/9 (66.7%) patients experienced local tumor recurrence, whereas in the ANG1low group, only 11/49 (22.4%) patients had this phenomenon.
Table 1
Association of the presence of TIE2-expressing monocytes (TEMs) at the tumor-infiltrating front (TIF) with clinicopathological characteristics of patients with hepatocellular carcinoma (HCC) as determined by the chi-squared (χ2) test
Variable
TEM+/TIF
TEM/TIF
p
No. of patients
39
19
 
Patient- and tumor-related variables
  Patient age, years
0.094
    ≤ 60
17 (43.6%)
4 (21.1%)
 
    > 60
22 (56.4%)
15 (78.9%)
 
  Gender
0.029
    Female
27 (69.2%)
18 (94.7%)
 
    Male
12 (30.8%)
1 (5.3%)
 
  Multiple tumor nodules
0.862
    Positive
9 (23.1%)
4 (21.1%)
 
    Negative
30 (76.9%)
15 (78.9%)
 
  Tumor size, mm
0.319
    ≤ 50
6 (15.4%)
5 (26.3%)
 
    > 50
33 (84.6%)
14 (73.7%)
 
  Angioinvasion
0.113
    Positive
23 (59.0%)
7 (36.8%)
 
    Negative
16 (41.0%)
12 (63.2%)
 
  Lymphangiosis carcinomatosa
0.727
    Positive
12 (30.8%)
5 (26.3%)
 
    Negative
27 (69.2%)
14 (73.7%)
 
  Histologic differentiation
0.015
    Well
4 (10.3%)
7 (36.8%)
 
    Moderate/poor
35 (89.7%)
12 (63.2%)
 
  Pathologic T stage
0.631
    T1/T2
19 (48.7%)
10 (55.6%)
 
    T3/T4
20 (51.3%)
8 (44.4%)
 
  Pathologic N stage
0.315
    Positive
2 (5.1%)
0 (0.0%)
 
    Negative
37 (94.9%)
19 (100.0%)
 
Operative variables
  R status
0.464
    Positive
7 (17.9%)
2 (10.5%)
 
    Negative
32 (82.1%)
17 (89.5%)
 
Variables of patient outcome
  Local tumor recurrence
0.005
    Positive
16 (41.0%)
1 (5.3%)
 
    Negative
23 (59.0%)
18 (94.7%)
 
  Overall tumor recurrence
0.043
    Positive
19 (48.7%)
4 (21.1%)
 
    Negative
20 (51.3%)
15 (78.9%)
 
  Metastases
0.667
    Positive
8 (20.5%)
3 (15.8%)
 
    Negative
31 (79.5%)
16 (84.2%)
 
The Fischer test was applied when the number of patients in the subgroups was less than five (n < 5) in more than 25% of cases
Table 2
Association of relative angiopoietin-1 (ANG1) expression at the tumor-infiltrating front (TIF) or central area (TCA) with clinicopathological characteristics of the patients with hepatocellular carcinoma (HCC) as determined by the chi-squared (χ2) test
Variable
ANG1 high/TIF
ANG1 low/TIF
p
No. of patients
9
49
 
Patient- and tumor-related variables
  Patient age, years
  
0.342
    ≤ 60
2 (22.7%)
19 (38.8%)
 
    > 60
7 (77.8%)
30 (61.2%)
 
  Gender
  
0.079
    Female
9 (100.0%)
36 (73.5%)
 
    Male
0 (00.0%)
13 (26.5%)
 
  Multiple tumor nodules
  
0.376
    Positive
1 (1.1%)
12 (24.5%)
 
    Negative
8 (88.9%)
37 (75.5%)
 
  Tumor size, mm
  
0.114
    ≤ 50
0 (00.0%)
11 (22.4%)
 
    > 50
9 (100.0%)
38 (77.6%)
 
  Angioinvasion
  
0.634
    Positive
4 (44.4%)
26 (53.1%)
 
    Negative
5 (55.6%)
23 (46.9%)
 
  Histologic differentiation
  
0.786
    Well
2 (22.2%)
9 (18.4%)
 
    Moderate/poor
7 (77.8%)
40 (81.6%)
 
  Pathologic T stage
  
0.079
    T1/T2
7 (77.8%)
22 (45.8%)
 
    T3/T4
2 (22.2%)
27 (54.2%)
 
  Pathologic N stage
  
0.537
    Positive
0 (00.0%)
2 (4.1%)
 
    Negative
9 (100.0%)
47(95.9%)
 
  TEMs in TIF
  
0.132
    Positive
8 (88.9%)
31 (63.3%)
 
    Negative
1 (11.1%)
18 (36.7%)
 
Operative variables
  R status
  
0.691
    Positive
1 (11.1%)
8 (16.3%)
 
    Negative
8 (88.9%)
41 (83.7%)
 
Variables of patient outcome
  Local tumor recurrence
  
0.007
    Positive
6 (66.7%)
11 (22.4%)
 
    Negative
3 (33.3%)
38 (77.6%)
 
  Overall tumor recurrence
  
0.072
    Positive
6 (66.7%)
17 (34.7%)
 
    Negative
3 (33.3%)
32 (65.3%)
 
  Metastases
  
0.513
    Positive
1 (1.1%)
10 (20.4%)
 
    Negative
8 (88.9%)
39 (79.6%)
 
Variable
ANG1 high/TCA
ANG1 low/TCA
p
  No. of patients
12
46
 
Patient- and tumor-related variables
  TEMs in TCA
  
0.111
    Positive
5 (41.7%)
9 (19.6%)
 
    Negative
7 (58.3%)
37 (80.4%)
 
  TEMs in TIF
  
0.182
    Positive
10 (83.3%)
29 (63.0%)
 
    Negative
2 (16.7%)
17 (36.0%)
 
  Angioinvasion
  
0.245
    Positive
8 (66.7%)
22 (47.8%)
 
    Negative
4 (33.3%)
24 (52.2%)
 
Variables of patient outcome
  Metastases
  
0.024
    Positive
5 (41.7%)
6 (13.0%)
 
    Negative
7 (58.3%)
40 (87.0%)
 
The Fischer test was applied when the number of patients in the subgroups was less than five (n < 5) in more than 25% of cases
Table 3
Association of histologic tumor necrosis with clinicopathological characteristics of the patients with hepatocellular carcinoma (HCC) as determined by the chi-squared (χ2) test
Variable
Necrosis+
Necrosis
p
No. of patients
35
23
 
Patient- and tumor-related variables
  Patient age, years
  
0.707
    ≤ 60
12 (34.3%)
9 (39.1%)
 
    > 60
23 (65.7%)
14 (60.9%)
 
  Gender
  
0.920
    Female
27 (77.1%)
18 (78.3%)
 
    Male
8 (22.9%)
5 (21.7%)
 
  Multiple tumor nodules
  
0.587
    Positive
7 (20.0%)
6 (26.1%)
 
    Negative
28 (80.0%)
17 (73.9%)
 
  Tumor size, mm
  
0.001
    ≤ 50
2 (5.7%)
9 (39.1%)
 
    > 50
33 (94.3%)
14 (60.9%)
 
  Angioinvasion
  
0.120
    Positive
21 (60.0%)
9 (39.1%)
 
    Negative
14 (40.0%)
14 (60.9%)
 
  Lymphangiosis carcinomatosa
  
0.304
    Positive
12 (34.3%)
5 (21.7%)
 
    Negative
23 (65.7%)
18 (78.3%)
 
  Histologic differentiation
  
0.262
    Well
5 (14.3%)
6 (26.1%)
 
    Moderate/poor
30 (85.7%)
17 (73.9%)
 
  Pathologic T stage
  
0.038
    T1/T2
14 (40.0%)
15 (68.2%)
 
    T3/T4
21 (60.0%)
8 (31.8%)
 
  Pathologic N stage
  
0.076
    Positive
0 (00.0%)
2 (8.7%)
 
    Negative
35 (100.0%)
21 (91.3%)
 
  TEMs in TCA
  
0.026
    Positive
12 (34.3%)
2 (8.7%)
 
    Negative
23 (65.7%)
21 (91.3%)
 
  TEMs in TIF
  
0.402
    Positive
25 (71.4%)
14 (60.9%)
 
    Negative
10 (28.6%)
9 (39.1%)
 
  Angiopoietin-1 in TCA
  
0.149
    Positive
3 (8.6%)
0 (00.0%)
 
    Negative
32 (91.4%)
23 (100.0%)
 
  Angiopoietin-1 in TIF
  
0.245
    Positive
28 (80.0%)
21 (91.3%)
 
    Negative
7 (20.0%)
2 (8.7%)
 
  Angiopoietin-2 in TCA
  
0.818
    Positive
2 (5.7%)
1 (4.3%)
 
    Negative
33 (94.3%)
22 (95.7%)
 
  Angiopoietin-2 in TIF
  
0.326
    Positive
1 (2.9%)
2 (8.7%)
 
    Negative
34 (97.1%)
21 (91.3%)
 
Operative variables
  R status
  
0.245
    Positive
7 (20.0%)
2 (8.7%)
 
    Negative
28 (80.0%)
21 (91.3%)
 
Variables of patient outcome
  Local tumor recurrence
  
0.662
    Positive
11 (31.4%)
6 (26.1%)
 
    Negative
24 (68.6%)
17 (73.9%)
 
  Overall tumor recurrence
  
0.087
    Positive
17 (48.6%)
6 (26.1%)
 
    Negative
18 (51.4%)
17 (73.9%)
 
  Metastases
  
0.103
     Positive
9 (25.7%)
2 (8.7%)
 
    Negative
26 (74.3%)
21 (91.3%)
 
The Fischer test was applied when the number of patients in the subgroups was less than five (n < 5) in more than 25% of cases
Table 4
Multivariate analysis of prognostic factors in patients with hepatocellular carcinoma (HCC) conducted in a step-wise manner
Variable
Category
Odds ratio
p
Confidence interval
Overall survival
  Distant metastases
Negative (n = 47)
0.605
0.602
0.091–4.011
Positive (n = 11)
   
  Overall tumor recurrence
Negative (n = 35)
1.828
0.272
0.623–5.368
Positive (n = 23)
   
  Angioinvasion
Negative (n = 28)
0.286
0.040
0.086–0.945
Positive (n = 30)
   
  Lymphangiosis carcinomatosa
Negative (n = 41)
1.700
0.330
0.585–4.940
Positive (n = 17)
   
  T status
T1&T2 (n = 29)
18.606
0.001
3.397–101.904
T3&T4
(n = 29)
  
  Angiopoietin-1 in TCA
Negative (n = 55)
4.859
0.021
1.274–18.537
Positive (n = 3)
   
  TEMs in TCA
Negative (n = 44)
2.837
0.051
0.997–8.071
Positive (n = 14)
   
Recurrence-free survival
  R status
Negative (n = 49)
4.346
0.061
0.936–20.174
Positive (n = 9)
   
  T status
T1&T2 (n = 29)
11.213
0.0001
2.997–41.957
T3&T4
(n = 29)
  
  Angioinvasion
Negative (n = 28)
0.458
0.122
0.170–1.234
Positive (n = 30)
   
  Lymph node involvement
Negative (n = 56)
0.311
0.255
0.042–2.322
Positive (n = 56)
   
  TEMs in TCA
Negative (n = 44)
0.391
0.083
0.135–1.132
Positive (n = 14)
   
  TEMs in TIF
Negative (n = 19)
3.677
0.049
1.1007–13.430
Positive (n = 39)
   
  Angiopoietin-1 in TIF
Negative (n = 9)
0.102
0.001
0.028–0.380
Positive (n = 49)
   
  Angiopoietin-1 in TCA
Negative (n = 55)
20.920
0.004
2.620–167.067
Positive (n = 3)
   

Tumor necrosis is associated with an advanced tumor stage and TIE2-expressing monocytes in patients with HCC

Typical images for the occurrence of tumor necrosis in HCC are shown in Fig. 2. The statistical data of the patients is summarized in Table 3. Tumor necrosis was associated with an advanced tumor stage (tumor stage T3/T4; p = 0.038). In the necrosis+ group, 21/35 (60.0%) patients showed an advanced T stage, whereas in the necrosis group, only 8/23 (31.8%) patients revealed this feature. Furthermore, tumor necrosis was associated with intensified TEM infiltration in HCC (Fig. 2, Table 3). In the necrosis group, infiltrating TEMs in TCA were detected in only 2/23 (8.7%) patients. In comparison, in the necrosis+ group, 12/35 (34.3%) patients showed tumor-infiltrating TEMs (p = 0.026).

Influence on survival and prognostic significance of angiopoietins, TIE2-expressing monocytes and tumor necrosis in HCC patients

In the present study, TEMs and histologic tumor necrosis was associated with patients’ overall survival and recurrence-free survival after liver resection for HCC. The Kaplan–Meier survival curves are shown in Fig. 3. The statistical data of all patients is summarized in Tables 1, 2, 3, and 4. After liver resection for HCC, survival was decreased in patients with TEMs in TCA (p = 0.056) when compared to patients without these cells in the TCA. The overall 1-, 3-, and 5-year survival rates were 63.3%, 42.8%, and 42.8%, respectively, in the TEM+ group as compared to 79.6%, 77.1%, and 75.0%, respectively, in the TEM group (Fig. 3a). Furthermore, the presence of TEMs in the TIF was associated with a reduced recurrence-free survival. The 1-, 3-, and 5-year recurrence-free survival of patients with TEMs were lower (52.0%, 43.3%, and 42.2%, respectively) as compared to patients without TEMs (83.1%, 77.9%, and 77.9%, respectively) (p = 0.035) (Fig. 3b). Patients in the necrosis group had improved overall survival and recurrence-free survival when compared with the necrosis+ group (Fig. 3c, d; p = 0.055 and p = 0.019, respectively). In addition, we analyzed whether angiopoietins, infiltrating TEMs, and histologic tumor necrosis could predict patient outcomes after surgery for HCC. Using a step-wise multivariate analysis, in addition to other established clinicopathological parameters, angiopoietin-1 and TEMs were identified as independent prognostic factors for both overall survival and recurrence-free survival (Table 4). In our work, the presence of liver steatosis was not associated with patient outcomes following resection. The Additional file 3 provides a synopsis concerning the results with liver steatosis.

Discussion

In our work, the tissue densities of angiopoietins and angiopoietin receptor-bearing monocytes/macrophages as well as the occurrence of histologic tumor necrosis in specimens of HCC patients were associated with clinicopathologic characteristics and patient survival. The main findings were as follows: (1) angiopoietins and infiltrating TEMs were associated with metastatic and recurrent disease; (2) the presence of tumor necrosis was associated with an advanced tumor stage and associated with TEM frequency; and (3) necrosis and TEMs exerted a pernicious influence on patient survival.
In this study, we demonstrated that high angiopoietin expression and the presence of TEMs was associated with recurrent and metastatic HCC. These results are in accordance with previously published results on HCC and other hepatobiliary tumors, which delineate the negative impact of infiltrating monocytes/macrophages on patient survival and outcome [3437]. Angiopoietins represent a potential prognostic biomarker of therapeutic responsiveness to anticancer treatments, including immunotherapy using immunomodulatory agents [38]. The activation of the angiopoietin-TIE2 axis could be a potent tumor escape mechanism from anti-angiogenic treatment. Novel data implicates that, in HCC, angiopoietins are co-expressed with VEGF and transiently decrease during the window of normalization and return to baseline levels after anti-VEGF therapy [38]. Tumor-derived VEGF can increase the tumor expression of angiopoietins and promote metastases, suggesting that interactions between these angiogenic pathways promote tumor progression [39]. Furthermore, several preclinical studies have shown that monocytes/macrophages, and especially angiopoietin receptors-bearing TEMs, contribute to tumor neoangiogenesis in mouse tumor models [40]. Therefore, these monocytes/macrophages may exert potent abilities to enhance the extent of tumor neoangiogenesis and progression to increased malignancy in patients with HCC. These findings suggest that angiopoietin signaling may foster the invasion of monocytes/macrophages, resulting in deleterious effects in HCC; however, further studies are needed to elucidate the possible functional mechanisms and help conceptualize novel checkpoint inhibitor targets for cancer immunotherapy.
HCC is a highly vascularized tumor and the recurrent disease remains a major clinical obstacle and defines the outcome of the patients receiving curative therapy. In the current work, we provide data that could be used to identify subgroups of patients with advantageous or deleterious HCC characteristics, respectively. Such a personalized approach may have a useful clinical implication in order to improve the individualized risk stratification after surgery and curative treatments. This translates ultimately into more intensified and purposeful aftercare of patients with HCC at high risk for adverse outcomes. De Palma et al. were the first to report on the significance of TEMs in regard to tumor neoangiogenesis [18]. In the clinical setting, Matsubara et al. reported first on the importance of TEMs in human blood and associated their presence with tumor neoangiogenesis, recurrence, and patient survival rates [41]. Consequently, our group reported on the prognostic value of TEMs and histologic tumor necrosis in other hepatobiliary tumors [1921, 25, 26]. Here, we showed that tumor necrosis and the presence of TEMs and angiopoietins were associated with an advanced HCC. In the current work, tumor necrosis was also associated with TEM density in HCC. These characteristics of the tumor microenvironment also affected overall survival and recurrence-free survival of the patients. Thus, we propose a coherent construct comprising tumor necrosis, neoangiogenesis, and associated TEMs as an attractive diagnostic modality prognosticating the outcome of HCC patients following radical surgery.
The clinical translation of novel immunologic aspects of the tumor biology represents an urgent unmet need. In addition, a major clinical problem is the lack of adjuvant treatment strategies in patients with advanced HCC [34]. Novel experimental techniques demonstrated high efficacy in visualization of important localized sites of the tumor microenvironment and related tumor necrosis. Moreover, these approaches offer the possibility for nanoparticles uptake and consequent clinical imaging of monocytes/macrophages in the vicinity of the tumor, as well. Aghighi et al. established a novel MRI-based modality for selective visualization of the tumor central area and the infiltrating margin that is adjacent to normal non-cancerous tissues [42]. In this setting, the utilization of ultra-small superparamagnetic iron oxide nanoparticles in ferumoxytol-enhanced MRI provides an opportunity to better characterize the extra- and intracellular compartments of solid tumors, corresponding TAMs, and formation of necrosis in the tumor microenvironment, which is a novel diagnostic tool with a high sensitivity and potential for immediate clinical translation [42, 43]. Moreover, a novel tumor necrosis therapy (TNT), which provides a new and promising therapeutic anticancer modality, has been recently described, as well [44]. Through radiolabeled necrosis avid compounds (i.e., small molecules with a high affinity for and long-lasting retention in necrotic tissues), tumor necrosis can be a carrier of therapeutic radionuclides [4547].

Conclusions

In conclusion, formation of histologic tumor necrosis is associated with the intratumoral density of invading angiogenic TEMs of HCC patients. Furthermore, the tumor necrosis–TEM–angiopoietin axis was associated with disease recurrence, advanced tumor stage, and reduced survival after radical surgery in these patients. Thus, our data may indicate the tumor necrosis–TEM–angiopoietin axis is a novel checkpoint target in tumor immunotherapy and, at the same time, provides potent anti-angiogenesis modalities in advanced HCC. However, some limitations of the current study should be taken into account. The small number of cases in the different subgroups remains the main drawback. On the other hand, our work incorporated no functional studies and remains a descriptive study. Therefore, further research encompassing larger patient populations with focus on functional assays and mechanistic links is urgently needed. This will deliver a deeper biological insight into possible mechanistic molecular pathways might help develop novel immunologic checkpoint inhibitor targets for hepatic malignancies.

Supplementary information

Supplementary information accompanies this paper at https://​doi.​org/​10.​1186/​s12957-019-1756-8.

Acknowledgements

N/A
Our work was conducted in accordance with the recommendations of the Ethics Committee of the Medical Faculty of the Leipzig University. The committee’s reference number is 234-14-14072014. Written informed consent for using the tissue samples was obtained from the patients.
N/A

Competing interests

The authors declare that they have no competing interests.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
2.
Zurück zum Zitat Liu S, Chan KW, Wang B, Qiao L. Fibrolamellar hepatocellular carcinoma. Am J Gastroenterol. 2009;104:2617–24.CrossRefPubMed Liu S, Chan KW, Wang B, Qiao L. Fibrolamellar hepatocellular carcinoma. Am J Gastroenterol. 2009;104:2617–24.CrossRefPubMed
3.
Zurück zum Zitat Lee DH, Lee JM. Primary malignant tumours in the non-cirrhotic liver. Eur J Radiol. 2017;95:349–61.CrossRefPubMed Lee DH, Lee JM. Primary malignant tumours in the non-cirrhotic liver. Eur J Radiol. 2017;95:349–61.CrossRefPubMed
4.
Zurück zum Zitat Takakura K, Oikawa T, Nakano M, Saeki C, Torisu Y, Kajihara M, et al. Recent insights into the multiple pathways driving non-alcoholic steatohepatitis-derived hepatocellular carcinoma. Front Oncol. 2019;9:762.CrossRefPubMedPubMedCentral Takakura K, Oikawa T, Nakano M, Saeki C, Torisu Y, Kajihara M, et al. Recent insights into the multiple pathways driving non-alcoholic steatohepatitis-derived hepatocellular carcinoma. Front Oncol. 2019;9:762.CrossRefPubMedPubMedCentral
5.
Zurück zum Zitat Perumpail RB, Liu A, Wong RJ, Ahmed A, Harrison SA. Pathogenesis of hepatocarcinogenesis in non-cirrhotic nonalcoholic fatty liver disease: potential mechanistic pathways. World J Hepatol. 2015;7:2384–8.CrossRefPubMedPubMedCentral Perumpail RB, Liu A, Wong RJ, Ahmed A, Harrison SA. Pathogenesis of hepatocarcinogenesis in non-cirrhotic nonalcoholic fatty liver disease: potential mechanistic pathways. World J Hepatol. 2015;7:2384–8.CrossRefPubMedPubMedCentral
6.
Zurück zum Zitat Font-Burgada J, Sun B, Karin M. Obesity and cancer: the oil that feeds the flame. Cell Metab. 2016;23:48–62.CrossRefPubMed Font-Burgada J, Sun B, Karin M. Obesity and cancer: the oil that feeds the flame. Cell Metab. 2016;23:48–62.CrossRefPubMed
7.
Zurück zum Zitat Ringelhan M, Pfister D, O'Connor T, Pikarsky E, Heikenwalder M. The immunology of hepatocellular carcinoma. Nat Immunol. 2018;19:222–32.CrossRefPubMed Ringelhan M, Pfister D, O'Connor T, Pikarsky E, Heikenwalder M. The immunology of hepatocellular carcinoma. Nat Immunol. 2018;19:222–32.CrossRefPubMed
8.
Zurück zum Zitat Grohmann M, Wiede F, Dodd GT, Gurzov EN, Ooi GJ, Butt T, et al. Obesity drives STAT-1-dependent NASH and STAT-3-dependent HCC. Cell. 2018;175:1289–1306.e20.CrossRefPubMedPubMedCentral Grohmann M, Wiede F, Dodd GT, Gurzov EN, Ooi GJ, Butt T, et al. Obesity drives STAT-1-dependent NASH and STAT-3-dependent HCC. Cell. 2018;175:1289–1306.e20.CrossRefPubMedPubMedCentral
9.
Zurück zum Zitat Anstee QM, Reeves HL, Kotsiliti E, Govaere O, Heikenwalder M. From NASH to HCC: current concepts and future challenges. Nat Rev Gastroenterol Hepatol. 2019;16:411–28.CrossRefPubMed Anstee QM, Reeves HL, Kotsiliti E, Govaere O, Heikenwalder M. From NASH to HCC: current concepts and future challenges. Nat Rev Gastroenterol Hepatol. 2019;16:411–28.CrossRefPubMed
10.
Zurück zum Zitat Lefere S, Van de Velde F, Hoorens A, Raevens S, Van Campenhout S, Vandirendonck A, et al. Angiopoietin-2 promotes pathological angiogenesis and is a therapeutic target in murine nonalcoholic fatty liver disease. Hepatology. 2019;69:1087–104.CrossRefPubMed Lefere S, Van de Velde F, Hoorens A, Raevens S, Van Campenhout S, Vandirendonck A, et al. Angiopoietin-2 promotes pathological angiogenesis and is a therapeutic target in murine nonalcoholic fatty liver disease. Hepatology. 2019;69:1087–104.CrossRefPubMed
11.
Zurück zum Zitat Bocca C, Novo E, Miglietta A, Parola M. Angiogenesis and fibrogenesis in chronic liver diseases. Cell Mol Gastroenterol Hepatol. 2015;1:477–88.CrossRefPubMedPubMedCentral Bocca C, Novo E, Miglietta A, Parola M. Angiogenesis and fibrogenesis in chronic liver diseases. Cell Mol Gastroenterol Hepatol. 2015;1:477–88.CrossRefPubMedPubMedCentral
12.
Zurück zum Zitat Miura K, Ohnishi H, Morimoto N, Minami S, Ishioka M, Watanabe S, et al. Ezetimibe suppresses development of liver tumors by inhibiting angiogenesis in mice fed a high-fat diet. Cancer Sci. 2019;110:771–83.CrossRefPubMedPubMedCentral Miura K, Ohnishi H, Morimoto N, Minami S, Ishioka M, Watanabe S, et al. Ezetimibe suppresses development of liver tumors by inhibiting angiogenesis in mice fed a high-fat diet. Cancer Sci. 2019;110:771–83.CrossRefPubMedPubMedCentral
13.
Zurück zum Zitat Luo Y, Tian G, Zhuang Z, Chen J, You N, Zhuo L, et al. Berberine prevents non-alcoholic steatohepatitis-derived hepatocellular carcinoma by inhibiting inflammation and angiogenesis in mice. Am J Transl Res. 2019;11:2668–82.PubMedPubMedCentral Luo Y, Tian G, Zhuang Z, Chen J, You N, Zhuo L, et al. Berberine prevents non-alcoholic steatohepatitis-derived hepatocellular carcinoma by inhibiting inflammation and angiogenesis in mice. Am J Transl Res. 2019;11:2668–82.PubMedPubMedCentral
14.
Zurück zum Zitat Saharinen P, Eklund L, Alitalo K. Therapeutic targeting of the angiopoietin-TIE pathway. Nat Rev Drug Discov. 2017;16:635–61.CrossRefPubMed Saharinen P, Eklund L, Alitalo K. Therapeutic targeting of the angiopoietin-TIE pathway. Nat Rev Drug Discov. 2017;16:635–61.CrossRefPubMed
15.
Zurück zum Zitat Khan KA, Kerbel RS. Improving immunotherapy outcomes with anti-angiogenic treatments and vice versa. Nat Rev Clin Oncol. 2018;15:310–24.CrossRefPubMed Khan KA, Kerbel RS. Improving immunotherapy outcomes with anti-angiogenic treatments and vice versa. Nat Rev Clin Oncol. 2018;15:310–24.CrossRefPubMed
17.
Zurück zum Zitat De Palma M, Venneri MA, Roca C, Naldini L. Targeting exogenous genes to tumor angiogenesis by transplantation of genetically modified hematopoietic stem cells. Nat Med. 2003;9:789–95.CrossRefPubMed De Palma M, Venneri MA, Roca C, Naldini L. Targeting exogenous genes to tumor angiogenesis by transplantation of genetically modified hematopoietic stem cells. Nat Med. 2003;9:789–95.CrossRefPubMed
18.
Zurück zum Zitat De Palma M, Murdoch C, Venneri MA, Naldini L, Lewis CE. Tie2-expressing monocytes: regulation of tumor angiogenesis and therapeutic implications. Trends Immunol. 2007;28:519–24.CrossRefPubMed De Palma M, Murdoch C, Venneri MA, Naldini L, Lewis CE. Tie2-expressing monocytes: regulation of tumor angiogenesis and therapeutic implications. Trends Immunol. 2007;28:519–24.CrossRefPubMed
19.
Zurück zum Zitat Atanasov G, Hau HM, Dietel C, Benzing C, Krenzien F, Brandl A, et al. Prognostic significance of TIE2-expressing monocytes in hilar cholangiocarcinoma. J Surg Oncol. 2016;114:91–8.CrossRefPubMed Atanasov G, Hau HM, Dietel C, Benzing C, Krenzien F, Brandl A, et al. Prognostic significance of TIE2-expressing monocytes in hilar cholangiocarcinoma. J Surg Oncol. 2016;114:91–8.CrossRefPubMed
20.
Zurück zum Zitat Atanasov G, Pötner C, Aust G, Schierle K, Dietel C, Benzing C, et al. TIE2-expressing monocytes and M2-polarized macrophages impact survival and correlate with angiogenesis in adenocarcinoma of the pancreas. Oncotarget. 2018;9:29715–26.PubMedPubMedCentral Atanasov G, Pötner C, Aust G, Schierle K, Dietel C, Benzing C, et al. TIE2-expressing monocytes and M2-polarized macrophages impact survival and correlate with angiogenesis in adenocarcinoma of the pancreas. Oncotarget. 2018;9:29715–26.PubMedPubMedCentral
21.
Zurück zum Zitat Atanasov G, Dietel C, Feldbrügge L, Benzing C, Krenzien F, Brandl A, et al. Angiogenic miRNAs, the angiopoietin axis and related TIE2-expressing monocytes affect outcomes in cholangiocarcinoma. Oncotarget. 2018;9:29921–33.PubMedPubMedCentral Atanasov G, Dietel C, Feldbrügge L, Benzing C, Krenzien F, Brandl A, et al. Angiogenic miRNAs, the angiopoietin axis and related TIE2-expressing monocytes affect outcomes in cholangiocarcinoma. Oncotarget. 2018;9:29921–33.PubMedPubMedCentral
22.
Zurück zum Zitat Ehling J, Bartneck M, Wei X, Gremse F, Fech V, Möckel D, et al. CCL2-dependent infiltrating macrophages promote angiogenesis in progressive liver fibrosis. Gut. 2014;63:1960–71.CrossRefPubMed Ehling J, Bartneck M, Wei X, Gremse F, Fech V, Möckel D, et al. CCL2-dependent infiltrating macrophages promote angiogenesis in progressive liver fibrosis. Gut. 2014;63:1960–71.CrossRefPubMed
23.
Zurück zum Zitat Karlmark KR, Weiskirchen R, Zimmermann HW, Gassler N, Ginhoux F, Weber C, et al. Hepatic recruitment of the inflammatory Gr1+ monocyte subset upon liver injury promotes hepatic fibrosis. Hepatology. 2009;50:261–74.CrossRefPubMed Karlmark KR, Weiskirchen R, Zimmermann HW, Gassler N, Ginhoux F, Weber C, et al. Hepatic recruitment of the inflammatory Gr1+ monocyte subset upon liver injury promotes hepatic fibrosis. Hepatology. 2009;50:261–74.CrossRefPubMed
24.
Zurück zum Zitat Seki E, Schwabe RF. Hepatic inflammation and fibrosis: functional links and key pathways. Hepatology. 2015;61:1066–79.CrossRefPubMed Seki E, Schwabe RF. Hepatic inflammation and fibrosis: functional links and key pathways. Hepatology. 2015;61:1066–79.CrossRefPubMed
25.
Zurück zum Zitat Atanasov G, Schierle K, Hau HM, Dietel C, Krenzien F, Brandl A, et al. Prognostic significance of tumor necrosis in hilar cholangiocarcinoma. Ann Surg Oncol. 2017;24:518–25.CrossRefPubMed Atanasov G, Schierle K, Hau HM, Dietel C, Krenzien F, Brandl A, et al. Prognostic significance of tumor necrosis in hilar cholangiocarcinoma. Ann Surg Oncol. 2017;24:518–25.CrossRefPubMed
26.
Zurück zum Zitat Atanasov G, Dietel C, Feldbrügge L, Benzing C, Krenzien F, Brandl A, et al. Tumor necrosis and infiltrating macrophages predict survival after curative resection for cholangiocarcinoma. Oncoimmunology. 2017;6:e1331806.CrossRefPubMedPubMedCentral Atanasov G, Dietel C, Feldbrügge L, Benzing C, Krenzien F, Brandl A, et al. Tumor necrosis and infiltrating macrophages predict survival after curative resection for cholangiocarcinoma. Oncoimmunology. 2017;6:e1331806.CrossRefPubMedPubMedCentral
27.
Zurück zum Zitat Fernández M, Semela D, Bruix J, Colle I, Pinzani M, Bosch J. Angiogenesis in liver disease. J Hepatol. 2009;50:604–20.CrossRefPubMed Fernández M, Semela D, Bruix J, Colle I, Pinzani M, Bosch J. Angiogenesis in liver disease. J Hepatol. 2009;50:604–20.CrossRefPubMed
28.
Zurück zum Zitat Bruix J, Sherman M. Management of hepatocellular carcinoma: an update. Hepatology. 2011;53:1020–2.CrossRefPubMed Bruix J, Sherman M. Management of hepatocellular carcinoma: an update. Hepatology. 2011;53:1020–2.CrossRefPubMed
29.
Zurück zum Zitat Edwards JG, Swinson DE, Jones JL, Muller S, Waller DA, O’Byrne KJ. Tumor necrosis correlates with angiogenesis and is a predictor of poor prognosis in malignant mesothelioma. Chest. 2003;124:1916–23.CrossRefPubMed Edwards JG, Swinson DE, Jones JL, Muller S, Waller DA, O’Byrne KJ. Tumor necrosis correlates with angiogenesis and is a predictor of poor prognosis in malignant mesothelioma. Chest. 2003;124:1916–23.CrossRefPubMed
30.
Zurück zum Zitat Leek RD, Landers RJ, Harris AL, Lewis CE. Necrosis correlates with high vascular density and focal macrophage infiltration in invasive carcinoma of the breast. Br J Cancer. 1999;79:991–5.CrossRefPubMedPubMedCentral Leek RD, Landers RJ, Harris AL, Lewis CE. Necrosis correlates with high vascular density and focal macrophage infiltration in invasive carcinoma of the breast. Br J Cancer. 1999;79:991–5.CrossRefPubMedPubMedCentral
31.
Zurück zum Zitat Atanasov G, Dino K, Schierle K, Dietel C, Aust G, Pratschke J, et al. Immunologic cellular characteristics of the tumour microenvironment of hepatocellular carcinoma drive patient outcomes. World J Surg Oncol. 2019;17:97.CrossRefPubMedPubMedCentral Atanasov G, Dino K, Schierle K, Dietel C, Aust G, Pratschke J, et al. Immunologic cellular characteristics of the tumour microenvironment of hepatocellular carcinoma drive patient outcomes. World J Surg Oncol. 2019;17:97.CrossRefPubMedPubMedCentral
33.
Zurück zum Zitat de Meijer VE, Kalish BT, Puder M, Ijzermans JN. Systematic review and meta-analysis of steatosis as a risk factor in major hepatic resection. Br J Surg. 2010;97:1331–9.CrossRefPubMed de Meijer VE, Kalish BT, Puder M, Ijzermans JN. Systematic review and meta-analysis of steatosis as a risk factor in major hepatic resection. Br J Surg. 2010;97:1331–9.CrossRefPubMed
34.
Zurück zum Zitat Chari RS, Helton WS, Marsh RD. Chemotherapy and regional therapy of hepatic colorectal metastases: expert consensus statement by Bartlett et al. Ann Surg Oncol. 2006;13:1293–5.CrossRefPubMed Chari RS, Helton WS, Marsh RD. Chemotherapy and regional therapy of hepatic colorectal metastases: expert consensus statement by Bartlett et al. Ann Surg Oncol. 2006;13:1293–5.CrossRefPubMed
35.
36.
Zurück zum Zitat Moon WS, Rhyu KH, Kang MJ, Lee DG, Yu HC, Yeum JH, et al. Overexpression of VEGF and angiopoietin 2: a key to high vascularity of hepatocellular carcinoma? Mod Pathol. 2003;16:552–7.CrossRefPubMed Moon WS, Rhyu KH, Kang MJ, Lee DG, Yu HC, Yeum JH, et al. Overexpression of VEGF and angiopoietin 2: a key to high vascularity of hepatocellular carcinoma? Mod Pathol. 2003;16:552–7.CrossRefPubMed
37.
Zurück zum Zitat Minami T, Jiang S, Schadler K, et al. The calcineurin-NFAT-angiopoietin-2 signaling axis in lung endothelium is critical for the establishment of lung metastases. Cell Rep. 2013;4:709–23.CrossRefPubMedPubMedCentral Minami T, Jiang S, Schadler K, et al. The calcineurin-NFAT-angiopoietin-2 signaling axis in lung endothelium is critical for the establishment of lung metastases. Cell Rep. 2013;4:709–23.CrossRefPubMedPubMedCentral
38.
Zurück zum Zitat Shao YY, Hsu CH, Cheng AL. Predictive biomarkers of sorafenib efficacy in advanced hepatocellular carcinoma: are we getting there? World J Gastroenterol. 2015;21:10336–47.CrossRefPubMedPubMedCentral Shao YY, Hsu CH, Cheng AL. Predictive biomarkers of sorafenib efficacy in advanced hepatocellular carcinoma: are we getting there? World J Gastroenterol. 2015;21:10336–47.CrossRefPubMedPubMedCentral
39.
Zurück zum Zitat Schulz P, Fischer C, Detjen KM, Rieke S, Hilfenhaus G, von Marschall Z, et al. Angiopoietin-2 drives lymphatic metastasis of pancreatic cancer. FASEB J. 2011;25:3325–35.CrossRefPubMed Schulz P, Fischer C, Detjen KM, Rieke S, Hilfenhaus G, von Marschall Z, et al. Angiopoietin-2 drives lymphatic metastasis of pancreatic cancer. FASEB J. 2011;25:3325–35.CrossRefPubMed
40.
Zurück zum Zitat Fukumura D, Kloepper J, Amoozgar Z, Duda DG, Jain RK. Enhancing cancer immunotherapy using antiangiogenics: opportunities and challenges. Nat Rev Clin Oncol. 2018;15:325–40.CrossRefPubMedPubMedCentral Fukumura D, Kloepper J, Amoozgar Z, Duda DG, Jain RK. Enhancing cancer immunotherapy using antiangiogenics: opportunities and challenges. Nat Rev Clin Oncol. 2018;15:325–40.CrossRefPubMedPubMedCentral
41.
Zurück zum Zitat Matsubara T, Kanto T, Kuroda S, Yoshio S, Higashitani K, Kakita N, et al. TIE2-expressing monocytes as a diagnostic marker for hepatocellular carcinoma correlates with angiogenesis. Hepatology. 2013;57:1416–25.CrossRefPubMed Matsubara T, Kanto T, Kuroda S, Yoshio S, Higashitani K, Kakita N, et al. TIE2-expressing monocytes as a diagnostic marker for hepatocellular carcinoma correlates with angiogenesis. Hepatology. 2013;57:1416–25.CrossRefPubMed
42.
43.
Zurück zum Zitat Aghighi M, Theruvath AJ, Pareek A, Pisani LL, Alford R, Muehe AM, et al. Magnetic resonance imaging of tumor-associated macrophages: clinical translation. Clin Cancer Res. 2018;24:4110–8.CrossRefPubMedPubMedCentral Aghighi M, Theruvath AJ, Pareek A, Pisani LL, Alford R, Muehe AM, et al. Magnetic resonance imaging of tumor-associated macrophages: clinical translation. Clin Cancer Res. 2018;24:4110–8.CrossRefPubMedPubMedCentral
44.
Zurück zum Zitat Mulcahy HE, Toner M, Patchett SE, Daly L, O’Donoghue DP. Identifying stage B colorectal cancer patients at high risk of tumor recurrence and death. Dis Colon Rectum. 1997;40:326–31.CrossRefPubMed Mulcahy HE, Toner M, Patchett SE, Daly L, O’Donoghue DP. Identifying stage B colorectal cancer patients at high risk of tumor recurrence and death. Dis Colon Rectum. 1997;40:326–31.CrossRefPubMed
45.
Zurück zum Zitat Pollheimer MJ, Kornprat P, Lindtner RA, Harbaum L, Schlemmer A, Rehak P, et al. Tumor necrosis is a new promising prognostic factor in colorectal cancer. Hum Pathol. 2010;41:1749–57.CrossRefPubMed Pollheimer MJ, Kornprat P, Lindtner RA, Harbaum L, Schlemmer A, Rehak P, et al. Tumor necrosis is a new promising prognostic factor in colorectal cancer. Hum Pathol. 2010;41:1749–57.CrossRefPubMed
46.
Zurück zum Zitat Cona MM, Wang H, Li J, Feng Y, Chen F, de Witte P, et al. Continuing pursuit for ideal systemic anticancer radiotherapeutics. Invest New Drugs. 2012;30:2050–65.CrossRefPubMed Cona MM, Wang H, Li J, Feng Y, Chen F, de Witte P, et al. Continuing pursuit for ideal systemic anticancer radiotherapeutics. Invest New Drugs. 2012;30:2050–65.CrossRefPubMed
47.
Zurück zum Zitat Li J, Sun Z, Zhang J, Shao H, Cona MM, Wang H, et al. A dual-targeting anticancer approach: soil and seed principle. Radiology. 2011;260:799–807.CrossRefPubMed Li J, Sun Z, Zhang J, Shao H, Cona MM, Wang H, et al. A dual-targeting anticancer approach: soil and seed principle. Radiology. 2011;260:799–807.CrossRefPubMed
Metadaten
Titel
Angiogenic inflammation and formation of necrosis in the tumor microenvironment influence patient survival after radical surgery for de novo hepatocellular carcinoma in non-cirrhosis
verfasst von
Georgi Atanasov
Karoline Dino
Katrin Schierle
Corinna Dietel
Gabriela Aust
Johann Pratschke
Daniel Seehofer
Moritz Schmelzle
Hans-Michael Hau
Publikationsdatum
01.12.2019
Verlag
BioMed Central
Erschienen in
World Journal of Surgical Oncology / Ausgabe 1/2019
Elektronische ISSN: 1477-7819
DOI
https://doi.org/10.1186/s12957-019-1756-8

Weitere Artikel der Ausgabe 1/2019

World Journal of Surgical Oncology 1/2019 Zur Ausgabe

Wie erfolgreich ist eine Re-Ablation nach Rezidiv?

23.04.2024 Ablationstherapie Nachrichten

Nach der Katheterablation von Vorhofflimmern kommt es bei etwa einem Drittel der Patienten zu Rezidiven, meist binnen eines Jahres. Wie sich spätere Rückfälle auf die Erfolgschancen einer erneuten Ablation auswirken, haben Schweizer Kardiologen erforscht.

Hinter dieser Appendizitis steckte ein Erreger

23.04.2024 Appendizitis Nachrichten

Schmerzen im Unterbauch, aber sonst nicht viel, was auf eine Appendizitis hindeutete: Ein junger Mann hatte Glück, dass trotzdem eine Laparoskopie mit Appendektomie durchgeführt und der Wurmfortsatz histologisch untersucht wurde.

Mehr Schaden als Nutzen durch präoperatives Aussetzen von GLP-1-Agonisten?

23.04.2024 Operationsvorbereitung Nachrichten

Derzeit wird empfohlen, eine Therapie mit GLP-1-Rezeptoragonisten präoperativ zu unterbrechen. Eine neue Studie nährt jedoch Zweifel an der Notwendigkeit der Maßnahme.

Ureterstriktur: Innovative OP-Technik bewährt sich

19.04.2024 EAU 2024 Kongressbericht

Die Ureterstriktur ist eine relativ seltene Komplikation, trotzdem bedarf sie einer differenzierten Versorgung. In komplexen Fällen wird dies durch die roboterassistierte OP-Technik gewährleistet. Erste Resultate ermutigen.

Update Chirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.

S3-Leitlinie „Diagnostik und Therapie des Karpaltunnelsyndroms“

Karpaltunnelsyndrom BDC Leitlinien Webinare
CME: 2 Punkte

Das Karpaltunnelsyndrom ist die häufigste Kompressionsneuropathie peripherer Nerven. Obwohl die Anamnese mit dem nächtlichen Einschlafen der Hand (Brachialgia parästhetica nocturna) sehr typisch ist, ist eine klinisch-neurologische Untersuchung und Elektroneurografie in manchen Fällen auch eine Neurosonografie erforderlich. Im Anfangsstadium sind konservative Maßnahmen (Handgelenksschiene, Ergotherapie) empfehlenswert. Bei nicht Ansprechen der konservativen Therapie oder Auftreten von neurologischen Ausfällen ist eine Dekompression des N. medianus am Karpaltunnel indiziert.

Prof. Dr. med. Gregor Antoniadis
Berufsverband der Deutschen Chirurgie e.V.

S2e-Leitlinie „Distale Radiusfraktur“

Radiusfraktur BDC Leitlinien Webinare
CME: 2 Punkte

Das Webinar beschäftigt sich mit Fragen und Antworten zu Diagnostik und Klassifikation sowie Möglichkeiten des Ausschlusses von Zusatzverletzungen. Die Referenten erläutern, welche Frakturen konservativ behandelt werden können und wie. Das Webinar beantwortet die Frage nach aktuellen operativen Therapiekonzepten: Welcher Zugang, welches Osteosynthesematerial? Auf was muss bei der Nachbehandlung der distalen Radiusfraktur geachtet werden?

PD Dr. med. Oliver Pieske
Dr. med. Benjamin Meyknecht
Berufsverband der Deutschen Chirurgie e.V.

S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“

Appendizitis BDC Leitlinien Webinare
CME: 2 Punkte

Inhalte des Webinars zur S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“ sind die Darstellung des Projektes und des Erstellungswegs zur S1-Leitlinie, die Erläuterung der klinischen Relevanz der Klassifikation EAES 2015, die wissenschaftliche Begründung der wichtigsten Empfehlungen und die Darstellung stadiengerechter Therapieoptionen.

Dr. med. Mihailo Andric
Berufsverband der Deutschen Chirurgie e.V.