Skip to main content
Erschienen in: Heart Failure Reviews 3/2012

01.05.2012

Angiogenic therapy for cardiac repair based on protein delivery systems

verfasst von: F. R. Formiga, E. Tamayo, T. Simón-Yarza, B. Pelacho, F. Prósper, M. J. Blanco-Prieto

Erschienen in: Heart Failure Reviews | Ausgabe 3/2012

Einloggen, um Zugang zu erhalten

Abstract

Cardiovascular diseases remain the first cause of morbidity and mortality in the developed countries and are a major problem not only in the western nations but also in developing countries. Current standard approaches for treating patients with ischemic heart disease include angioplasty or bypass surgery. However, a large number of patients cannot be treated using these procedures. Novel curative approaches under investigation include gene, cell, and protein therapy. This review focuses on potential growth factors for cardiac repair. The role of these growth factors in the angiogenic process and the therapeutic implications are reviewed. Issues including aspects of growth factor delivery are presented in relation to protein stability, dosage, routes, and safety matters. Finally, different approaches for controlled growth factor delivery are discussed as novel protein delivery platforms for cardiac regeneration.
Literatur
2.
Zurück zum Zitat Thom T, Haase N, Rosamond W, Howard VJ, Rumsfeld J, Manolio T, Zheng ZJ, Flegal K, O’Donnell C, Kittner S, Lloyd-Jones D, Goff DC Jr, Hong Y, Adams R, Friday G, Furie K, Gorelick P, Kissela B, Marler J, Meigs J, Roger V, Sidney S, Sorlie P, Steinberger J, Wasserthiel-Smoller S, Wilson M, Wolf P (2006) Heart disease and stroke statistics–2006 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation 113(6):e85–e151PubMedCrossRef Thom T, Haase N, Rosamond W, Howard VJ, Rumsfeld J, Manolio T, Zheng ZJ, Flegal K, O’Donnell C, Kittner S, Lloyd-Jones D, Goff DC Jr, Hong Y, Adams R, Friday G, Furie K, Gorelick P, Kissela B, Marler J, Meigs J, Roger V, Sidney S, Sorlie P, Steinberger J, Wasserthiel-Smoller S, Wilson M, Wolf P (2006) Heart disease and stroke statistics–2006 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation 113(6):e85–e151PubMedCrossRef
3.
Zurück zum Zitat Mackay J, Mensah G (2004) Atlas of heart disease and stroke. World Health Organization, Geneva Mackay J, Mensah G (2004) Atlas of heart disease and stroke. World Health Organization, Geneva
4.
Zurück zum Zitat Kurrelmeyer K, Kalra D, Bozkurt B, Wang F, Dibbs Z, Seta Y, Baumgarten G, Engle D, Sivasubramanian N, Mann DL (1998) Cardiac remodeling as a consequence and cause of progressive heart failure. Clin Cardiol 21(12 Suppl 1):I14–I19PubMedCrossRef Kurrelmeyer K, Kalra D, Bozkurt B, Wang F, Dibbs Z, Seta Y, Baumgarten G, Engle D, Sivasubramanian N, Mann DL (1998) Cardiac remodeling as a consequence and cause of progressive heart failure. Clin Cardiol 21(12 Suppl 1):I14–I19PubMedCrossRef
5.
Zurück zum Zitat Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 285(21):1182–1186PubMedCrossRef Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 285(21):1182–1186PubMedCrossRef
6.
Zurück zum Zitat Lee SH, Wolf PL, Escudero R, Deutsch R, Jamieson SW, Thistlethwaite PA (2000) Early expression of angiogenesis factors in acute myocardial ischemia and infarction. N Engl J Med 342(9):626–633PubMedCrossRef Lee SH, Wolf PL, Escudero R, Deutsch R, Jamieson SW, Thistlethwaite PA (2000) Early expression of angiogenesis factors in acute myocardial ischemia and infarction. N Engl J Med 342(9):626–633PubMedCrossRef
7.
Zurück zum Zitat Shing Y, Folkman J, Sullivan R, Butterfield C, Murray J, Klagsbrun M (1984) Heparin affinity: purification of a tumor-derived capillary endothelial cell growth factor. Science 223(4642):1296–1299PubMedCrossRef Shing Y, Folkman J, Sullivan R, Butterfield C, Murray J, Klagsbrun M (1984) Heparin affinity: purification of a tumor-derived capillary endothelial cell growth factor. Science 223(4642):1296–1299PubMedCrossRef
8.
Zurück zum Zitat Esch F, Baird A, Ling N, Ueno N, Hill F, Denoroy L, Klepper R, Gospodarowicz D, Bohlen P, Guillemin R (1985) Primary structure of bovine pituitary basic fibroblast growth factor (FGF) and comparison with the amino-terminal sequence of bovine brain acidic FGF. Proc Natl Acad Sci USA 82(19):6507–6511PubMedCrossRef Esch F, Baird A, Ling N, Ueno N, Hill F, Denoroy L, Klepper R, Gospodarowicz D, Bohlen P, Guillemin R (1985) Primary structure of bovine pituitary basic fibroblast growth factor (FGF) and comparison with the amino-terminal sequence of bovine brain acidic FGF. Proc Natl Acad Sci USA 82(19):6507–6511PubMedCrossRef
9.
Zurück zum Zitat Yun YR, Won JE, Jeon E, Lee S, Kang W, Jo H, Jang JH, Shin US, Kim HW (2010) Fibroblast growth factors: biology, function, and application for tissue regeneration. J Tissue Eng 2010:1–18CrossRef Yun YR, Won JE, Jeon E, Lee S, Kang W, Jo H, Jang JH, Shin US, Kim HW (2010) Fibroblast growth factors: biology, function, and application for tissue regeneration. J Tissue Eng 2010:1–18CrossRef
10.
Zurück zum Zitat Losordo DW, Dimmeler S (2004) Therapeutic angiogenesis and vasculogenesis for ischemic disease. Part I: angiogenic cytokines. Circulation 109(21):2487–2491PubMedCrossRef Losordo DW, Dimmeler S (2004) Therapeutic angiogenesis and vasculogenesis for ischemic disease. Part I: angiogenic cytokines. Circulation 109(21):2487–2491PubMedCrossRef
11.
Zurück zum Zitat Kardami E, Detillieux K, Ma X, Jiang Z, Santiago JJ, Jimenez SK, Cattini PA (2007) Fibroblast growth factor-2 and cardioprotection. Heart Fail Rev 12(3–4):267–277PubMedCrossRef Kardami E, Detillieux K, Ma X, Jiang Z, Santiago JJ, Jimenez SK, Cattini PA (2007) Fibroblast growth factor-2 and cardioprotection. Heart Fail Rev 12(3–4):267–277PubMedCrossRef
12.
Zurück zum Zitat Carmeliet P (2000) Fibroblast growth factor-1 stimulates branching and survival of myocardial arteries: a goal for therapeutic angiogenesis? Circ Res 87(3):176–178PubMed Carmeliet P (2000) Fibroblast growth factor-1 stimulates branching and survival of myocardial arteries: a goal for therapeutic angiogenesis? Circ Res 87(3):176–178PubMed
13.
Zurück zum Zitat Seghezzi G, Patel S, Ren CJ, Gualandris A, Pintucci G, Robbins ES, Shapiro RL, Galloway AC, Rifkin DB, Mignatti P (1998) Fibroblast growth factor-2 (FGF-2) induces vascular endothelial growth factor (VEGF) expression in the endothelial cells of forming capillaries: an autocrine mechanism contributing to angiogenesis. J Cell Biol 141(7):1659–1673PubMedCrossRef Seghezzi G, Patel S, Ren CJ, Gualandris A, Pintucci G, Robbins ES, Shapiro RL, Galloway AC, Rifkin DB, Mignatti P (1998) Fibroblast growth factor-2 (FGF-2) induces vascular endothelial growth factor (VEGF) expression in the endothelial cells of forming capillaries: an autocrine mechanism contributing to angiogenesis. J Cell Biol 141(7):1659–1673PubMedCrossRef
14.
Zurück zum Zitat Claffey KP, Abrams K, Shih SC, Brown LF, Mullen A, Keough M (2001) Fibroblast growth factor 2 activation of stromal cell vascular endothelial growth factor expression and angiogenesis. Lab Invest 81(1):61–75PubMedCrossRef Claffey KP, Abrams K, Shih SC, Brown LF, Mullen A, Keough M (2001) Fibroblast growth factor 2 activation of stromal cell vascular endothelial growth factor expression and angiogenesis. Lab Invest 81(1):61–75PubMedCrossRef
15.
Zurück zum Zitat Kano MR, Morishita Y, Iwata C, Iwasaka S, Watabe T, Ouchi Y, Miyazono K, Miyazawa K (2005) VEGF-A and FGF-2 synergistically promote neoangiogenesis through enhancement of endogenous PDGF-B-PDGFRbeta signaling. J Cell Sci 118(Pt 16):3759–3768PubMedCrossRef Kano MR, Morishita Y, Iwata C, Iwasaka S, Watabe T, Ouchi Y, Miyazono K, Miyazawa K (2005) VEGF-A and FGF-2 synergistically promote neoangiogenesis through enhancement of endogenous PDGF-B-PDGFRbeta signaling. J Cell Sci 118(Pt 16):3759–3768PubMedCrossRef
16.
Zurück zum Zitat Fujii T, Yonemitsu Y, Onimaru M, Tanii M, Nakano T, Egashira K, Takehara T, Inoue M, Hasegawa M, Kuwano H, Sueishi K (2006) Nonendothelial mesenchymal cell-derived MCP-1 is required for FGF-2-mediated therapeutic neovascularization: critical role of the inflammatory/arteriogenic pathway. Arterioscler Thromb Vasc Biol 26(11):2483–2489PubMedCrossRef Fujii T, Yonemitsu Y, Onimaru M, Tanii M, Nakano T, Egashira K, Takehara T, Inoue M, Hasegawa M, Kuwano H, Sueishi K (2006) Nonendothelial mesenchymal cell-derived MCP-1 is required for FGF-2-mediated therapeutic neovascularization: critical role of the inflammatory/arteriogenic pathway. Arterioscler Thromb Vasc Biol 26(11):2483–2489PubMedCrossRef
17.
Zurück zum Zitat Ferrara N, Henzel WJ (1989) Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells. Biochem Biophys Res Commun 161:851–858PubMedCrossRef Ferrara N, Henzel WJ (1989) Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells. Biochem Biophys Res Commun 161:851–858PubMedCrossRef
18.
Zurück zum Zitat Olsson AK, Dimberg A, Kreuger J, Claesson-Welsh L (2006) VEGF receptor signalling—in control of vascular function. Nat Rev Mol Cell Biol 7(5):359–371PubMedCrossRef Olsson AK, Dimberg A, Kreuger J, Claesson-Welsh L (2006) VEGF receptor signalling—in control of vascular function. Nat Rev Mol Cell Biol 7(5):359–371PubMedCrossRef
19.
Zurück zum Zitat Grunewald M, Avraham I, Dor Y, Bachar-Lustig E, Itin A, Jung S, Chimenti S, Landsman L, Abramovitch R, Keshet E (2006) VEGF-induced adult neovascularization: recruitment, retention, and role of accessory cells. Cell 124(1):175–189PubMedCrossRef Grunewald M, Avraham I, Dor Y, Bachar-Lustig E, Itin A, Jung S, Chimenti S, Landsman L, Abramovitch R, Keshet E (2006) VEGF-induced adult neovascularization: recruitment, retention, and role of accessory cells. Cell 124(1):175–189PubMedCrossRef
20.
Zurück zum Zitat Hoeben A, Landuyt B, Highley MS, Wildiers H, Van Oosterom AT, De Bruijn EA (2004) Vascular endothelial growth factor and angiogenesis. Pharmacol Rev 56(4):549–580PubMedCrossRef Hoeben A, Landuyt B, Highley MS, Wildiers H, Van Oosterom AT, De Bruijn EA (2004) Vascular endothelial growth factor and angiogenesis. Pharmacol Rev 56(4):549–580PubMedCrossRef
21.
22.
Zurück zum Zitat Fukumura D, Gohongi T, Kadambi A, Izumi Y, Ang J, Yun CO, Buerk DG, Huang PL, Jain RK (2001) Predominant role of endothelial nitric oxide synthase in vascular endothelial growth factor-induced angiogenesis and vascular permeability. Proc Natl Acad Sci USA 98(5):2604–2609PubMedCrossRef Fukumura D, Gohongi T, Kadambi A, Izumi Y, Ang J, Yun CO, Buerk DG, Huang PL, Jain RK (2001) Predominant role of endothelial nitric oxide synthase in vascular endothelial growth factor-induced angiogenesis and vascular permeability. Proc Natl Acad Sci USA 98(5):2604–2609PubMedCrossRef
23.
Zurück zum Zitat Fujio Y, Walsh K (1999) Akt mediates cytoprotection of endothelial cells by vascular endothelial growth factor in an anchorage-dependent manner. J Biol Chem 274(23):16349–16354PubMedCrossRef Fujio Y, Walsh K (1999) Akt mediates cytoprotection of endothelial cells by vascular endothelial growth factor in an anchorage-dependent manner. J Biol Chem 274(23):16349–16354PubMedCrossRef
24.
Zurück zum Zitat Takahashi T, Yamaguchi S, Chida K, Shibuya M (2001) A single autophosphorylation site on KDR/Flk-1 is essential for VEGF-A-dependent activation of PLC-gamma and DNA synthesis in vascular endothelial cells. EMBO J 20(11):2768–2778PubMedCrossRef Takahashi T, Yamaguchi S, Chida K, Shibuya M (2001) A single autophosphorylation site on KDR/Flk-1 is essential for VEGF-A-dependent activation of PLC-gamma and DNA synthesis in vascular endothelial cells. EMBO J 20(11):2768–2778PubMedCrossRef
25.
Zurück zum Zitat Witzenbichler B, Maisonpierre PC, Jones P, Yancopoulos GD, Isner JM (1998) Chemotactic properties of angiopoietin-1 and -2, ligands for the endothelial-specific receptor tyrosine kinase Tie2. J Biol Chem 273(29):18514–18521PubMedCrossRef Witzenbichler B, Maisonpierre PC, Jones P, Yancopoulos GD, Isner JM (1998) Chemotactic properties of angiopoietin-1 and -2, ligands for the endothelial-specific receptor tyrosine kinase Tie2. J Biol Chem 273(29):18514–18521PubMedCrossRef
26.
Zurück zum Zitat Davis S, Yancopoulos GD (1999) The angiopoietins: Yin and Yang in angiogenesis. Curr Top Microbiol Immunol 237:173–185PubMedCrossRef Davis S, Yancopoulos GD (1999) The angiopoietins: Yin and Yang in angiogenesis. Curr Top Microbiol Immunol 237:173–185PubMedCrossRef
27.
Zurück zum Zitat Harfouche R, Hassessian HM, Guo Y, Faivre V, Srikant CB, Yancopoulos GD, Hussain SN (2002) Mechanisms which mediate the antiapoptotic effects of angiopoietin-1 on endothelial cells. Microvasc Res 64(1):135–147PubMedCrossRef Harfouche R, Hassessian HM, Guo Y, Faivre V, Srikant CB, Yancopoulos GD, Hussain SN (2002) Mechanisms which mediate the antiapoptotic effects of angiopoietin-1 on endothelial cells. Microvasc Res 64(1):135–147PubMedCrossRef
28.
Zurück zum Zitat Eklund L, Olsen BR (2006) Tie receptors and their angiopoietin ligands are context-dependent regulators of vascular remodeling. Exp Cell Res 312(5):630–641PubMedCrossRef Eklund L, Olsen BR (2006) Tie receptors and their angiopoietin ligands are context-dependent regulators of vascular remodeling. Exp Cell Res 312(5):630–641PubMedCrossRef
29.
Zurück zum Zitat Teichert-Kuliszewska K, Maisonpierre PC, Jones N, Campbell AI, Master Z, Bendeck MP, Alitalo K, Dumont DJ, Yancopoulos GD, Stewart DJ (2001) Biological action of angiopoietin-2 in a fibrin matrix model of angiogenesis is associated with activation of Tie2. Cardiovasc Res 49(3):659–670PubMedCrossRef Teichert-Kuliszewska K, Maisonpierre PC, Jones N, Campbell AI, Master Z, Bendeck MP, Alitalo K, Dumont DJ, Yancopoulos GD, Stewart DJ (2001) Biological action of angiopoietin-2 in a fibrin matrix model of angiogenesis is associated with activation of Tie2. Cardiovasc Res 49(3):659–670PubMedCrossRef
30.
Zurück zum Zitat Matsunaga T, Warltier DC, Tessmer J, Weihrauch D, Simons M, Chilian WM (2003) Expression of VEGF and angiopoietins-1 and -2 during ischemia-induced coronary angiogenesis. Am J Physiol Heart Circ Physiol 285(1):H352–H358PubMed Matsunaga T, Warltier DC, Tessmer J, Weihrauch D, Simons M, Chilian WM (2003) Expression of VEGF and angiopoietins-1 and -2 during ischemia-induced coronary angiogenesis. Am J Physiol Heart Circ Physiol 285(1):H352–H358PubMed
31.
Zurück zum Zitat Oh H, Takagi H, Suzuma K, Otani A, Matsumura M, Honda Y (1999) Hypoxia and vascular endothelial growth factor selectively up-regulate angiopoietin-2 in bovine microvascular endothelial cells. J Biol Chem 274(22):15732–15739PubMedCrossRef Oh H, Takagi H, Suzuma K, Otani A, Matsumura M, Honda Y (1999) Hypoxia and vascular endothelial growth factor selectively up-regulate angiopoietin-2 in bovine microvascular endothelial cells. J Biol Chem 274(22):15732–15739PubMedCrossRef
32.
Zurück zum Zitat Holash J, Maisonpierre PC, Compton D, Boland P, Alexander CR, Zagzag D, Yancopoulos GD, Wiegand SJ (1999) Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science 284(5422):1994–1998PubMedCrossRef Holash J, Maisonpierre PC, Compton D, Boland P, Alexander CR, Zagzag D, Yancopoulos GD, Wiegand SJ (1999) Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science 284(5422):1994–1998PubMedCrossRef
33.
Zurück zum Zitat Gerhardt H, Golding M, Fruttiger M, Ruhrberg C, Lundkvist A, Abramsson A, Jeltsch M, Mitchell C, Alitalo K, Shima D, Betsholtz C (2003) VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J Cell Biol 161(6):1163–1177PubMedCrossRef Gerhardt H, Golding M, Fruttiger M, Ruhrberg C, Lundkvist A, Abramsson A, Jeltsch M, Mitchell C, Alitalo K, Shima D, Betsholtz C (2003) VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J Cell Biol 161(6):1163–1177PubMedCrossRef
34.
Zurück zum Zitat Betsholtz C (2004) Insight into the physiological functions of PDGF through genetic studies in mice. Cytokine Growth Factor Rev 15(4):215–228PubMedCrossRef Betsholtz C (2004) Insight into the physiological functions of PDGF through genetic studies in mice. Cytokine Growth Factor Rev 15(4):215–228PubMedCrossRef
35.
Zurück zum Zitat Cao R, Brakenhielm E, Pawliuk R, Wariaro D, Post MJ, Wahlberg E, Leboulch P, Cao Y (2003) Angiogenic synergism, vascular stability and improvement of hind-limb ischemia by a combination of PDGF-BB and FGF-2. Nat Med 9(5):604–613PubMedCrossRef Cao R, Brakenhielm E, Pawliuk R, Wariaro D, Post MJ, Wahlberg E, Leboulch P, Cao Y (2003) Angiogenic synergism, vascular stability and improvement of hind-limb ischemia by a combination of PDGF-BB and FGF-2. Nat Med 9(5):604–613PubMedCrossRef
36.
Zurück zum Zitat Hao X, Mansson-Broberg A, Gustafsson T, Grinnemo KH, Blomberg P, Siddiqui AJ, Wardell E, Sylven C (2004) Angiogenic effects of dual gene transfer of bFGF and PDGF-BB after myocardial infarction. Biochem Biophys Res Commun 315(4):1058–1063PubMedCrossRef Hao X, Mansson-Broberg A, Gustafsson T, Grinnemo KH, Blomberg P, Siddiqui AJ, Wardell E, Sylven C (2004) Angiogenic effects of dual gene transfer of bFGF and PDGF-BB after myocardial infarction. Biochem Biophys Res Commun 315(4):1058–1063PubMedCrossRef
37.
Zurück zum Zitat Zhang J, Cao R, Zhang Y, Jia T, Cao Y, Wahlberg E (2009) Differential roles of PDGFR-alpha and PDGFR-beta in angiogenesis and vessel stability. FASEB J 23(1):153–163PubMedCrossRef Zhang J, Cao R, Zhang Y, Jia T, Cao Y, Wahlberg E (2009) Differential roles of PDGFR-alpha and PDGFR-beta in angiogenesis and vessel stability. FASEB J 23(1):153–163PubMedCrossRef
38.
Zurück zum Zitat Li X, Tjwa M, Moons L, Fons P, Noel A, Ny A, Zhou JM, Lennartsson J, Li H, Luttun A, Ponten A, Devy L, Bouche A, Oh H, Manderveld A, Blacher S, Communi D, Savi P, Bono F, Dewerchin M, Foidart JM, Autiero M, Herbert JM, Collen D, Heldin CH, Eriksson U, Carmeliet P (2005) Revascularization of ischemic tissues by PDGF-CC via effects on endothelial cells and their progenitors. J Clin Invest 115(1):118–127PubMed Li X, Tjwa M, Moons L, Fons P, Noel A, Ny A, Zhou JM, Lennartsson J, Li H, Luttun A, Ponten A, Devy L, Bouche A, Oh H, Manderveld A, Blacher S, Communi D, Savi P, Bono F, Dewerchin M, Foidart JM, Autiero M, Herbert JM, Collen D, Heldin CH, Eriksson U, Carmeliet P (2005) Revascularization of ischemic tissues by PDGF-CC via effects on endothelial cells and their progenitors. J Clin Invest 115(1):118–127PubMed
39.
Zurück zum Zitat Li X, Kumar A, Zhang F, Lee C, Li Y, Tang Z, Arjunan P (2010) VEGF-independent angiogenic pathways induced by PDGF-C. Oncotarget 1(4):309–314PubMed Li X, Kumar A, Zhang F, Lee C, Li Y, Tang Z, Arjunan P (2010) VEGF-independent angiogenic pathways induced by PDGF-C. Oncotarget 1(4):309–314PubMed
40.
Zurück zum Zitat Britsch S (2007) The neuregulin-I/ErbB signaling system in development and disease. Adv Anat Embryol Cell Biol 190:1–65PubMedCrossRef Britsch S (2007) The neuregulin-I/ErbB signaling system in development and disease. Adv Anat Embryol Cell Biol 190:1–65PubMedCrossRef
41.
Zurück zum Zitat Meyer D, Yamaai T, Garratt A, Riethmacher-Sonnenberg E, Kane D, Theill LE, Birchmeier C (1997) Isoform-specific expression and function of neuregulin. Development 124(18):3575–3586PubMed Meyer D, Yamaai T, Garratt A, Riethmacher-Sonnenberg E, Kane D, Theill LE, Birchmeier C (1997) Isoform-specific expression and function of neuregulin. Development 124(18):3575–3586PubMed
42.
Zurück zum Zitat Kuramochi Y, Cote GM, Guo X, Lebrasseur NK, Cui L, Liao R, Sawyer DB (2004) Cardiac endothelial cells regulate reactive oxygen species-induced cardiomyocyte apoptosis through neuregulin-1beta/erbB4 signaling. J Biol Chem 279(49):51141–51147PubMedCrossRef Kuramochi Y, Cote GM, Guo X, Lebrasseur NK, Cui L, Liao R, Sawyer DB (2004) Cardiac endothelial cells regulate reactive oxygen species-induced cardiomyocyte apoptosis through neuregulin-1beta/erbB4 signaling. J Biol Chem 279(49):51141–51147PubMedCrossRef
43.
Zurück zum Zitat Zhao YY, Sawyer DR, Baliga RR, Opel DJ, Han X, Marchionni MA, Kelly RA (1998) Neuregulins promote survival and growth of cardiac myocytes. Persistence of ErbB2 and ErbB4 expression in neonatal and adult ventricular myocytes. J Biol Chem 273(17):10261–10269PubMedCrossRef Zhao YY, Sawyer DR, Baliga RR, Opel DJ, Han X, Marchionni MA, Kelly RA (1998) Neuregulins promote survival and growth of cardiac myocytes. Persistence of ErbB2 and ErbB4 expression in neonatal and adult ventricular myocytes. J Biol Chem 273(17):10261–10269PubMedCrossRef
44.
Zurück zum Zitat Fukazawa R, Miller TA, Kuramochi Y, Frantz S, Kim YD, Marchionni MA, Kelly RA, Sawyer DB (2003) Neuregulin-1 protects ventricular myocytes from anthracycline-induced apoptosis via erbB4-dependent activation of PI3-kinase/Akt. J Mol Cell Cardiol 35(12):1473–1479PubMedCrossRef Fukazawa R, Miller TA, Kuramochi Y, Frantz S, Kim YD, Marchionni MA, Kelly RA, Sawyer DB (2003) Neuregulin-1 protects ventricular myocytes from anthracycline-induced apoptosis via erbB4-dependent activation of PI3-kinase/Akt. J Mol Cell Cardiol 35(12):1473–1479PubMedCrossRef
45.
Zurück zum Zitat Okoshi K, Nakayama M, Yan X, Okoshi MP, Schuldt AJ, Marchionni MA, Lorell BH (2004) Neuregulins regulate cardiac parasympathetic activity: muscarinic modulation of beta-adrenergic activity in myocytes from mice with neuregulin-1 gene deletion. Circulation 110(6):713–717PubMedCrossRef Okoshi K, Nakayama M, Yan X, Okoshi MP, Schuldt AJ, Marchionni MA, Lorell BH (2004) Neuregulins regulate cardiac parasympathetic activity: muscarinic modulation of beta-adrenergic activity in myocytes from mice with neuregulin-1 gene deletion. Circulation 110(6):713–717PubMedCrossRef
46.
Zurück zum Zitat Bersell K, Arab S, Haring B, Kuhn B (2009) Neuregulin1/ErbB4 signaling induces cardiomyocyte proliferation and repair of heart injury. Cell 138(2):257–270PubMedCrossRef Bersell K, Arab S, Haring B, Kuhn B (2009) Neuregulin1/ErbB4 signaling induces cardiomyocyte proliferation and repair of heart injury. Cell 138(2):257–270PubMedCrossRef
47.
Zurück zum Zitat Seguchi O, Takashima S, Yamazaki S, Asakura M, Asano Y, Shintani Y, Wakeno M, Minamino T, Kondo H, Furukawa H, Nakamaru K, Naito A, Takahashi T, Ohtsuka T, Kawakami K, Isomura T, Kitamura S, Tomoike H, Mochizuki N, Kitakaze M (2007) A cardiac myosin light chain kinase regulates sarcomere assembly in the vertebrate heart. J Clin Invest 117(10):2812–2824PubMedCrossRef Seguchi O, Takashima S, Yamazaki S, Asakura M, Asano Y, Shintani Y, Wakeno M, Minamino T, Kondo H, Furukawa H, Nakamaru K, Naito A, Takahashi T, Ohtsuka T, Kawakami K, Isomura T, Kitamura S, Tomoike H, Mochizuki N, Kitakaze M (2007) A cardiac myosin light chain kinase regulates sarcomere assembly in the vertebrate heart. J Clin Invest 117(10):2812–2824PubMedCrossRef
48.
Zurück zum Zitat Xu Y, Li X, Liu X, Zhou M (2010) Neuregulin-1/ErbB signaling and chronic heart failure. Adv Pharmacol 59:31–51PubMedCrossRef Xu Y, Li X, Liu X, Zhou M (2010) Neuregulin-1/ErbB signaling and chronic heart failure. Adv Pharmacol 59:31–51PubMedCrossRef
49.
Zurück zum Zitat Lemmens K, Fransen P, Sys SU, Brutsaert DL, De Keulenaer GW (2004) Neuregulin-1 induces a negative inotropic effect in cardiac muscle: role of nitric oxide synthase. Circulation 109(3):324–326PubMedCrossRef Lemmens K, Fransen P, Sys SU, Brutsaert DL, De Keulenaer GW (2004) Neuregulin-1 induces a negative inotropic effect in cardiac muscle: role of nitric oxide synthase. Circulation 109(3):324–326PubMedCrossRef
50.
Zurück zum Zitat Iivanainen E, Paatero I, Heikkinen SM, Junttila TT, Cao R, Klint P, Jaakkola PM, Cao Y, Elenius K (2007) Intra- and extracellular signaling by endothelial neuregulin-1. Exp Cell Res 313(13):2896–2909PubMedCrossRef Iivanainen E, Paatero I, Heikkinen SM, Junttila TT, Cao R, Klint P, Jaakkola PM, Cao Y, Elenius K (2007) Intra- and extracellular signaling by endothelial neuregulin-1. Exp Cell Res 313(13):2896–2909PubMedCrossRef
51.
Zurück zum Zitat Jabbour A, Hayward CS, Keogh AM, Kotlyar E, McCrohon JA, England JF, Amor R, Liu X, Li XY, Zhou MD, Graham RM, Macdonald PS (2010) Parenteral administration of recombinant human neuregulin-1 to patients with stable chronic heart failure produces favourable acute and chronic haemodynamic responses. Eur J Heart Fail 13(1):83–92PubMedCrossRef Jabbour A, Hayward CS, Keogh AM, Kotlyar E, McCrohon JA, England JF, Amor R, Liu X, Li XY, Zhou MD, Graham RM, Macdonald PS (2010) Parenteral administration of recombinant human neuregulin-1 to patients with stable chronic heart failure produces favourable acute and chronic haemodynamic responses. Eur J Heart Fail 13(1):83–92PubMedCrossRef
52.
Zurück zum Zitat Gao R, Zhang J, Cheng L, Wu X, Dong W, Yang X, Li T, Liu X, Xu Y, Li X, Zhou M (2010) A Phase II, randomized, double-blind, multicenter, based on standard therapy, placebo-controlled study of the efficacy and safety of recombinant human neuregulin-1 in patients with chronic heart failure. J Am Coll Cardiol 55(18):1907–1914PubMedCrossRef Gao R, Zhang J, Cheng L, Wu X, Dong W, Yang X, Li T, Liu X, Xu Y, Li X, Zhou M (2010) A Phase II, randomized, double-blind, multicenter, based on standard therapy, placebo-controlled study of the efficacy and safety of recombinant human neuregulin-1 in patients with chronic heart failure. J Am Coll Cardiol 55(18):1907–1914PubMedCrossRef
53.
Zurück zum Zitat Nusslein-Volhard C, Wieschaus E (1980) Mutations affecting segment number and polarity in Drosophila. Nature 287(5785):795–801PubMedCrossRef Nusslein-Volhard C, Wieschaus E (1980) Mutations affecting segment number and polarity in Drosophila. Nature 287(5785):795–801PubMedCrossRef
54.
Zurück zum Zitat Riddle RD, Johnson RL, Laufer E, Tabin C (1993) Sonic hedgehog mediates the polarizing activity of the ZPA. Cell 75(7):1401–1416PubMedCrossRef Riddle RD, Johnson RL, Laufer E, Tabin C (1993) Sonic hedgehog mediates the polarizing activity of the ZPA. Cell 75(7):1401–1416PubMedCrossRef
55.
Zurück zum Zitat Echelard Y, Epstein DJ, St-Jacques B, Shen L, Mohler J, McMahon JA, McMahon AP (1993) Sonic hedgehog, a member of a family of putative signaling molecules, is implicated in the regulation of CNS polarity. Cell 75(7):1417–1430PubMedCrossRef Echelard Y, Epstein DJ, St-Jacques B, Shen L, Mohler J, McMahon JA, McMahon AP (1993) Sonic hedgehog, a member of a family of putative signaling molecules, is implicated in the regulation of CNS polarity. Cell 75(7):1417–1430PubMedCrossRef
56.
Zurück zum Zitat Krauss S, Concordet JP, Ingham PW (1993) A functionally conserved homolog of the Drosophila segment polarity gene hh is expressed in tissues with polarizing activity in zebrafish embryos. Cell 75(7):1431–1444PubMedCrossRef Krauss S, Concordet JP, Ingham PW (1993) A functionally conserved homolog of the Drosophila segment polarity gene hh is expressed in tissues with polarizing activity in zebrafish embryos. Cell 75(7):1431–1444PubMedCrossRef
57.
58.
Zurück zum Zitat Mimeault M, Batra SK (2010) Frequent deregulations in the hedgehog signaling network and cross-talks with the epidermal growth factor receptor pathway involved in cancer progression and targeted therapies. Pharmacol Rev 62(3):497–524PubMedCrossRef Mimeault M, Batra SK (2010) Frequent deregulations in the hedgehog signaling network and cross-talks with the epidermal growth factor receptor pathway involved in cancer progression and targeted therapies. Pharmacol Rev 62(3):497–524PubMedCrossRef
59.
Zurück zum Zitat Farzan SF, Singh S, Schilling NS, Robbins DJ (2008) The adventures of sonic hedgehog in development and repair. III. Hedgehog processing and biological activity. Am J Physiol Gastrointest Liver Physiol 294(4):G844–G849PubMedCrossRef Farzan SF, Singh S, Schilling NS, Robbins DJ (2008) The adventures of sonic hedgehog in development and repair. III. Hedgehog processing and biological activity. Am J Physiol Gastrointest Liver Physiol 294(4):G844–G849PubMedCrossRef
60.
Zurück zum Zitat Zeng X, Goetz JA, Suber LM, Scott WJ Jr, Schreiner CM, Robbins DJ (2001) A freely diffusible form of Sonic hedgehog mediates long-range signalling. Nature 411(6838):716–720PubMedCrossRef Zeng X, Goetz JA, Suber LM, Scott WJ Jr, Schreiner CM, Robbins DJ (2001) A freely diffusible form of Sonic hedgehog mediates long-range signalling. Nature 411(6838):716–720PubMedCrossRef
61.
Zurück zum Zitat Eaton S (2006) Release and trafficking of lipid-linked morphogens. Curr Opin Genet Dev 16(1):17–22PubMedCrossRef Eaton S (2006) Release and trafficking of lipid-linked morphogens. Curr Opin Genet Dev 16(1):17–22PubMedCrossRef
62.
Zurück zum Zitat Bijlsma MF, Borensztajn KS, Roelink H, Peppelenbosch MP, Spek CA (2007) Sonic hedgehog induces transcription-independent cytoskeletal rearrangement and migration regulated by arachidonate metabolites. Cell Signal 19(12):2596–2604PubMedCrossRef Bijlsma MF, Borensztajn KS, Roelink H, Peppelenbosch MP, Spek CA (2007) Sonic hedgehog induces transcription-independent cytoskeletal rearrangement and migration regulated by arachidonate metabolites. Cell Signal 19(12):2596–2604PubMedCrossRef
63.
Zurück zum Zitat Chinchilla P, Xiao L, Kazanietz MG, Riobo NA (2010) Hedgehog proteins activate pro-angiogenic responses in endothelial cells through non-canonical signaling pathways. Cell Cycle 9(3):570–579PubMedCrossRef Chinchilla P, Xiao L, Kazanietz MG, Riobo NA (2010) Hedgehog proteins activate pro-angiogenic responses in endothelial cells through non-canonical signaling pathways. Cell Cycle 9(3):570–579PubMedCrossRef
64.
Zurück zum Zitat Lavine KJ, Kovacs A, Ornitz DM (2008) Hedgehog signaling is critical for maintenance of the adult coronary vasculature in mice. J Clin Invest 118(7):2404–2414PubMed Lavine KJ, Kovacs A, Ornitz DM (2008) Hedgehog signaling is critical for maintenance of the adult coronary vasculature in mice. J Clin Invest 118(7):2404–2414PubMed
65.
Zurück zum Zitat Bijlsma MF, Groot AP, Oduro JP, Franken RJ, Schoenmakers SH, Peppelenbosch MP, Spek CA (2009) Hypoxia induces a hedgehog response mediated by HIF-1alpha. J Cell Mol Med 13(8B):2053–2060PubMedCrossRef Bijlsma MF, Groot AP, Oduro JP, Franken RJ, Schoenmakers SH, Peppelenbosch MP, Spek CA (2009) Hypoxia induces a hedgehog response mediated by HIF-1alpha. J Cell Mol Med 13(8B):2053–2060PubMedCrossRef
66.
Zurück zum Zitat Agouni A, Mostefai HA, Porro C, Carusio N, Favre J, Richard V, Henrion D, Martinez MC, Andriantsitohaina R (2007) Sonic hedgehog carried by microparticles corrects endothelial injury through nitric oxide release. FASEB J 21(11):2735–2741PubMedCrossRef Agouni A, Mostefai HA, Porro C, Carusio N, Favre J, Richard V, Henrion D, Martinez MC, Andriantsitohaina R (2007) Sonic hedgehog carried by microparticles corrects endothelial injury through nitric oxide release. FASEB J 21(11):2735–2741PubMedCrossRef
67.
Zurück zum Zitat Benameur T, Soleti R, Porro C, Andriantsitohaina R, Martinez MC (2010) Microparticles carrying Sonic hedgehog favor neovascularization through the activation of nitric oxide pathway in mice. PloS One 5(9):e12688PubMedCrossRef Benameur T, Soleti R, Porro C, Andriantsitohaina R, Martinez MC (2010) Microparticles carrying Sonic hedgehog favor neovascularization through the activation of nitric oxide pathway in mice. PloS One 5(9):e12688PubMedCrossRef
68.
Zurück zum Zitat Kusano KF, Pola R, Murayama T, Curry C, Kawamoto A, Iwakura A, Shintani S, Ii M, Asai J, Tkebuchava T, Thorne T, Takenaka H, Aikawa R, Goukassian D, von Samson P, Hamada H, Yoon YS, Silver M, Eaton E, Ma H, Heyd L, Kearney M, Munger W, Porter JA, Kishore R, Losordo DW (2005) Sonic hedgehog myocardial gene therapy: tissue repair through transient reconstitution of embryonic signaling. Nat Med 11(11):1197–1204PubMedCrossRef Kusano KF, Pola R, Murayama T, Curry C, Kawamoto A, Iwakura A, Shintani S, Ii M, Asai J, Tkebuchava T, Thorne T, Takenaka H, Aikawa R, Goukassian D, von Samson P, Hamada H, Yoon YS, Silver M, Eaton E, Ma H, Heyd L, Kearney M, Munger W, Porter JA, Kishore R, Losordo DW (2005) Sonic hedgehog myocardial gene therapy: tissue repair through transient reconstitution of embryonic signaling. Nat Med 11(11):1197–1204PubMedCrossRef
69.
Zurück zum Zitat Pola R, Ling LE, Silver M, Corbley MJ, Kearney M, Blake Pepinsky R, Shapiro R, Taylor FR, Baker DP, Asahara T, Isner JM (2001) The morphogen Sonic hedgehog is an indirect angiogenic agent upregulating two families of angiogenic growth factors. Nat Med 7(6):706–711PubMedCrossRef Pola R, Ling LE, Silver M, Corbley MJ, Kearney M, Blake Pepinsky R, Shapiro R, Taylor FR, Baker DP, Asahara T, Isner JM (2001) The morphogen Sonic hedgehog is an indirect angiogenic agent upregulating two families of angiogenic growth factors. Nat Med 7(6):706–711PubMedCrossRef
70.
Zurück zum Zitat Ahmed RP, Haider KH, Shujia J, Afzal MR, Ashraf M (2010) Sonic Hedgehog gene delivery to the rodent heart promotes angiogenesis via iNOS/netrin-1/PKC pathway. PloS One 5(1):e8576PubMedCrossRef Ahmed RP, Haider KH, Shujia J, Afzal MR, Ashraf M (2010) Sonic Hedgehog gene delivery to the rodent heart promotes angiogenesis via iNOS/netrin-1/PKC pathway. PloS One 5(1):e8576PubMedCrossRef
71.
Zurück zum Zitat Ueda K, Takano H, Niitsuma Y, Hasegawa H, Uchiyama R, Oka T, Miyazaki M, Nakaya H, Komuro I (2010) Sonic hedgehog is a critical mediator of erythropoietin-induced cardiac protection in mice. J Clin Invest 120(6):2016–2029PubMedCrossRef Ueda K, Takano H, Niitsuma Y, Hasegawa H, Uchiyama R, Oka T, Miyazaki M, Nakaya H, Komuro I (2010) Sonic hedgehog is a critical mediator of erythropoietin-induced cardiac protection in mice. J Clin Invest 120(6):2016–2029PubMedCrossRef
72.
Zurück zum Zitat Bijlsma MF, Leenders PJ, Janssen BJ, Peppelenbosch MP, Ten Cate H, Spek CA (2008) Endogenous hedgehog expression contributes to myocardial ischemia-reperfusion-induced injury. Exp Biol Med (Maywood) 233(8):989–996CrossRef Bijlsma MF, Leenders PJ, Janssen BJ, Peppelenbosch MP, Ten Cate H, Spek CA (2008) Endogenous hedgehog expression contributes to myocardial ischemia-reperfusion-induced injury. Exp Biol Med (Maywood) 233(8):989–996CrossRef
73.
Zurück zum Zitat Schumacher B, Pecher P, von Specht BU, Stegmann T (1998) Induction of neoangiogenesis in ischemic myocardium by human growth factors. First clinical results of a new treatment of coronary heart disease. Circulation 97:645–650PubMed Schumacher B, Pecher P, von Specht BU, Stegmann T (1998) Induction of neoangiogenesis in ischemic myocardium by human growth factors. First clinical results of a new treatment of coronary heart disease. Circulation 97:645–650PubMed
74.
Zurück zum Zitat Unger EF et al (2000) Effects of a single intracoronary injection of basic fibroblast growth factor in stable angina pectoris. Am J Cardiol 85:1414–1419PubMedCrossRef Unger EF et al (2000) Effects of a single intracoronary injection of basic fibroblast growth factor in stable angina pectoris. Am J Cardiol 85:1414–1419PubMedCrossRef
75.
Zurück zum Zitat Laham RJ, Chronos NA, Marilyn P, Leimbach ME, Udelson JE, Pearlman JD, Pettigrew RI, Whitehouse MJ, Yoshizawa C, Simons M (2000) Intracoronary basic fibroblast growth factor (FGF-2) in patients with ischemic heart disease: results of a Phase I open-label dose escalation study. J Am Coll Cardiol 36:2132–2139PubMedCrossRef Laham RJ, Chronos NA, Marilyn P, Leimbach ME, Udelson JE, Pearlman JD, Pettigrew RI, Whitehouse MJ, Yoshizawa C, Simons M (2000) Intracoronary basic fibroblast growth factor (FGF-2) in patients with ischemic heart disease: results of a Phase I open-label dose escalation study. J Am Coll Cardiol 36:2132–2139PubMedCrossRef
76.
Zurück zum Zitat Simons M, Annex BH, Laham RJ, Kleiman N, Henry T, Dauerman H, Udelson JE, Gervino EV, Pike M, Whitehouse MJ, Moon T, Chronos NA (2002) Pharmacological treatment of coronary artery disease with recombinant fibroblast growth factor-2. Double-blind, randomized, controlled clinical trial. Circulation 105:788–793PubMedCrossRef Simons M, Annex BH, Laham RJ, Kleiman N, Henry T, Dauerman H, Udelson JE, Gervino EV, Pike M, Whitehouse MJ, Moon T, Chronos NA (2002) Pharmacological treatment of coronary artery disease with recombinant fibroblast growth factor-2. Double-blind, randomized, controlled clinical trial. Circulation 105:788–793PubMedCrossRef
77.
Zurück zum Zitat Gibson C, Laham R, Giordano F (1999) Magnitude and location of new angiographically apparent coronary collaterals following intravenous VEGF administration. J Am Coll Cardiol 33(Suppl. A):65A (Abstract) Gibson C, Laham R, Giordano F (1999) Magnitude and location of new angiographically apparent coronary collaterals following intravenous VEGF administration. J Am Coll Cardiol 33(Suppl. A):65A (Abstract)
78.
Zurück zum Zitat Hendel RC, Henry TD, Rocha-Singh K, Isner JM, Kereiakes DJ, Giordano FJ, Simons M, Bonow RO (2000) Effect of intracoronary recombinant human vascular endothelial growth factor on myocardial perfusion: evidence for a dose-dependent effect. Circulation 101:118–121PubMed Hendel RC, Henry TD, Rocha-Singh K, Isner JM, Kereiakes DJ, Giordano FJ, Simons M, Bonow RO (2000) Effect of intracoronary recombinant human vascular endothelial growth factor on myocardial perfusion: evidence for a dose-dependent effect. Circulation 101:118–121PubMed
79.
Zurück zum Zitat Henry TD, Rocha-Singh K, Isner JM et al (2001) Results of intracoronary recombinant human vascular endothelial growth factor (rhVEGF) administration trial. Am Heart J 142:872–880PubMedCrossRef Henry TD, Rocha-Singh K, Isner JM et al (2001) Results of intracoronary recombinant human vascular endothelial growth factor (rhVEGF) administration trial. Am Heart J 142:872–880PubMedCrossRef
80.
Zurück zum Zitat Henry TD, Annex BH, McKendall GR, Azrin MA, Lopez JJ, Giordano FJ, Shah PK, Willerson JT, Benza RL, Berman DS, Gibson CM, Bajamonde A, Rundle AC, Fine J, McCluskey ER (2003) The VIVA trial. Vascular endothelial growth factor in ischemia for vascular angiogenesis. Circulation 107:1359–1365PubMedCrossRef Henry TD, Annex BH, McKendall GR, Azrin MA, Lopez JJ, Giordano FJ, Shah PK, Willerson JT, Benza RL, Berman DS, Gibson CM, Bajamonde A, Rundle AC, Fine J, McCluskey ER (2003) The VIVA trial. Vascular endothelial growth factor in ischemia for vascular angiogenesis. Circulation 107:1359–1365PubMedCrossRef
81.
Zurück zum Zitat Meier P, Gloekler S, de Marchi SF, Indermuehle A, Rutz T, Traupe T, Steck H, Vogel R, Seiler C (2009) Myocardial salvage through coronary collateral growth by granulocyte colony-stimulating factor in chronic coronary artery disease: a controlled randomized trial. Circulation 120(14):1355–1363PubMedCrossRef Meier P, Gloekler S, de Marchi SF, Indermuehle A, Rutz T, Traupe T, Steck H, Vogel R, Seiler C (2009) Myocardial salvage through coronary collateral growth by granulocyte colony-stimulating factor in chronic coronary artery disease: a controlled randomized trial. Circulation 120(14):1355–1363PubMedCrossRef
82.
Zurück zum Zitat Achilli F, Malafronte C, Lenatti L, Gentile F, Dadone V, Gibelli G, Maggiolini S, Squadroni L, Di Leo C, Burba I, Pesce M, Mircoli L, Capogrossi MC, Di Lelio A, Camisasca P, Morabito A, Colombo G, Pompilio G (2010) Granulocyte colony-stimulating factor attenuates left ventricular remodelling after acute anterior STEMI: results of the single-blind, randomized, placebo-controlled multicentre STem cEll mobilization in acute myocardial infarction (STEM-AMI) trial. Eur J Heart Fail 12(10):1111–1121PubMedCrossRef Achilli F, Malafronte C, Lenatti L, Gentile F, Dadone V, Gibelli G, Maggiolini S, Squadroni L, Di Leo C, Burba I, Pesce M, Mircoli L, Capogrossi MC, Di Lelio A, Camisasca P, Morabito A, Colombo G, Pompilio G (2010) Granulocyte colony-stimulating factor attenuates left ventricular remodelling after acute anterior STEMI: results of the single-blind, randomized, placebo-controlled multicentre STem cEll mobilization in acute myocardial infarction (STEM-AMI) trial. Eur J Heart Fail 12(10):1111–1121PubMedCrossRef
83.
Zurück zum Zitat Engelmann MG, Theiss HD, Theiss C, Henschel V, Huber A, Wintersperger BJ, Schoenberg SO, Steinbeck G, Franz WM (2010) G-CSF in patients suffering from late revascularised ST elevation myocardial infarction: final 1-year-results of the G-CSF-STEMI trial. Int J Cardiol 144(3):399–404PubMedCrossRef Engelmann MG, Theiss HD, Theiss C, Henschel V, Huber A, Wintersperger BJ, Schoenberg SO, Steinbeck G, Franz WM (2010) G-CSF in patients suffering from late revascularised ST elevation myocardial infarction: final 1-year-results of the G-CSF-STEMI trial. Int J Cardiol 144(3):399–404PubMedCrossRef
84.
Zurück zum Zitat Theiss HD, Brenner C, Engelmann MG, Zaruba MM, Huber B, Henschel V, Mansmann U, Wintersperger B, Reiser M, Steinbeck G, Franz WM (2010) Safety and efficacy of SITAgliptin plus GRanulocyte-colony-stimulating factor in patients suffering from acute myocardial infarction (SITAGRAMI-trial)—rationale, design and first interim analysis. Int J Cardiol 145(2):282–284PubMedCrossRef Theiss HD, Brenner C, Engelmann MG, Zaruba MM, Huber B, Henschel V, Mansmann U, Wintersperger B, Reiser M, Steinbeck G, Franz WM (2010) Safety and efficacy of SITAgliptin plus GRanulocyte-colony-stimulating factor in patients suffering from acute myocardial infarction (SITAGRAMI-trial)—rationale, design and first interim analysis. Int J Cardiol 145(2):282–284PubMedCrossRef
85.
Zurück zum Zitat Wang N, Tong G, Yang J, Zhou Z, Pan H, Huo Y, Xu J, Zhang X, Ling F, Li P (2009) Effect of hepatocyte growth-promoting factors on myocardial ischemia during exercise in patients with severe coronary artery disease. Int Heart J 50(3):291–299PubMedCrossRef Wang N, Tong G, Yang J, Zhou Z, Pan H, Huo Y, Xu J, Zhang X, Ling F, Li P (2009) Effect of hepatocyte growth-promoting factors on myocardial ischemia during exercise in patients with severe coronary artery disease. Int Heart J 50(3):291–299PubMedCrossRef
86.
Zurück zum Zitat Tang YD, Hasan F, Giordano FJ, Pfau S, Rinder HM, Katz SD (2009) Effects of recombinant human erythropoietin on platelet activation in acute myocardial infarction: results of a double-blind, placebo-controlled, randomized trial. Am Heart J 158(6):941–947PubMedCrossRef Tang YD, Hasan F, Giordano FJ, Pfau S, Rinder HM, Katz SD (2009) Effects of recombinant human erythropoietin on platelet activation in acute myocardial infarction: results of a double-blind, placebo-controlled, randomized trial. Am Heart J 158(6):941–947PubMedCrossRef
87.
Zurück zum Zitat Voors AA, Belonje AM, Zijlstra F, Hillege HL, Anker SD, Slart RH, Tio RA, van’t hof A, Jukema JW, Peels HO, Henriques JP, Ten Berg JM, Vos J, van Gilst WH, van Veldhuisen DJ (2010) A single dose of erythropoietin in ST-elevation myocardial infarction. Eur Heart J 31(21):2593–2600PubMedCrossRef Voors AA, Belonje AM, Zijlstra F, Hillege HL, Anker SD, Slart RH, Tio RA, van’t hof A, Jukema JW, Peels HO, Henriques JP, Ten Berg JM, Vos J, van Gilst WH, van Veldhuisen DJ (2010) A single dose of erythropoietin in ST-elevation myocardial infarction. Eur Heart J 31(21):2593–2600PubMedCrossRef
88.
Zurück zum Zitat Jacobs J (2007) Combating cardiovascular disease with angiogenic therapy. Drug Discov Today 12(23–24):1040–1045PubMedCrossRef Jacobs J (2007) Combating cardiovascular disease with angiogenic therapy. Drug Discov Today 12(23–24):1040–1045PubMedCrossRef
89.
Zurück zum Zitat Eppler SM, Combs DL, Henry TD, Lopez JJ, Ellis SG, Yi JH, Annex McCluskey ER, Zioncheck TF (2002) A target-mediated model to describe the pharmacokinetics and hemodynamic effects of recombinant human vascular endothelial growth factor in humans. Clin Pharmacol Ther 72:20–32PubMedCrossRef Eppler SM, Combs DL, Henry TD, Lopez JJ, Ellis SG, Yi JH, Annex McCluskey ER, Zioncheck TF (2002) A target-mediated model to describe the pharmacokinetics and hemodynamic effects of recombinant human vascular endothelial growth factor in humans. Clin Pharmacol Ther 72:20–32PubMedCrossRef
90.
Zurück zum Zitat Cleland JL, Duenas ET, Park A, Daugherty A, Kahn J, Kowalski J, Cuthbertson A (2001) Development of poly-(d, l-lactide–coglycolide) microsphere formulations containing recombinant human vascular endothelial growth factor to promote local angiogenesis. J Control Release 72:13–24PubMedCrossRef Cleland JL, Duenas ET, Park A, Daugherty A, Kahn J, Kowalski J, Cuthbertson A (2001) Development of poly-(d, l-lactide–coglycolide) microsphere formulations containing recombinant human vascular endothelial growth factor to promote local angiogenesis. J Control Release 72:13–24PubMedCrossRef
91.
Zurück zum Zitat Kastrup J (2007) Clinical vascular growth factor therapy for neovascularization in patients with coronary artery disease. In: Deindl E, Kupatt C (eds) Therapeutic neovascularization—quo vadis?. Springer, Dordrecht, pp 1–22CrossRef Kastrup J (2007) Clinical vascular growth factor therapy for neovascularization in patients with coronary artery disease. In: Deindl E, Kupatt C (eds) Therapeutic neovascularization—quo vadis?. Springer, Dordrecht, pp 1–22CrossRef
92.
Zurück zum Zitat Udelson JE, Dilsizian V, Laham RJ, Chronos N, Vansant J, Blais M, Galt JR, Pike M, Yoshizawa C, Simons M (2000) Therapeutic angiogenesis with recombinant fibroblast growth factor-2 improves stress and rest myocardial perfusion abnormalities in patients with severe chronic coronary artery disease. Circulation 102:1605–1610PubMed Udelson JE, Dilsizian V, Laham RJ, Chronos N, Vansant J, Blais M, Galt JR, Pike M, Yoshizawa C, Simons M (2000) Therapeutic angiogenesis with recombinant fibroblast growth factor-2 improves stress and rest myocardial perfusion abnormalities in patients with severe chronic coronary artery disease. Circulation 102:1605–1610PubMed
93.
Zurück zum Zitat Laham RJ, Rezaee M, Post M, Sellke FW, Braeckman RA, Hung D, Simons M (1999) Intracoronary and intravenous administration of basic fibroblast growth factor: myocardial and tissue distribution. Drug Metab Dispos 27(7):821–826PubMed Laham RJ, Rezaee M, Post M, Sellke FW, Braeckman RA, Hung D, Simons M (1999) Intracoronary and intravenous administration of basic fibroblast growth factor: myocardial and tissue distribution. Drug Metab Dispos 27(7):821–826PubMed
94.
Zurück zum Zitat Wang JS (1996) Basic fibroblast growth factor for stimulation of bone formation in osteoinductive or conductive implants. Acta Orthop Scand Suppl 269:1–33PubMed Wang JS (1996) Basic fibroblast growth factor for stimulation of bone formation in osteoinductive or conductive implants. Acta Orthop Scand Suppl 269:1–33PubMed
95.
Zurück zum Zitat Post MJ, Laham RJ, Sellke FW, Simons M (2001) Therapeutic angiogenesis in cardiology using protein formulations. Cardiovasc Res 49:522–531PubMedCrossRef Post MJ, Laham RJ, Sellke FW, Simons M (2001) Therapeutic angiogenesis in cardiology using protein formulations. Cardiovasc Res 49:522–531PubMedCrossRef
96.
Zurück zum Zitat Pérez-Ramirez B, Guziewicz N, Simler R (2010) Preformulation research: assessing protein solution behavior during early development. In: Jameel F, Hershenson S (eds) Formulation and process development strategies for manufacturing biopharmaceuticals. Wiley, Hoboken Pérez-Ramirez B, Guziewicz N, Simler R (2010) Preformulation research: assessing protein solution behavior during early development. In: Jameel F, Hershenson S (eds) Formulation and process development strategies for manufacturing biopharmaceuticals. Wiley, Hoboken
97.
Zurück zum Zitat Arakawa T, Timasheff SN (1985) The stabilization of proteins by osmolytes. Biophys J 47(3):411–414PubMedCrossRef Arakawa T, Timasheff SN (1985) The stabilization of proteins by osmolytes. Biophys J 47(3):411–414PubMedCrossRef
98.
Zurück zum Zitat Cleland JL, Powell MF, Shire SJ (1993) The development of stable protein formulations: a close look at protein aggregation, deamidation, and oxidation. Crit Rev Ther Drug Carrier Syst 10(4):307–377PubMed Cleland JL, Powell MF, Shire SJ (1993) The development of stable protein formulations: a close look at protein aggregation, deamidation, and oxidation. Crit Rev Ther Drug Carrier Syst 10(4):307–377PubMed
99.
Zurück zum Zitat Ferrara N (2004) Vascular endothelial growth factor: basic science and clinical progress. Endocr Rev 25:581–611PubMedCrossRef Ferrara N (2004) Vascular endothelial growth factor: basic science and clinical progress. Endocr Rev 25:581–611PubMedCrossRef
100.
Zurück zum Zitat Ferrara N, Gerber HP, LeCouter J (2003) The biology of VEGF and its receptors. Nat Med 9:669–676PubMedCrossRef Ferrara N, Gerber HP, LeCouter J (2003) The biology of VEGF and its receptors. Nat Med 9:669–676PubMedCrossRef
101.
Zurück zum Zitat Carmeliet P (2000) VEGF gene therapy: stimulating angiogenesis or angioma-genesis? Nat Med 6(10):1102–1103PubMedCrossRef Carmeliet P (2000) VEGF gene therapy: stimulating angiogenesis or angioma-genesis? Nat Med 6(10):1102–1103PubMedCrossRef
102.
Zurück zum Zitat Lee H, Chung HJ, Park TG (2007) Perspectives on: local and sustained delivery of angiogenic growth factors. J Bioact Compat Polym 22:89–114CrossRef Lee H, Chung HJ, Park TG (2007) Perspectives on: local and sustained delivery of angiogenic growth factors. J Bioact Compat Polym 22:89–114CrossRef
103.
Zurück zum Zitat Lee KY, Yuk SH (2007) Polymeric protein delivery systems. Progr Polymer Sci 32(7):669–697CrossRef Lee KY, Yuk SH (2007) Polymeric protein delivery systems. Progr Polymer Sci 32(7):669–697CrossRef
104.
Zurück zum Zitat Tabata Y, Miyao M, Ozeki M, Ikada Y (2000) Controlled release of vascular endothelial growth factor by use of collagen hydrogels. J Biomater Sci Polym Ed 11(9):915–930PubMedCrossRef Tabata Y, Miyao M, Ozeki M, Ikada Y (2000) Controlled release of vascular endothelial growth factor by use of collagen hydrogels. J Biomater Sci Polym Ed 11(9):915–930PubMedCrossRef
106.
Zurück zum Zitat Patel ZS, Ueda H, Yamamoto M, Tabata Y, Mikos AG (2008) In vitro and in vivo release of vascular endothelial growth factor from gelatin microparticles and biodegradable composite scaffolds. Pharm Res 25(10):2370–2378PubMedCrossRef Patel ZS, Ueda H, Yamamoto M, Tabata Y, Mikos AG (2008) In vitro and in vivo release of vascular endothelial growth factor from gelatin microparticles and biodegradable composite scaffolds. Pharm Res 25(10):2370–2378PubMedCrossRef
107.
Zurück zum Zitat Epstein SE, Fuchs S, Zhou YF, Baffour R, Kornowski R (2001) Therapeutic interventions for enhancing collateral development by administration of growth factors: basic principles, early results and potential hazards. Cardiovasc Res 49:532–542PubMedCrossRef Epstein SE, Fuchs S, Zhou YF, Baffour R, Kornowski R (2001) Therapeutic interventions for enhancing collateral development by administration of growth factors: basic principles, early results and potential hazards. Cardiovasc Res 49:532–542PubMedCrossRef
108.
Zurück zum Zitat Lazarous DF, Shou M, Scheinowitz M, Hodge E, Thirumurti V, Kitsiou AN, Stiber JA, Lobo AD, Hunsberger S, Guetta E, Epstein SE, Unger EF (1996) Comparative effects of basic fibroblast growth factor and vascular endothelial growth factor on coronary collateral development and the arterial response to injury. Circulation 94:1074–1082PubMed Lazarous DF, Shou M, Scheinowitz M, Hodge E, Thirumurti V, Kitsiou AN, Stiber JA, Lobo AD, Hunsberger S, Guetta E, Epstein SE, Unger EF (1996) Comparative effects of basic fibroblast growth factor and vascular endothelial growth factor on coronary collateral development and the arterial response to injury. Circulation 94:1074–1082PubMed
109.
Zurück zum Zitat Ehrbar M, Djonov V, Schnell C, Tschanz SA, Martiny-Baron G, Schenk U, Wood J, Burri PH, Hubbell JA, Zisch AH (2004) Cell-demanded liberation of VEGF121 from fibrin implants induces local and controlled blood vessel growth. Circ Res 94:1124–1132PubMedCrossRef Ehrbar M, Djonov V, Schnell C, Tschanz SA, Martiny-Baron G, Schenk U, Wood J, Burri PH, Hubbell JA, Zisch AH (2004) Cell-demanded liberation of VEGF121 from fibrin implants induces local and controlled blood vessel growth. Circ Res 94:1124–1132PubMedCrossRef
110.
Zurück zum Zitat Laurens N, Koolwijk P, de Maat MP (2006) Fibrin structure and wound healing. J Thromb Haemost 4(5):932–939PubMedCrossRef Laurens N, Koolwijk P, de Maat MP (2006) Fibrin structure and wound healing. J Thromb Haemost 4(5):932–939PubMedCrossRef
111.
Zurück zum Zitat Peattie RA, Nayate AP, Firpo MA, Shelby J, Fisher RJ, Prestwich GD (2004) Stimulation of in vivo angiogenesis by cytokine-loaded hyaluronic acid hydrogel implants. Biomaterials 25:2789–2798PubMedCrossRef Peattie RA, Nayate AP, Firpo MA, Shelby J, Fisher RJ, Prestwich GD (2004) Stimulation of in vivo angiogenesis by cytokine-loaded hyaluronic acid hydrogel implants. Biomaterials 25:2789–2798PubMedCrossRef
112.
Zurück zum Zitat Peattie RA, Rieke ER, Hewett EM, Fisher RJ, Shu XZ, Prestwich GD (2006) Dual growth factor-induced angiogenesis in vivo using hyaluronan hydrogel implants. Biomaterials 27(9):1868–1875PubMedCrossRef Peattie RA, Rieke ER, Hewett EM, Fisher RJ, Shu XZ, Prestwich GD (2006) Dual growth factor-induced angiogenesis in vivo using hyaluronan hydrogel implants. Biomaterials 27(9):1868–1875PubMedCrossRef
113.
Zurück zum Zitat Cai SS, Liu YC, Shu XZ, Prestwich GD (2005) Injectable glycosaminoglycan hydrogels for controlled release of human basic fibroblast growth factor. Biomaterials 26:6054–6067PubMedCrossRef Cai SS, Liu YC, Shu XZ, Prestwich GD (2005) Injectable glycosaminoglycan hydrogels for controlled release of human basic fibroblast growth factor. Biomaterials 26:6054–6067PubMedCrossRef
114.
Zurück zum Zitat Elçin YM, Dixit V, Gitnick T (2001) Extensive in vivo angiogenesis following controlled release of human vascular endothelial cell growth factor: Implications for tissue engineering and wound healing. Artif Organs 25(7):558–565PubMedCrossRef Elçin YM, Dixit V, Gitnick T (2001) Extensive in vivo angiogenesis following controlled release of human vascular endothelial cell growth factor: Implications for tissue engineering and wound healing. Artif Organs 25(7):558–565PubMedCrossRef
115.
Zurück zum Zitat Gu F, Amsden B, Neufeld R (2004) Sustained delivery of vascular endothelial growth factor with alginate beads. J Control Release 96(3):463–472PubMedCrossRef Gu F, Amsden B, Neufeld R (2004) Sustained delivery of vascular endothelial growth factor with alginate beads. J Control Release 96(3):463–472PubMedCrossRef
116.
Zurück zum Zitat Jay SM, Saltzman WM (2009) Controlled delivery of VEGF via modulation of alginate microparticle ionic crosslinking. J Control Release 134:26–34PubMedCrossRef Jay SM, Saltzman WM (2009) Controlled delivery of VEGF via modulation of alginate microparticle ionic crosslinking. J Control Release 134:26–34PubMedCrossRef
117.
Zurück zum Zitat Hao X, Silva EA, Månsson-Broberg A, Grinnemo KH, Siddiqui AJ, Dellgren G, Wärdell E, Brodin LA, Mooney DJ, Sylvén C (2007) Angiogenic effects of sequential release of VEGF-A165 and PDGF-BB with alginate hydrogels after myocardial infarction. Cardiovasc Res 75:178–185PubMedCrossRef Hao X, Silva EA, Månsson-Broberg A, Grinnemo KH, Siddiqui AJ, Dellgren G, Wärdell E, Brodin LA, Mooney DJ, Sylvén C (2007) Angiogenic effects of sequential release of VEGF-A165 and PDGF-BB with alginate hydrogels after myocardial infarction. Cardiovasc Res 75:178–185PubMedCrossRef
118.
Zurück zum Zitat Matsusaki M, Sakaguchi H, Serizawa T, Akashi M (2007) Controlled release of vascular endothelial growth factor from alginate hydrogels nano-coated with polyelectrolyte multilayer films. J Biomater Sci Polym Ed 18(6):775–783PubMedCrossRef Matsusaki M, Sakaguchi H, Serizawa T, Akashi M (2007) Controlled release of vascular endothelial growth factor from alginate hydrogels nano-coated with polyelectrolyte multilayer films. J Biomater Sci Polym Ed 18(6):775–783PubMedCrossRef
119.
Zurück zum Zitat Silva EA, Mooney DJ (2007) Spatiotemporal control of vascular endothelial growth factor delivery from injectable hydrogels enhances angiogenesis. J Thromb Haemost 5:590–598PubMedCrossRef Silva EA, Mooney DJ (2007) Spatiotemporal control of vascular endothelial growth factor delivery from injectable hydrogels enhances angiogenesis. J Thromb Haemost 5:590–598PubMedCrossRef
120.
Zurück zum Zitat Zisch AH, Lutolf MP, Hubbell JA (2003) Biopolymeric delivery matrices for angiogenic growth factors. Cardiovasc Pathol 12:295–310PubMedCrossRef Zisch AH, Lutolf MP, Hubbell JA (2003) Biopolymeric delivery matrices for angiogenic growth factors. Cardiovasc Pathol 12:295–310PubMedCrossRef
121.
Zurück zum Zitat Draget KI, Skjåk-Bræk G, Smidsrød O (1997) Alginate based new materials. Int J Biol Macromol 21:47–55PubMedCrossRef Draget KI, Skjåk-Bræk G, Smidsrød O (1997) Alginate based new materials. Int J Biol Macromol 21:47–55PubMedCrossRef
122.
Zurück zum Zitat Khor E, Lim LY (2003) Implantable applications of chitin and chitosan. Biomaterials 24(13):2339–2349PubMedCrossRef Khor E, Lim LY (2003) Implantable applications of chitin and chitosan. Biomaterials 24(13):2339–2349PubMedCrossRef
123.
Zurück zum Zitat Fujita M, Ishihara M, Morimoto Y, Simizu M, Saito Y, Yura H, Matsui T, Takase B, Hattori H, Kanatani Y, Kikuchi M, Maehara T (2005) Efficacy of photocrosslinkable chitosan hydrogel containing fibroblast growth factor-2 in a rabbit model of chronic myocardial infarction. J Surg Res 126(1):27–33PubMedCrossRef Fujita M, Ishihara M, Morimoto Y, Simizu M, Saito Y, Yura H, Matsui T, Takase B, Hattori H, Kanatani Y, Kikuchi M, Maehara T (2005) Efficacy of photocrosslinkable chitosan hydrogel containing fibroblast growth factor-2 in a rabbit model of chronic myocardial infarction. J Surg Res 126(1):27–33PubMedCrossRef
124.
Zurück zum Zitat Wang H, Zhang X, Li Y, Ma Y, Zhang Y, Liu Z, Zhou J, Lin Q, Wang Y, Duan C, Wang C (2010) Improved myocardial performance in infarcted rat heart by co-injection of basic fibroblast growth factor with temperature-responsive chitosan hydrogel. J Heart Lung Transplant 29(8):881–887PubMedCrossRef Wang H, Zhang X, Li Y, Ma Y, Zhang Y, Liu Z, Zhou J, Lin Q, Wang Y, Duan C, Wang C (2010) Improved myocardial performance in infarcted rat heart by co-injection of basic fibroblast growth factor with temperature-responsive chitosan hydrogel. J Heart Lung Transplant 29(8):881–887PubMedCrossRef
125.
Zurück zum Zitat King TW, Patrick CW (2000) Development and in vitro characterization of vascular endothelial growth factor (VEGF)-loaded poly(dl-lactic-co-glycolic acid)/poly(ethylene glycol) microspheres using a solid encapsulation/single emulsion/solvent extraction technique. J Biomed Mater Res 51(3):383–390PubMedCrossRef King TW, Patrick CW (2000) Development and in vitro characterization of vascular endothelial growth factor (VEGF)-loaded poly(dl-lactic-co-glycolic acid)/poly(ethylene glycol) microspheres using a solid encapsulation/single emulsion/solvent extraction technique. J Biomed Mater Res 51(3):383–390PubMedCrossRef
126.
Zurück zum Zitat Patil SD, Papadmitrakopoulos F, Burgess DJ (2007) Concurrent delivery of dexamethasone and VEGF for localized inflammation control and angiogenesis. J Control Release 117(1):68–79PubMedCrossRef Patil SD, Papadmitrakopoulos F, Burgess DJ (2007) Concurrent delivery of dexamethasone and VEGF for localized inflammation control and angiogenesis. J Control Release 117(1):68–79PubMedCrossRef
127.
Zurück zum Zitat Rocha FG, Sundback CA, Krebs NJ, Leach JK, Mooney DJ, Ashley SW, Vacanti JP, Whang EE (2008) The efffect of sustained delivery of vascular endothelial growth factor on angiogenesis in tissue-engineered intestine. Biomaterials 29(19):2884–2890PubMedCrossRef Rocha FG, Sundback CA, Krebs NJ, Leach JK, Mooney DJ, Ashley SW, Vacanti JP, Whang EE (2008) The efffect of sustained delivery of vascular endothelial growth factor on angiogenesis in tissue-engineered intestine. Biomaterials 29(19):2884–2890PubMedCrossRef
128.
Zurück zum Zitat Jaklenec A, Hinckfuss A, Bilgen B, Ciombor DM, Aaron R, Mathiowitz E (2008) Sequential release of bioactive IGF-I and TGF-b1 from PLGA microsphere-based scaffolds. Biomaterials 29:1518–1525PubMedCrossRef Jaklenec A, Hinckfuss A, Bilgen B, Ciombor DM, Aaron R, Mathiowitz E (2008) Sequential release of bioactive IGF-I and TGF-b1 from PLGA microsphere-based scaffolds. Biomaterials 29:1518–1525PubMedCrossRef
129.
Zurück zum Zitat Ennett AB, Kaigler D, Mooney DJ (2006) Temporally regulated delivery of VEGF in vitro and in vivo. J Biomed Mater Res A 79A(1):176–184CrossRef Ennett AB, Kaigler D, Mooney DJ (2006) Temporally regulated delivery of VEGF in vitro and in vivo. J Biomed Mater Res A 79A(1):176–184CrossRef
130.
Zurück zum Zitat Formiga FR, Pelacho B, Garbayo E, Abizanda G, Gavira JJ, Simon-Yarza T, Mazo M, Tamayo E, Jauquicoa C, Ortiz-de-Solorzano C, Prósper F, Blanco-Prieto MJ (2010) Sustained release of VEGF through PLGA microparticles improves vasculogenesis and tissue remodeling in an acute myocardial ischemia–reperfusion model. J Control Release 147:30–37PubMedCrossRef Formiga FR, Pelacho B, Garbayo E, Abizanda G, Gavira JJ, Simon-Yarza T, Mazo M, Tamayo E, Jauquicoa C, Ortiz-de-Solorzano C, Prósper F, Blanco-Prieto MJ (2010) Sustained release of VEGF through PLGA microparticles improves vasculogenesis and tissue remodeling in an acute myocardial ischemia–reperfusion model. J Control Release 147:30–37PubMedCrossRef
131.
Zurück zum Zitat Tae G, Scatena M, Stayton PS, Hoffman AS (2006) PEG-cross-linked heparin is an affinity hydrogel for sustained release of vascular endothelial growth factor. J Biomater Sci Polym Ed 17(1–2):187–197PubMedCrossRef Tae G, Scatena M, Stayton PS, Hoffman AS (2006) PEG-cross-linked heparin is an affinity hydrogel for sustained release of vascular endothelial growth factor. J Biomater Sci Polym Ed 17(1–2):187–197PubMedCrossRef
132.
Zurück zum Zitat Cai SS, Liu YC, Shu XZ, Prestwich GD (2005) Injectable glycosaminoglycan hydrogels for controlled release of human basic fibroblast growth factor. Biomaterials 26(30):6054–6067PubMedCrossRef Cai SS, Liu YC, Shu XZ, Prestwich GD (2005) Injectable glycosaminoglycan hydrogels for controlled release of human basic fibroblast growth factor. Biomaterials 26(30):6054–6067PubMedCrossRef
133.
Zurück zum Zitat Norton LW, Tegnell E, Toporek SS, Reichert WM (2005) In vitro characterization of vascular endothelial growth factor and dexamethasone releasing hydrogels for implantable probe coatings. Biomaterials 26(16):3285–3297PubMedCrossRef Norton LW, Tegnell E, Toporek SS, Reichert WM (2005) In vitro characterization of vascular endothelial growth factor and dexamethasone releasing hydrogels for implantable probe coatings. Biomaterials 26(16):3285–3297PubMedCrossRef
134.
Zurück zum Zitat Yamaguchi N, Zhang L, Chae BS, Palla CS, Furst EM, Kiick KL (2007) Growth factor mediated assembly of cell receptor-responsive hydrogels. J Am Chem Soc 129(11):3040–3041PubMedCrossRef Yamaguchi N, Zhang L, Chae BS, Palla CS, Furst EM, Kiick KL (2007) Growth factor mediated assembly of cell receptor-responsive hydrogels. J Am Chem Soc 129(11):3040–3041PubMedCrossRef
135.
Zurück zum Zitat Zisch AH, Lutolf MP, Ehrbar M, Raeber GP, Rizzi SC, Davies N, Schmökel H, Bezuidenhout D, Djonov V, Zilla P, Hubbell JA (2003) Cell-demanded release of VEGF from synthetic, biointeractive cell ingrowth matrices for vascularized tissue growth. FASEB J 17:2260–2262PubMed Zisch AH, Lutolf MP, Ehrbar M, Raeber GP, Rizzi SC, Davies N, Schmökel H, Bezuidenhout D, Djonov V, Zilla P, Hubbell JA (2003) Cell-demanded release of VEGF from synthetic, biointeractive cell ingrowth matrices for vascularized tissue growth. FASEB J 17:2260–2262PubMed
136.
Zurück zum Zitat Matsusaki M, Akashi M (2005) Novel functional biodegradable polymer IV: pHsensitive controlled release of fibroblast growth factor-2 from a poly(γ-glutamic acid)-sulfonate matrix for tissue engineering. Biomacromolecules 6:3351–3356PubMedCrossRef Matsusaki M, Akashi M (2005) Novel functional biodegradable polymer IV: pHsensitive controlled release of fibroblast growth factor-2 from a poly(γ-glutamic acid)-sulfonate matrix for tissue engineering. Biomacromolecules 6:3351–3356PubMedCrossRef
137.
Zurück zum Zitat Layman H, Spiga MG, Brooks T, Pham S, Webster KA, Andreopoulos FM (2007) The effect of the controlled release of basic fibroblast growth factor from ionic gelatin-based hydrogels on angiogenesis in a murine critical limb ischemic model. Biomaterials 28(16):2646–2654PubMedCrossRef Layman H, Spiga MG, Brooks T, Pham S, Webster KA, Andreopoulos FM (2007) The effect of the controlled release of basic fibroblast growth factor from ionic gelatin-based hydrogels on angiogenesis in a murine critical limb ischemic model. Biomaterials 28(16):2646–2654PubMedCrossRef
138.
Zurück zum Zitat Kavanagh CA, Gorelova TA, Selezneva II, Rochev YA, Dawson KA, Gallagher WM, Gorelov AV, Keenan AK (2005) Poly(N-isopropylacrylamide) copolymer films as vehicles for the sustained delivery of proteins to vascular endothelial cells. J Biomed Mater Res A 72(1):25–35PubMedCrossRef Kavanagh CA, Gorelova TA, Selezneva II, Rochev YA, Dawson KA, Gallagher WM, Gorelov AV, Keenan AK (2005) Poly(N-isopropylacrylamide) copolymer films as vehicles for the sustained delivery of proteins to vascular endothelial cells. J Biomed Mater Res A 72(1):25–35PubMedCrossRef
139.
Zurück zum Zitat Garbern JC, Minami E, Stayton PS, Murry CE (2011) Delivery of basic fibroblast growth factor with a pH-responsive, injectable hydrogel to improve angiogenesis in infarcted myocardium. Biomaterials 32(9):2407–2416PubMedCrossRef Garbern JC, Minami E, Stayton PS, Murry CE (2011) Delivery of basic fibroblast growth factor with a pH-responsive, injectable hydrogel to improve angiogenesis in infarcted myocardium. Biomaterials 32(9):2407–2416PubMedCrossRef
140.
Zurück zum Zitat Engel FB, Hsieh PC, Lee RT, Keating MT (2006) FGF1/p38 MAP kinase inhibitor therapy induces cardiomyocyte mitosis, reduces scarring, and rescues function after myocardial infarction. Proc Natl Acad Sci USA 103(42):15546–15551PubMedCrossRef Engel FB, Hsieh PC, Lee RT, Keating MT (2006) FGF1/p38 MAP kinase inhibitor therapy induces cardiomyocyte mitosis, reduces scarring, and rescues function after myocardial infarction. Proc Natl Acad Sci USA 103(42):15546–15551PubMedCrossRef
141.
Zurück zum Zitat Sellke FW, Li J, Stamler A, Lopez JJ, Thomas KA, Simons M (1996) Angiogenesis induced by acidic fibroblast growth factor as an alternative method of revascularization for chronic myocardial ischemia. Surgery 120(2):182–188PubMedCrossRef Sellke FW, Li J, Stamler A, Lopez JJ, Thomas KA, Simons M (1996) Angiogenesis induced by acidic fibroblast growth factor as an alternative method of revascularization for chronic myocardial ischemia. Surgery 120(2):182–188PubMedCrossRef
142.
Zurück zum Zitat Iwakura A, Fujita M, Kataoka K, Tambara K, Sakakibara Y, Komeda M, Tabata Y (2003) Intramyocardial sustained delivery of basic fibroblast growth factor improves angiogenesis and ventricular function in a rat infarct model. Heart Vessels 18(2):93–99PubMedCrossRef Iwakura A, Fujita M, Kataoka K, Tambara K, Sakakibara Y, Komeda M, Tabata Y (2003) Intramyocardial sustained delivery of basic fibroblast growth factor improves angiogenesis and ventricular function in a rat infarct model. Heart Vessels 18(2):93–99PubMedCrossRef
143.
Zurück zum Zitat Shao ZQ, Takaji K, Katayama Y, Kunitomo R, Sakaguchi H, Lai ZF, Kawasuji M (2006) Effects of intramyocardial administration of slow-release basic fibroblast growth factor on angiogenesis and ventricular remodeling in a rat infarct model. Circ J 70:471–477PubMedCrossRef Shao ZQ, Takaji K, Katayama Y, Kunitomo R, Sakaguchi H, Lai ZF, Kawasuji M (2006) Effects of intramyocardial administration of slow-release basic fibroblast growth factor on angiogenesis and ventricular remodeling in a rat infarct model. Circ J 70:471–477PubMedCrossRef
144.
Zurück zum Zitat Sakakibara Y, Tambara K, Sakaguchi G, Lu F, Yamamoto M, Nishimura K, Tabata Y, Komeda M (2003) Toward surgical angiogenesis using slow-released basic fibroblast growth factor. Eur J Cardiothorac Surg 24(1):105–111; discussion 112 Sakakibara Y, Tambara K, Sakaguchi G, Lu F, Yamamoto M, Nishimura K, Tabata Y, Komeda M (2003) Toward surgical angiogenesis using slow-released basic fibroblast growth factor. Eur J Cardiothorac Surg 24(1):105–111; discussion 112
145.
Zurück zum Zitat Scott RC, Rosano JM, Ivanov Z, Wang B, Chong PL, Issekutz AC, Crabbe DL, Kiani MF (2009) Targeting VEGF-encapsulated immunoliposomes to MI heart improves vascularity and cardiac function. FASEB J 23(10):3361–3367PubMedCrossRef Scott RC, Rosano JM, Ivanov Z, Wang B, Chong PL, Issekutz AC, Crabbe DL, Kiani MF (2009) Targeting VEGF-encapsulated immunoliposomes to MI heart improves vascularity and cardiac function. FASEB J 23(10):3361–3367PubMedCrossRef
146.
Zurück zum Zitat Zhang J, Ding L, Zhao Y, Sun W, Chen B, Lin H, Wang X, Zhang L, Xu B, Dai J (2009) Collagen-targeting vascular endothelial growth factor improves cardiac performance after myocardial infarction. Circulation 119:1776–1784PubMedCrossRef Zhang J, Ding L, Zhao Y, Sun W, Chen B, Lin H, Wang X, Zhang L, Xu B, Dai J (2009) Collagen-targeting vascular endothelial growth factor improves cardiac performance after myocardial infarction. Circulation 119:1776–1784PubMedCrossRef
147.
Zurück zum Zitat Wu J, Zeng F, Huang XP, Chung JC, Konecny F, Weisel RD, Li RK (2011) Infarct stabilization and cardiac repair with a VEGF-conjugated, injectable hydrogel. Biomaterials 32(2):579–586PubMedCrossRef Wu J, Zeng F, Huang XP, Chung JC, Konecny F, Weisel RD, Li RK (2011) Infarct stabilization and cardiac repair with a VEGF-conjugated, injectable hydrogel. Biomaterials 32(2):579–586PubMedCrossRef
148.
Zurück zum Zitat Oh KS, Song JY, Yoon SJ, Park Y, Kim D, Yuk SH (2010) Temperature-induced gel formation of core/shell nanoparticles for the regeneration of ischemic heart. J Control Release 146(2):207–211PubMedCrossRef Oh KS, Song JY, Yoon SJ, Park Y, Kim D, Yuk SH (2010) Temperature-induced gel formation of core/shell nanoparticles for the regeneration of ischemic heart. J Control Release 146(2):207–211PubMedCrossRef
149.
Zurück zum Zitat Wang T, Jiang XJ, Lin T, Ren S, Li XY, Zhang XZ, Tang QZ (2009) The inhibition of postinfarct ventricle remodeling without polycythaemia following local sustained intramyocardial delivery of erythropoietin within a supramolecular hydrogel. Biomaterials 30(25):4161–4167PubMedCrossRef Wang T, Jiang XJ, Lin T, Ren S, Li XY, Zhang XZ, Tang QZ (2009) The inhibition of postinfarct ventricle remodeling without polycythaemia following local sustained intramyocardial delivery of erythropoietin within a supramolecular hydrogel. Biomaterials 30(25):4161–4167PubMedCrossRef
150.
Zurück zum Zitat Silva AKA, Richard C, Bessodes M, Scherman D, Merten OW (2009) Growth factor delivery approaches in hydrogels. Biomacromolecules 10(1):9–18PubMedCrossRef Silva AKA, Richard C, Bessodes M, Scherman D, Merten OW (2009) Growth factor delivery approaches in hydrogels. Biomacromolecules 10(1):9–18PubMedCrossRef
151.
152.
Zurück zum Zitat Tabata Y, Hijikata S, Ikada Y (1994) Enhanced vascularization and tissue granulation by basic fibroblast growth factor impregnated in gelatin hydrogels. J Control Release 31:189–199CrossRef Tabata Y, Hijikata S, Ikada Y (1994) Enhanced vascularization and tissue granulation by basic fibroblast growth factor impregnated in gelatin hydrogels. J Control Release 31:189–199CrossRef
153.
Zurück zum Zitat Pharmacopeia U (2008) USP 31, NF 26. Port City Press, Baltimore Pharmacopeia U (2008) USP 31, NF 26. Port City Press, Baltimore
154.
Zurück zum Zitat Sakakibara Y, Tambara K, Sakaguchi G, Lu F, Yamamoto M, Nishimura K, Tabata Y, Komeda M (2003) Toward surgical angiogenesis using slow-released basic fibroblast growth factor. Eur J Cardiothorac Surg 24(1):105–111PubMedCrossRef Sakakibara Y, Tambara K, Sakaguchi G, Lu F, Yamamoto M, Nishimura K, Tabata Y, Komeda M (2003) Toward surgical angiogenesis using slow-released basic fibroblast growth factor. Eur J Cardiothorac Surg 24(1):105–111PubMedCrossRef
155.
Zurück zum Zitat Rask F, Dallabrida SM, Ismail NS, Amoozgar Z, Yeo Y, Rupnick MA, Radisic M (2010) Photocrosslinkable chitosan modified with angiopoietin-1 peptide, QHREDGS, promotes survival of neonatal rat heart cells. J Biomed Mater Res A 95(1):105–117PubMed Rask F, Dallabrida SM, Ismail NS, Amoozgar Z, Yeo Y, Rupnick MA, Radisic M (2010) Photocrosslinkable chitosan modified with angiopoietin-1 peptide, QHREDGS, promotes survival of neonatal rat heart cells. J Biomed Mater Res A 95(1):105–117PubMed
156.
Zurück zum Zitat Lin X, Fujita M, Kanemitsu N, Kimura Y, Tambara K, Premaratne GU, Nagasawa A, Ikeda T, Tabata Y, Komeda M (2007) Sustained-release erythropoietin ameliorates cardiac function in infarcted rat-heart without inducing polycythemia. Circ J 71(1):132–137PubMedCrossRef Lin X, Fujita M, Kanemitsu N, Kimura Y, Tambara K, Premaratne GU, Nagasawa A, Ikeda T, Tabata Y, Komeda M (2007) Sustained-release erythropoietin ameliorates cardiac function in infarcted rat-heart without inducing polycythemia. Circ J 71(1):132–137PubMedCrossRef
157.
Zurück zum Zitat Kobayashi H, Minatoguchi S, Yasuda S, Bao N, Kawamura I, Iwasa M, Yamaki T, Sumi S, Misao Y, Ushikoshi H, Nishigaki K, Takemura G, Fujiwara T, Tabata Y, Fujiwara H (2008) Post-infarct treatment with an erythropoietin-gelatin hydrogel drug delivery system for cardiac repair. Cardiovasc Res 79(4):611–620PubMedCrossRef Kobayashi H, Minatoguchi S, Yasuda S, Bao N, Kawamura I, Iwasa M, Yamaki T, Sumi S, Misao Y, Ushikoshi H, Nishigaki K, Takemura G, Fujiwara T, Tabata Y, Fujiwara H (2008) Post-infarct treatment with an erythropoietin-gelatin hydrogel drug delivery system for cardiac repair. Cardiovasc Res 79(4):611–620PubMedCrossRef
158.
Zurück zum Zitat Jeon O, Ryu SH, Chung JH, Kim BS (2005) Control of basic fibroblast growth factor release from fibrin gel with heparin and concentrations of fibrinogen and thrombin. J Control Release 105(3):249–259PubMedCrossRef Jeon O, Ryu SH, Chung JH, Kim BS (2005) Control of basic fibroblast growth factor release from fibrin gel with heparin and concentrations of fibrinogen and thrombin. J Control Release 105(3):249–259PubMedCrossRef
159.
Zurück zum Zitat Yoon SJ, Fang YH, Lim CH, Kim BS, Son HS, Park Y, Sun K (2009) Regeneration of ischemic heart using hyaluronic acid-based injectable hydrogel. J Biomed Mater Res B Appl Biomater 91(1):163–171PubMed Yoon SJ, Fang YH, Lim CH, Kim BS, Son HS, Park Y, Sun K (2009) Regeneration of ischemic heart using hyaluronic acid-based injectable hydrogel. J Biomed Mater Res B Appl Biomater 91(1):163–171PubMed
160.
Zurück zum Zitat Ifkovits JL, Tous E, Minakawa M, Morita M, Robb JD, Koomalsingh KJ, Gorman JH III, Gorman RC, Burdick JA (2010) Injectable hydrogel properties influence infarct expansion and extent of postinfarction left ventricular remodeling in an ovine model. Proc Natl Acad Sci USA 107(25):11507–11512PubMedCrossRef Ifkovits JL, Tous E, Minakawa M, Morita M, Robb JD, Koomalsingh KJ, Gorman JH III, Gorman RC, Burdick JA (2010) Injectable hydrogel properties influence infarct expansion and extent of postinfarction left ventricular remodeling in an ovine model. Proc Natl Acad Sci USA 107(25):11507–11512PubMedCrossRef
161.
Zurück zum Zitat Ishihara M, Obara K, Nakamura S, Fujita M, Masuoka K, Kanatani Y, Takase B, Hattori H, Morimoto Y, Ishihara M, Maehara T, Kikuchi M (2006) Chitosan hydrogel as a drug delivery carrier to control angiogenesis. J Artif Organs 9(1):8–16PubMedCrossRef Ishihara M, Obara K, Nakamura S, Fujita M, Masuoka K, Kanatani Y, Takase B, Hattori H, Morimoto Y, Ishihara M, Maehara T, Kikuchi M (2006) Chitosan hydrogel as a drug delivery carrier to control angiogenesis. J Artif Organs 9(1):8–16PubMedCrossRef
162.
Zurück zum Zitat Sun G, Shen YI, Kusuma S, Fox-Talbot K, JS C, Gerecht S (2011) Functional neovascularization of biodegradable dextran hydrogels with multiple angiogenic growth factors. Biomaterials 32(1):95–106PubMedCrossRef Sun G, Shen YI, Kusuma S, Fox-Talbot K, JS C, Gerecht S (2011) Functional neovascularization of biodegradable dextran hydrogels with multiple angiogenic growth factors. Biomaterials 32(1):95–106PubMedCrossRef
163.
Zurück zum Zitat Dogan AK, Gümüşderelioglu M, Aksöz E (2005) Controlled release of EGF and bFGF from dextran hydrogels in vitro and in vivo. J Biomed Mater Res B Appl Biomater 74(1):504–510PubMed Dogan AK, Gümüşderelioglu M, Aksöz E (2005) Controlled release of EGF and bFGF from dextran hydrogels in vitro and in vivo. J Biomed Mater Res B Appl Biomater 74(1):504–510PubMed
164.
Zurück zum Zitat Norton LW, Tegnella E, Toporekb SS, Reichert WM (2005) In vitro characterization of vascular endothelial growth factor and dexamethasone releasing hydrogels for implantable probe coatings. Biomaterials 26:3285–3297PubMedCrossRef Norton LW, Tegnella E, Toporekb SS, Reichert WM (2005) In vitro characterization of vascular endothelial growth factor and dexamethasone releasing hydrogels for implantable probe coatings. Biomaterials 26:3285–3297PubMedCrossRef
165.
Zurück zum Zitat Yoon JJ, Chung HJ, Park TG (2007) Photo-crosslinkable and biodegradable Pluronic/heparin hydrogels for local and sustained delivery of angiogenic growth factor. J Biomed Mater Res A 83(3):597–605PubMed Yoon JJ, Chung HJ, Park TG (2007) Photo-crosslinkable and biodegradable Pluronic/heparin hydrogels for local and sustained delivery of angiogenic growth factor. J Biomed Mater Res A 83(3):597–605PubMed
166.
Zurück zum Zitat Sharon JL, Puleo DA (2008) Immobilization of glycoproteins, such as VEGF, on biodegradable substrates. Acta Biomater 4(4):1016–1023PubMedCrossRef Sharon JL, Puleo DA (2008) Immobilization of glycoproteins, such as VEGF, on biodegradable substrates. Acta Biomater 4(4):1016–1023PubMedCrossRef
167.
Zurück zum Zitat Davies N, Dobner S, Bezuidenhout D, Schmidt C, Beck M, Zisch AH, Zilla P (2008) The dosage dependence of VEGF stimulation on scaffold neovascularization. Biomaterials 29(26):3531–3538PubMedCrossRef Davies N, Dobner S, Bezuidenhout D, Schmidt C, Beck M, Zisch AH, Zilla P (2008) The dosage dependence of VEGF stimulation on scaffold neovascularization. Biomaterials 29(26):3531–3538PubMedCrossRef
168.
Zurück zum Zitat Murphy WL, Peters MC, Kohn DH, Mooney DJ (2000) Sustained release of vascular endothelial growth factor from mineralized poly(lactide-co-glycolide) scaffolds for tissue engineering. Biomaterials 21(24):2521–2527PubMedCrossRef Murphy WL, Peters MC, Kohn DH, Mooney DJ (2000) Sustained release of vascular endothelial growth factor from mineralized poly(lactide-co-glycolide) scaffolds for tissue engineering. Biomaterials 21(24):2521–2527PubMedCrossRef
169.
Zurück zum Zitat Richardson TP, Peters MC, Ennett AB, Mooney DJ (2001) Polymeric system for dual growth factor delivery. Nat Biotechnol 19(11):1029–1034PubMedCrossRef Richardson TP, Peters MC, Ennett AB, Mooney DJ (2001) Polymeric system for dual growth factor delivery. Nat Biotechnol 19(11):1029–1034PubMedCrossRef
170.
Zurück zum Zitat Shea LD, Smiley E, Bonadio J, Mooney DJ (1999) DNA delivery from polymer matrices for tissue engineering. Nat Biotechnol 17:551–554PubMedCrossRef Shea LD, Smiley E, Bonadio J, Mooney DJ (1999) DNA delivery from polymer matrices for tissue engineering. Nat Biotechnol 17:551–554PubMedCrossRef
171.
Zurück zum Zitat Mooney DJ, Baldwin DF, Suh NP, Vacanti JP, Langer R (1996) Novel approach to fabricate porous sponges of poly(d, l-lactic-co-glycolic acid) without the use of organic solvents. Biomaterials 17:1417–1422PubMedCrossRef Mooney DJ, Baldwin DF, Suh NP, Vacanti JP, Langer R (1996) Novel approach to fabricate porous sponges of poly(d, l-lactic-co-glycolic acid) without the use of organic solvents. Biomaterials 17:1417–1422PubMedCrossRef
172.
Zurück zum Zitat Payne RG, McGonigle JS, Yaszemski MJ, Yasko AW, Mikos AG (2002) Development of an injectable, in situ crosslinkable, degradable polymeric carrier for osteogenic cell populations. Part 3. Proliferation and differentiation of encapsulated marrow stromal osteoblasts cultured on crosslinking poly(propylene fumarate). Biomaterials 23:4381–4387PubMedCrossRef Payne RG, McGonigle JS, Yaszemski MJ, Yasko AW, Mikos AG (2002) Development of an injectable, in situ crosslinkable, degradable polymeric carrier for osteogenic cell populations. Part 3. Proliferation and differentiation of encapsulated marrow stromal osteoblasts cultured on crosslinking poly(propylene fumarate). Biomaterials 23:4381–4387PubMedCrossRef
173.
Zurück zum Zitat Briganti E, Spiller D, Mirtelli C, Kull S, Counoupas C, Losi P, Senesi S, Di Stefano R, Soldani G (2010) A composite fibrin-based scaffold for controlled delivery of bioactive pro-angiogenetic growth factors. J Control Release 142(1):14–21PubMedCrossRef Briganti E, Spiller D, Mirtelli C, Kull S, Counoupas C, Losi P, Senesi S, Di Stefano R, Soldani G (2010) A composite fibrin-based scaffold for controlled delivery of bioactive pro-angiogenetic growth factors. J Control Release 142(1):14–21PubMedCrossRef
174.
Zurück zum Zitat Peirce SM, Price RJ, Skalak TC (2004) Spatial and temporal control of angiogenesis and arterialization using focal applications of VEGF164 and Ang-1*. Am J Physiol Heart Circ Physiol 286:H918–H925PubMedCrossRef Peirce SM, Price RJ, Skalak TC (2004) Spatial and temporal control of angiogenesis and arterialization using focal applications of VEGF164 and Ang-1*. Am J Physiol Heart Circ Physiol 286:H918–H925PubMedCrossRef
175.
Zurück zum Zitat Cohen-Sela E, Chorny M, Koroukhov N, Danenberg HD, Golomb G (2009) A new double emulsion solvent diffusion technique for encapsulating hydrophilic molecules in PLGA nanoparticles. J Control Release 133(2):90–95PubMedCrossRef Cohen-Sela E, Chorny M, Koroukhov N, Danenberg HD, Golomb G (2009) A new double emulsion solvent diffusion technique for encapsulating hydrophilic molecules in PLGA nanoparticles. J Control Release 133(2):90–95PubMedCrossRef
176.
Zurück zum Zitat Kumar PS, Ramakrishna S, Saini TR, Diwan PV (2006) Influence of microencapsulation method and peptide loading on formulation of poly(lactide-co-glycolide) insulin nanoparticles. Pharmazie 61(7):613–617PubMed Kumar PS, Ramakrishna S, Saini TR, Diwan PV (2006) Influence of microencapsulation method and peptide loading on formulation of poly(lactide-co-glycolide) insulin nanoparticles. Pharmazie 61(7):613–617PubMed
177.
Zurück zum Zitat Bilati U, Allemann E, Doelker E (2005) Strategic approaches for overcoming peptide and protein instability within biodegradable nano- and microparticles. Eur J Pharm Biopharm 59(3):375–388PubMedCrossRef Bilati U, Allemann E, Doelker E (2005) Strategic approaches for overcoming peptide and protein instability within biodegradable nano- and microparticles. Eur J Pharm Biopharm 59(3):375–388PubMedCrossRef
178.
Zurück zum Zitat Vila A, Sanchez A, Tobio M, Calvo P, Alonso MJ (2002) Design of biodegradable particles for protein delivery. J Control Release 78(1–3):15–24PubMedCrossRef Vila A, Sanchez A, Tobio M, Calvo P, Alonso MJ (2002) Design of biodegradable particles for protein delivery. J Control Release 78(1–3):15–24PubMedCrossRef
179.
Zurück zum Zitat Garbayo E, Ansorena E, Lanciego JL, Aymerich MS, Blanco-Prieto MJ (2008) Sustained release of bioactive glycosylated glial cell-line derived neurotrophic factor from biodegradable polymeric microspheres. Eur J Pharm Biopharm 69:844–851PubMedCrossRef Garbayo E, Ansorena E, Lanciego JL, Aymerich MS, Blanco-Prieto MJ (2008) Sustained release of bioactive glycosylated glial cell-line derived neurotrophic factor from biodegradable polymeric microspheres. Eur J Pharm Biopharm 69:844–851PubMedCrossRef
180.
Zurück zum Zitat Lee J, Bhang SH, Park H, Kim BS, Lee KY (2010) Active blood vessel formation in the ischemic hindlimb mouse model using a microsphere/hydrogel combination system. Pharm Res 27(5):767–774PubMedCrossRef Lee J, Bhang SH, Park H, Kim BS, Lee KY (2010) Active blood vessel formation in the ischemic hindlimb mouse model using a microsphere/hydrogel combination system. Pharm Res 27(5):767–774PubMedCrossRef
181.
Zurück zum Zitat Sun Q, Silva E, Wang A, Fritton JC, Mooney DJ, Schaffler MB, Grossman PM, Rajagopalan S (2010) Sustained release of multiple growth factors from injectable polymeric system as a novel therapeutic approach towards angiogenesis. Pharm Res 27(2):264–271PubMedCrossRef Sun Q, Silva E, Wang A, Fritton JC, Mooney DJ, Schaffler MB, Grossman PM, Rajagopalan S (2010) Sustained release of multiple growth factors from injectable polymeric system as a novel therapeutic approach towards angiogenesis. Pharm Res 27(2):264–271PubMedCrossRef
182.
Zurück zum Zitat Golub JS, Kim YT, Duvall CL, Bellamkonda RV, Gupta D, Lin AS, Weiss D, Taylor WR, Guldberg RE (2010) Sustained VEGF delivery via PLGA nanoparticles promotes vascular growth. Am J Physiol Heart Circ Physiol 298:H1959–H1965PubMedCrossRef Golub JS, Kim YT, Duvall CL, Bellamkonda RV, Gupta D, Lin AS, Weiss D, Taylor WR, Guldberg RE (2010) Sustained VEGF delivery via PLGA nanoparticles promotes vascular growth. Am J Physiol Heart Circ Physiol 298:H1959–H1965PubMedCrossRef
183.
Zurück zum Zitat Brar BK, Stephanou A, Wagstaff MJ, Coffin RS, Marber MS, Engelmann G, Latchman DS (1999) Heat shock proteins delivered with a virus vector can protect cardiac cells against apoptosis as well as against thermal or hypoxic stress. J Mol Cell Cardiol 31(1):135–146PubMedCrossRef Brar BK, Stephanou A, Wagstaff MJ, Coffin RS, Marber MS, Engelmann G, Latchman DS (1999) Heat shock proteins delivered with a virus vector can protect cardiac cells against apoptosis as well as against thermal or hypoxic stress. J Mol Cell Cardiol 31(1):135–146PubMedCrossRef
184.
Zurück zum Zitat Lee J, Tan CY, Lee SK, Kim YH, Lee KY (2009) Controlled delivery of heat shock protein using an injectable microsphere/hydrogel combination system for the treatment of myocardial infarction. J Control Release 137(3):196–202PubMedCrossRef Lee J, Tan CY, Lee SK, Kim YH, Lee KY (2009) Controlled delivery of heat shock protein using an injectable microsphere/hydrogel combination system for the treatment of myocardial infarction. J Control Release 137(3):196–202PubMedCrossRef
185.
Zurück zum Zitat Zhu XH, Wang CH, Tong YW (2009) In vitro characterization of hepatocyte growth factor release from PHBV/PLGA microsphere scaffold. J Biomed Mater Res A 89(2):411–423PubMed Zhu XH, Wang CH, Tong YW (2009) In vitro characterization of hepatocyte growth factor release from PHBV/PLGA microsphere scaffold. J Biomed Mater Res A 89(2):411–423PubMed
186.
Zurück zum Zitat Bittner B, Morlock M, Koll H, Winter G, Kissel T (1998) Recombinant human erythropoietin (rhEPO) loaded poly(lactide-co-glycolide) microspheres: influence of the encapsulation technique and polymer purity on microsphere characteristics. Eur J Pharm Biopharm 45(3):295–305PubMedCrossRef Bittner B, Morlock M, Koll H, Winter G, Kissel T (1998) Recombinant human erythropoietin (rhEPO) loaded poly(lactide-co-glycolide) microspheres: influence of the encapsulation technique and polymer purity on microsphere characteristics. Eur J Pharm Biopharm 45(3):295–305PubMedCrossRef
187.
Zurück zum Zitat Li SH, Cai SX, Liu B, Ma KW, Wang ZP, Li XK (2006) In vitro characteristics of poly(lactic-co-glycolic acid) microspheres incorporating gelatin particles loading basic fibroblast growth factor. Acta Pharmacol Sin 27(6):754–759PubMedCrossRef Li SH, Cai SX, Liu B, Ma KW, Wang ZP, Li XK (2006) In vitro characteristics of poly(lactic-co-glycolic acid) microspheres incorporating gelatin particles loading basic fibroblast growth factor. Acta Pharmacol Sin 27(6):754–759PubMedCrossRef
188.
Zurück zum Zitat Amsden BG, Timbart L, Marecak D, Chapanian R, Tse MY, Pang SC (2010) VEGF-induced angiogenesis following localized delivery via injectable, low viscosity poly(trimethylene carbonate). J Control Release 145(2):109–115PubMedCrossRef Amsden BG, Timbart L, Marecak D, Chapanian R, Tse MY, Pang SC (2010) VEGF-induced angiogenesis following localized delivery via injectable, low viscosity poly(trimethylene carbonate). J Control Release 145(2):109–115PubMedCrossRef
189.
Zurück zum Zitat d’Angelo I, Garcia-Fuentes M, Parajo Y, Welle A, Vantus T, Horvath A, Bokonyi G, Keri G, Alonso MJ (2010) Nanoparticles based on PLGA: poloxamer blends for the delivery of proangiogenic growth factors. Mol Pharm 7(5):1724–1733CrossRef d’Angelo I, Garcia-Fuentes M, Parajo Y, Welle A, Vantus T, Horvath A, Bokonyi G, Keri G, Alonso MJ (2010) Nanoparticles based on PLGA: poloxamer blends for the delivery of proangiogenic growth factors. Mol Pharm 7(5):1724–1733CrossRef
190.
Zurück zum Zitat Tang DW, Yu SH, Ho YC, Mi FL, Kuo PL, Sung HW (2010) Heparinized chitosan/poly(gamma-glutamic acid) nanoparticles for multi-functional delivery of fibroblast growth factor and heparin. Biomaterials 31(35):9320–9332PubMedCrossRef Tang DW, Yu SH, Ho YC, Mi FL, Kuo PL, Sung HW (2010) Heparinized chitosan/poly(gamma-glutamic acid) nanoparticles for multi-functional delivery of fibroblast growth factor and heparin. Biomaterials 31(35):9320–9332PubMedCrossRef
191.
Zurück zum Zitat Parajó Y, D’Angelo I, Welle A, Garcia-Fuentes M, Alonso MJ (2010) Hyaluronic acid/Chitosan nanoparticles as delivery vehicles for VEGF and PDGF-BB. Drug Deliv 17(8):596–604PubMedCrossRef Parajó Y, D’Angelo I, Welle A, Garcia-Fuentes M, Alonso MJ (2010) Hyaluronic acid/Chitosan nanoparticles as delivery vehicles for VEGF and PDGF-BB. Drug Deliv 17(8):596–604PubMedCrossRef
192.
Zurück zum Zitat Lee J, Bhang SH, Park H, Kim BS, Lee KY (2010) Active blood vessel formation in the ischemic hindlimb mouse model using a microsphere/hydrogel combination system. Pharm Res 27(5):767–774PubMedCrossRef Lee J, Bhang SH, Park H, Kim BS, Lee KY (2010) Active blood vessel formation in the ischemic hindlimb mouse model using a microsphere/hydrogel combination system. Pharm Res 27(5):767–774PubMedCrossRef
193.
Zurück zum Zitat Sun Q, Silva EA, Wang A, Fritton JC, Mooney DJ, Schaffler MB, Grossman PM, Rajagopalan S (2010) Sustained release of multiple growth factors from injectable polymeric system as a novel therapeutic approach towards angiogenesis. Pharm Res 27(2):264–271PubMedCrossRef Sun Q, Silva EA, Wang A, Fritton JC, Mooney DJ, Schaffler MB, Grossman PM, Rajagopalan S (2010) Sustained release of multiple growth factors from injectable polymeric system as a novel therapeutic approach towards angiogenesis. Pharm Res 27(2):264–271PubMedCrossRef
194.
Zurück zum Zitat Sheridan MH, Shea LD, Peters MC, Mooney DJ (2000) Bioabsorbable polymer scaffolds for tissue engineering capable of sustained growth factor delivery. J Control Release 64:91–102PubMedCrossRef Sheridan MH, Shea LD, Peters MC, Mooney DJ (2000) Bioabsorbable polymer scaffolds for tissue engineering capable of sustained growth factor delivery. J Control Release 64:91–102PubMedCrossRef
195.
Zurück zum Zitat Saif J, Schwarz TM, Chau DY, Henstock J, Sami P, Leicht SF, Hermann PC, Alcala S, Mulero F, Shakesheff KM, Heeschen C, Aicher A (2010) Combination of injectable multiple growth factor-releasing scaffolds and cell therapy as an advanced modality to enhance tissue neovascularization. Arterioscler Thromb Vasc Biol 30(10):1897–1904PubMedCrossRef Saif J, Schwarz TM, Chau DY, Henstock J, Sami P, Leicht SF, Hermann PC, Alcala S, Mulero F, Shakesheff KM, Heeschen C, Aicher A (2010) Combination of injectable multiple growth factor-releasing scaffolds and cell therapy as an advanced modality to enhance tissue neovascularization. Arterioscler Thromb Vasc Biol 30(10):1897–1904PubMedCrossRef
196.
Zurück zum Zitat Chung YI, Kim SK, Lee YK, Park SJ, Cho KO, Yuk SH, Tae G, Kim YH (2010) Efficient revascularization by VEGF administration via heparin-functionalized nanoparticle-fibrin complex. J Control Release 143:282–289PubMedCrossRef Chung YI, Kim SK, Lee YK, Park SJ, Cho KO, Yuk SH, Tae G, Kim YH (2010) Efficient revascularization by VEGF administration via heparin-functionalized nanoparticle-fibrin complex. J Control Release 143:282–289PubMedCrossRef
197.
Zurück zum Zitat Tan ML, Choong PF, Dass CR (2010) Recent developments in liposomes, microparticles and nanoparticles for protein and peptide drug delivery. Peptides 31(1):184–193PubMedCrossRef Tan ML, Choong PF, Dass CR (2010) Recent developments in liposomes, microparticles and nanoparticles for protein and peptide drug delivery. Peptides 31(1):184–193PubMedCrossRef
198.
Zurück zum Zitat Xie Y, Ye L, Zhang X, Cui W, Lou J, Nagai T, Hou X (2005) Transport of nerve growth factor encapsulated into liposomes across the blood-brain barrier: in vitro and in vivo studies. J Control Release 105(1–2):106–119PubMedCrossRef Xie Y, Ye L, Zhang X, Cui W, Lou J, Nagai T, Hou X (2005) Transport of nerve growth factor encapsulated into liposomes across the blood-brain barrier: in vitro and in vivo studies. J Control Release 105(1–2):106–119PubMedCrossRef
199.
Zurück zum Zitat Verma DD, Levchenko TS, Bernstein EA, Torchilin VP (2005) ATP-loaded liposomes effectively protect mechanical functions of the myocardium from global ischemia in an isolated rat heart model. J Control Release 108(2–3):460–471PubMedCrossRef Verma DD, Levchenko TS, Bernstein EA, Torchilin VP (2005) ATP-loaded liposomes effectively protect mechanical functions of the myocardium from global ischemia in an isolated rat heart model. J Control Release 108(2–3):460–471PubMedCrossRef
200.
Zurück zum Zitat Palmer TN, Caride VJ, Caldecourt MA, Twickler J, Abdullah V (1984) The mechanism of liposome accumulation in infarction. Biochim Biophys Acta 797(3):363–368PubMedCrossRef Palmer TN, Caride VJ, Caldecourt MA, Twickler J, Abdullah V (1984) The mechanism of liposome accumulation in infarction. Biochim Biophys Acta 797(3):363–368PubMedCrossRef
201.
Zurück zum Zitat Lukyanov AN, Hartner WC, Torchilin VP (2004) Increased accumulation of PEG-PE micelles in the area of experimental myocardial infarction in rabbits. J Control Release 94(1):187–193PubMedCrossRef Lukyanov AN, Hartner WC, Torchilin VP (2004) Increased accumulation of PEG-PE micelles in the area of experimental myocardial infarction in rabbits. J Control Release 94(1):187–193PubMedCrossRef
202.
Zurück zum Zitat Oh KS, Han SK, Lee HS, Koo HM, Kim RS, Lee KE, Han SS, Cho SH, Yuk SH (2006) Core/Shell nanoparticles with lecithin lipid cores for protein delivery. Biomacromolecules 7(8):2362–2367PubMedCrossRef Oh KS, Han SK, Lee HS, Koo HM, Kim RS, Lee KE, Han SS, Cho SH, Yuk SH (2006) Core/Shell nanoparticles with lecithin lipid cores for protein delivery. Biomacromolecules 7(8):2362–2367PubMedCrossRef
203.
Zurück zum Zitat Firestone MA, Wolf AC, Seifert S (2003) Small-angle X-ray scattering study of the interaction of poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) triblock copolymers with lipid bilayers. Biomacromolecules 4(6):1539–1549PubMedCrossRef Firestone MA, Wolf AC, Seifert S (2003) Small-angle X-ray scattering study of the interaction of poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) triblock copolymers with lipid bilayers. Biomacromolecules 4(6):1539–1549PubMedCrossRef
204.
Zurück zum Zitat Nishiyama N, Kataoka K (2006) Current state, achievements, and future prospects of polymeric micelles as nanocarriers for drug and gene delivery. Pharmacol Ther 112:630–648PubMedCrossRef Nishiyama N, Kataoka K (2006) Current state, achievements, and future prospects of polymeric micelles as nanocarriers for drug and gene delivery. Pharmacol Ther 112:630–648PubMedCrossRef
205.
Zurück zum Zitat Lee JS, Go DH, Bae JW, Lee SJ, Park KD (2007) Heparin conjugated polymeric micelle for long-terin delivery of basic fibroblast growth factor. J Control Rel 117:204–209CrossRef Lee JS, Go DH, Bae JW, Lee SJ, Park KD (2007) Heparin conjugated polymeric micelle for long-terin delivery of basic fibroblast growth factor. J Control Rel 117:204–209CrossRef
206.
Zurück zum Zitat Torney F, Trewyn BG, Lin VSY, Wang K (2007) Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nat Nanotechnol 2:295–300PubMedCrossRef Torney F, Trewyn BG, Lin VSY, Wang K (2007) Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nat Nanotechnol 2:295–300PubMedCrossRef
207.
Zurück zum Zitat Zhang J, Postovit LM, Wang D, Gardiner RB, Harris R, Abdul MM, Thomas AA (2009) In situ loading of basic fibroblast growth factor within porous silica nanoparticles for a prolonged release. Nanoscale Res Lett 4:1297–1302PubMedCrossRef Zhang J, Postovit LM, Wang D, Gardiner RB, Harris R, Abdul MM, Thomas AA (2009) In situ loading of basic fibroblast growth factor within porous silica nanoparticles for a prolonged release. Nanoscale Res Lett 4:1297–1302PubMedCrossRef
208.
Zurück zum Zitat Kim J, Cao L, Shvartsman D, Silva EA, Mooney DJ (2011) Targeted delivery of nanoparticles to ischemic muscle for imaging and therapeutic angiogenesis. Nano Lett 11(2):694–700PubMedCrossRef Kim J, Cao L, Shvartsman D, Silva EA, Mooney DJ (2011) Targeted delivery of nanoparticles to ischemic muscle for imaging and therapeutic angiogenesis. Nano Lett 11(2):694–700PubMedCrossRef
209.
Zurück zum Zitat Tengood JE, Kovach KM, Vescovi PE, Russell AJ, Little SR (2010) Sequential delivery of vascular endothelial growth factor and sphingosine 1-phosphate for angiogenesis. Biomaterials 31(30):7805–7812PubMedCrossRef Tengood JE, Kovach KM, Vescovi PE, Russell AJ, Little SR (2010) Sequential delivery of vascular endothelial growth factor and sphingosine 1-phosphate for angiogenesis. Biomaterials 31(30):7805–7812PubMedCrossRef
210.
Zurück zum Zitat Laham RJ, Sellke FW, Edelman ER, Pearlman JD, Ware JA, Brown DL, Gold JP, Simons M (1999) Local perivascular delivery of basic fibroblast growth factor in patients undergoing coronary bypass surgery: results of a phase I randomized, double-blind, placebo-controlled trial. Circulation 100(18):1865–1871PubMed Laham RJ, Sellke FW, Edelman ER, Pearlman JD, Ware JA, Brown DL, Gold JP, Simons M (1999) Local perivascular delivery of basic fibroblast growth factor in patients undergoing coronary bypass surgery: results of a phase I randomized, double-blind, placebo-controlled trial. Circulation 100(18):1865–1871PubMed
211.
Zurück zum Zitat Mirotsou M, Jayawardena TM, Schmeckpeper J, Gnecchi M, Dzau VJ (2011) Paracrine mechanisms of stem cell reparative and regenerative actions in the heart. J Mol Cell Cardiol 50(2):280–289PubMedCrossRef Mirotsou M, Jayawardena TM, Schmeckpeper J, Gnecchi M, Dzau VJ (2011) Paracrine mechanisms of stem cell reparative and regenerative actions in the heart. J Mol Cell Cardiol 50(2):280–289PubMedCrossRef
212.
Zurück zum Zitat Sieveking DP, Ng MK (2009) Cell therapies for therapeutic angiogenesis: back to the bench. Vasc Med 14(2):153–166PubMedCrossRef Sieveking DP, Ng MK (2009) Cell therapies for therapeutic angiogenesis: back to the bench. Vasc Med 14(2):153–166PubMedCrossRef
213.
Zurück zum Zitat Wykrzykowska JJ, Henry TD, Lesser JR, Schwartz RS (2009) Imaging myocardial angiogenesis. Nat Rev Cardiol 6(10):648–658PubMedCrossRef Wykrzykowska JJ, Henry TD, Lesser JR, Schwartz RS (2009) Imaging myocardial angiogenesis. Nat Rev Cardiol 6(10):648–658PubMedCrossRef
214.
Zurück zum Zitat Fuster V, Sanz J, Viles-Gonzalez JF, Rajagopalan S (2006) The utility of magnetic resonance imaging in cardiac tissue regeneration trials. Nat Clin Pract Cardiovasc Med 3(Suppl 1):S2–S7PubMedCrossRef Fuster V, Sanz J, Viles-Gonzalez JF, Rajagopalan S (2006) The utility of magnetic resonance imaging in cardiac tissue regeneration trials. Nat Clin Pract Cardiovasc Med 3(Suppl 1):S2–S7PubMedCrossRef
215.
Zurück zum Zitat Chen FM, Zhang M, Wu ZF (2010) Toward delivery of multiple growth factors in tissue engineering. Biomaterials 31(24):6279–6308PubMedCrossRef Chen FM, Zhang M, Wu ZF (2010) Toward delivery of multiple growth factors in tissue engineering. Biomaterials 31(24):6279–6308PubMedCrossRef
Metadaten
Titel
Angiogenic therapy for cardiac repair based on protein delivery systems
verfasst von
F. R. Formiga
E. Tamayo
T. Simón-Yarza
B. Pelacho
F. Prósper
M. J. Blanco-Prieto
Publikationsdatum
01.05.2012
Verlag
Springer US
Erschienen in
Heart Failure Reviews / Ausgabe 3/2012
Print ISSN: 1382-4147
Elektronische ISSN: 1573-7322
DOI
https://doi.org/10.1007/s10741-011-9285-8

Weitere Artikel der Ausgabe 3/2012

Heart Failure Reviews 3/2012 Zur Ausgabe

Screening-Mammografie offenbart erhöhtes Herz-Kreislauf-Risiko

26.04.2024 Mammografie Nachrichten

Routinemäßige Mammografien helfen, Brustkrebs frühzeitig zu erkennen. Anhand der Röntgenuntersuchung lassen sich aber auch kardiovaskuläre Risikopatientinnen identifizieren. Als zuverlässiger Anhaltspunkt gilt die Verkalkung der Brustarterien.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Therapiestart mit Blutdrucksenkern erhöht Frakturrisiko

25.04.2024 Hypertonie Nachrichten

Beginnen ältere Männer im Pflegeheim eine Antihypertensiva-Therapie, dann ist die Frakturrate in den folgenden 30 Tagen mehr als verdoppelt. Besonders häufig stürzen Demenzkranke und Männer, die erstmals Blutdrucksenker nehmen. Dafür spricht eine Analyse unter US-Veteranen.

Adipositas-Medikament auch gegen Schlafapnoe wirksam

24.04.2024 Adipositas Nachrichten

Der als Antidiabetikum sowie zum Gewichtsmanagement zugelassene Wirkstoff Tirzepatid hat in Studien bei adipösen Patienten auch schlafbezogene Atmungsstörungen deutlich reduziert, informiert der Hersteller in einer Vorab-Meldung zum Studienausgang.

Update Kardiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.