Skip to main content
Erschienen in: Breast Cancer 4/2020

Open Access 11.05.2020 | Special Article

Annual report of the Japanese Breast Cancer Society registry for 2016

verfasst von: Makoto Kubo, Hiraku Kumamaru, Urara Isozumi, Minoru Miyashita, Masayuki Nagahashi, Takayuki Kadoya, Yasuyuki Kojima, Kenjiro Aogi, Naoki Hayashi, Kenji Tamura, Sota Asaga, Naoki Niikura, Etsuyo Ogo, Kotaro Iijima, Kenta Tanakura, Masayuki Yoshida, Hiroaki Miyata, Yutaka Yamamoto, Shigeru Imoto, Hiromitsu Jinno

Erschienen in: Breast Cancer | Ausgabe 4/2020

Abstract

The Japanese Breast Cancer Society (JBCS) registry began data collection in 1975, and it was integrated into National Clinical Database in 2012. As of 2016, the JBCS registry contains records of 656,896 breast cancer patients from more than 1400 hospitals throughout Japan. In the 2016 registration, the number of institutes involved was 1422, and the total number of patients was 95,870. We herein present the summary of the annual data of the JBCS registry collected in 2016. We analyzed the demographic and clinicopathologic characteristics of registered breast cancer patients from various angles. Especially, we examined the registrations on family history, menstruation, onset age, body mass index according to age, nodal status based on tumor size and subtype, and proportion based on ER, PgR, and HER2 status. This report based on the JBCS registry would support clinical management for breast cancer patients and clinical study in the near future.
Hinweise

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Preface

The Japanese Breast Cancer Society (JBCS) registry began data collection in 1975, and started a new web-based system with the cooperation of the non-profit organization, Japan Clinical Research Support Unit and the Public Health Research Foundation (Tokyo, Japan) in 2004. The registry, starting in 2012, runs on the National Clinical Database (NCD) which is a multidisciplinary registry platform for interventional and cancer registries. The details were described previously [1]. The eligibility for registration is that patients were diagnosed to have a new onset breast cancer at NCD participating facilities throughout Japan. The registration criteria do not require the patient to have undergone a breast surgery. As NCD does not support the linkage of a patient across hospitals, double registration may occur especially for the cases without breast surgery. However, as 97.4% of patients registered in 2016 had breast surgery, there are few cases with double registration. As of 2016, it contains records of 656,896 breast cancer patients from more than 1400 hospitals throughout Japan. Affiliated institutions provide data covering more than 50 demographic and clinicopathologic characteristics of newly diagnosed primary breast cancer patients via a web-based registration system. Follow-up information on 5-, 10-, and 15-year prognosis after the first treatment (preoperative systemic therapy or surgery) is requested. The JBCS registry is directed and governed by the Registration Committee of JBCS. TNM classification is now registered according to the 7th edition of the Union for International Cancer Control staging system [2], and histological classification is registered according to the General Rules for Clinical and Pathological Recording of Breast Cancer [3], which was further transferred to the Classification of Tumors of the Breast and Female Genital Organs [4].
Herein, we present the summary of the annual data of JBCS registry collected in 2016 (Tables 1, 2, 3; Figs. 1, 2, 3, 4, 5, 6, 7). The number of institutes involved in the 2016 registration was 1422, and the total number of patients was 95,870, including 5803 patients with simultaneous bilateral breast cancers. The incidence per year of breast cancer, including ductal carcinoma in situ, was reported to be 107,627 in 2016 by the National Cancer Center and the Ministry of Health, Labor and Welfare [5, 6]. Thus, approximately 84% of newly diagnosed breast cancer patients were included in the JBCS registry in 2016. While the number of patients has increased, the number of institutes has not increased since NCD was started in 2012 (Fig. 1). As a result, the number of registered patients per institute has gradually increased.
Table 1
Patients' characteristics
All
N = 95,870
%
Gender
  
 Female
95,257
99.4
 Male
613
0.6
Female
N = 95,257
%
Unilateral
85,973
90.3
Bilateral
  
 Synchronous
5803
6.1
 Metachronous
3479
3.7
Family history
  
 Absent
75,073
78.8
 Present
13,197
13.9
 Unknown
6985
7.3
Menstruation
  
 Premenopausal
31,255
32.8
 Postmenopausal
61,252
64.3
 Unknown
2748
2.9
Surgery
  
 Present
91,541
96.1
 Absent
662
0.7
 Biopsy alone
3054
3.2
Tumor size
  
 Tis
13,069
13.7
 T0
444
0.5
 T1
44,905
47.1
 T2
27,636
29.0
 T3
2933
3.1
 T4
4609
4.8
 Unknown
1661
1.7
Nodal status
  
 N0
77,035
80.9
 N1
12,700
13.3
 N2
2009
2.1
 N3
1735
1.8
 Unknown
1778
1.9
Metastasis
  
 M0
91,362
95.9
 M1
1957
2.1
 Unknown
1938
2.0
Stage
  
 0
12,986
13.6
 I
41,490
43.6
 IIA
22,134
23.2
 IIB
7655
8.0
 IIIA
2200
2.3
 IIIB
3098
3.3
 IIIC
1229
1.3
 IV
1957
2.1
 Unknown
2508
2.6
TNM classifications were identified using the UICC staging system
The TNM classifications in this Table are from clinical data
Table 2
Comparison of clinical and pathological classifications
 
pTis
pT1
pT2
pT3
Unknown
 
n
%
n
%
n
%
n
%
n
%
n
%
(a) Tumor size
 cTis
12,618
16.4
4963
39.3
3805
30.2
1356
10.7
511
4.0
1983
15.7
 cT0
383
0.5
66
17.2
148
38.6
39
10.2
4
1.0
126
32.9
 cT1
40,446
52.6
1276
3.2
32,178
79.6
4181
10.3
453
1.1
2358
5.8
 cT2
20,007
26.0
267
1.3
5050
25.2
12,583
62.9
898
4.5
1209
6.0
 cT3
1494
1.9
18
1.2
111
7.4
474
31.7
770
51.5
121
8.1
 cT4
1563
2.0
7
0.4
179
11.5
799
51.1
421
26.9
157
10.0
 Unknown
354
0.5
19
5.4
91
25.7
44
12.4
33
9.3
167
47.2
 Total
76,865
100.0
6616
8.6
41,562
54.1
19,476
25.3
3090
4.0
6121
8.0
Node
Clinical
Pathological
n
%
N+ 
n
%
(b) Nodal status
 Negative
68,872
89.6
0
52,126
75.7
   
1–3
7235
10.5
   
4–9
842
1.2
   
10≤ 
273
0.4
   
Unknown
8396
12.2
 Positive
7730
10.1
0
822
10.6
   
1–3
3849
49.8
   
4–9
1467
19.0
   
10≤ 
915
11.8
   
Unknown
677
8.8
 Unknown
263
0.3
Unknown
263
 
Total
76,865
100.0
Total
76,865
 
The TNM classification was identified by the UICC staging system
N+ number of involved nodes
Table 3
Differences of biological features distinguishing distant metastasis (M0 and M1)
  
M0
M1
N = 91,362
%
N = 1957
%
ER
 Negative
 
12,967
14.2
424
21.7
 Positive
1–9%
2898
3.2
72
3.8
 
 ≥ 10%
65,922
72.1
1193
61.0
 NE
 
6545
7.2
146
7.5
 Unknown
 
3030
3.3
122
6.2
PgR
 Negative
 
21,202
23.2
704
36.0
 Positive
1–9%
6744
7.4
185
9.5
 
 ≥ 10%
53,577
58.6
798
40.8
 NE
 
6769
7.4
148
7.6
 Unknown
 
3070
3.4
122
1.7
HER2
 Negative
 
62,101
68.0
1185
60.5
 Positive
 
10,674
11.7
386
19.7
 NE
 
12,060
13.2
201
10.3
 Unknown
 
6527
7.1
185
9.5
 HER2/IHC
  0
 
26,984
29.5
533
27.2
  1+
 
27,334
29.9
485
24.8
  2+
Equivocal
12,892
14.1
299
15.3
   2+/ISH
Positive
1957
15.2
69
23.1
 
Negative
7783
60.4
167
55.8
 
NE
2831
21.9
60
20.1
 
Unknown
321
2.5
3
1.0
 3+
 
8717
9.5
317
16.2
 NE
 
12,060
13.2
201
10.3
 Unknown
 
3375
3.7
122
6.2
  
M0
 
M1
 
N = 88,819
%
N = 1957
%
Nuclear grade
 1
 
32,699
36.8
238
18.6
 2
 
25,445
28.6
334
26.2
 3
 
15,514
17.5
371
29.1
 NE
 
7814
8.8
115
9.0
 Unknown
 
7347
8.3
219
17.1
ER estrogen receptor, PgR progesterone receptor, HER2 human epidermal growth factor receptor 2, IHC immunohistochemistry, ISH in situ hybridization, NE not examined
The TNM classification was identified by the UICC staging system

Summary of findings

Among the 95,870 patients, 95,257 were women (99.4%) and the mean ± standard deviation of onset age was 59.7 ± 13.9 years. We show data of patient characteristics on female breast cancer, such as unilateral or bilateral disease, family history, menstruation, operation, tumor size, nodal status, metastasis, and stage in Table 1. There were 13,197 (13.9%) patients with a family history of breast cancer. Family history in NCD means that at least one first- or second-degree relative have a history of breast cancer. Patients with family history of breast cancer based on patient interviews have increased since 2013, perhaps reflecting our growing interest in the family history of hereditary tumors around that time (Fig. 2). This is also supported by the decreasing proportion of those with “unknown” family history status. According to the meta-analysis in United Kingdom, it was reported that at least one first-degree relative had a history of breast cancer in 12.9% of breast cancer patients [7], which is similar to the proportion in this report, but the true reason of the increased proportion of patients with a family history of breast cancer is unclear in this study.
Moreover, we found that 33% of breast cancer patients were premenopausal (Table 1), which is closely related to the distribution of onset age. To view this from another angle, we analyzed data on menstruation by age. As a result, approximately half of Japanese breast cancer patients at age 52 were premenopausal (Fig. 3). The data may aid the clinicians to decide whether to begin aromatase inhibitors for menopausal patients who are not menstruating after chemotherapy or tamoxifen. The distribution of breast cancer patients by age of onset is shown in Fig. 4. The bimodal distribution of onset in late 40 s and late 60 s is unique in Japanese patients and there has been a similar trend for years. We also analyzed the data on body mass index by age. As shown in Fig. 5, the body mass index of Japanese patients steadily increases after their late 40 s. Proper control of their own body weight is recommended, because obesity is known as one of risk factors for postmenopausal breast cancer.
Our data show the comparison of clinical and pathological classifications on tumor size and nodal status in 76,865 patients without preoperative systemic therapy and M1 disease (Table 2). Pathological T1 classification was similar in the number relative to that in clinical T1 classifications, while only 39.3% of the clinical Tis cases were diagnosed as Tis pathologically (Table 2a), suggesting clinical Tis may be overestimated. Thus, our data revealed that there were not a few differences between clinical and pathological Tis evaluations. Furthermore, of 68,872 clinical node-negative cases, 52,126 (75.5%) was node negative but 12.1% was node-positive pathologically, while of 7730 clinical node-positive cases, 6231 (80.6%) was node positive but 10.6% was node-negative pathologically (Table 2b). From this result, it is necessary to pay close attention to the selection of the surgical procedure.
The frequencies of lymph node metastasis by pathological tumor size and subtype in patients without neoadjuvant chemotherapy (NAC) are shown in Fig. 6. HER2-positive and triple negative breast cancer had high rates of lymph node metastasis compared to ER+ /HER2– disease. For example, approximately 15% of pT1c disease had lymph node metastasis, while more than 30% of T2 cases had positive lymph nodes. Treatment should be selected based on such essential information as it when considering NAC or surgery.
Finally, our data show the frequency of subtypes classified based on ER, PgR, and HER2 expression from immunohistochemical staining, which is fundamental data of the population of Japanese breast cancer patients (Fig. 7). There were differences in these biological characteristics between M0 and M1 disease. In M1 cases, there was increased ER negativity, PgR negativity, HER2 positivity, and nuclear grade 3 (Table 3). These factors should be considered first when evaluating biological features of individual breast cancer.

Postscript

The data input to JBCS registry has varied over time. This registry also needs to be gradually taking in the opinions of clinicians and balancing it with what has not changed. At the same time when we register new cases, we need to analyze, discuss, publish, and progressively develop JBCS registry. We believe that this annual data report provides significant information to guide daily medical care for breast cancer patients.

Acknowledgements

The authors thank all the affiliated institutes participating in the Breast Cancer Registry of the JBCS for their efforts to register the patients’ data. Also, we thank James P. Mahaffey, PhD, from Edanz Group (www.​edanzediting.​com/​ac) for his support in English editing the draft of this manuscript.

Compliance with ethical standards

Conflicts of interest

HK, UI, and HM are affiliated with the department of Healthcare Quality Assessment at the University of Tokyo. The department is a social collaboration department supported by National Clinical Database, Johnson & Johnson K.K., and Nipro corporation. NH and YY have both received honorariums as a speaker or consultant/advisory role from Chugai Pharmaceutical Co. (Tokyo, Japan). The other authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with animals performed by any of the authors. All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.
Informed consent was obtained from all individual participants included in the study.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

e.Med Gynäkologie

Kombi-Abonnement

Mit e.Med Gynäkologie erhalten Sie Zugang zu CME-Fortbildungen der beiden Fachgebiete, den Premium-Inhalten der Fachzeitschriften, inklusive einer gedruckten gynäkologischen oder urologischen Zeitschrift Ihrer Wahl.

Literatur
1.
Zurück zum Zitat Kurebayashi J, Miyoshi Y, Ishikawa T, Saji S, Sugie T, Suzuki T, et al. Clinicopathological characteristics of breast cancer and trends in the management of breast cancer patients in Japan: based on the Breast Cancer Registry of the Japanese Breast Cancer Society between 2004 and 2011. Breast Cancer. 2015;22:235–44.CrossRef Kurebayashi J, Miyoshi Y, Ishikawa T, Saji S, Sugie T, Suzuki T, et al. Clinicopathological characteristics of breast cancer and trends in the management of breast cancer patients in Japan: based on the Breast Cancer Registry of the Japanese Breast Cancer Society between 2004 and 2011. Breast Cancer. 2015;22:235–44.CrossRef
2.
Zurück zum Zitat Sobin LH, Gospodarowicz MK, Wittekind C. TNM classification of malignant tumours. 7th ed. New York: Wiley; 2010. p. 131–141. Sobin LH, Gospodarowicz MK, Wittekind C. TNM classification of malignant tumours. 7th ed. New York: Wiley; 2010. p. 131–141.
3.
Zurück zum Zitat The Japanese Breast Cancer Society. General rules for clinical and pathological recording of breast cancer. 17th ed. Tokyo: Kanehara Shuppan; 2012. The Japanese Breast Cancer Society. General rules for clinical and pathological recording of breast cancer. 17th ed. Tokyo: Kanehara Shuppan; 2012.
4.
Zurück zum Zitat Lakhani SR, Ellis IO, Schnitt SJ, Tan PH, van de Vijver MJ. WHO classification of tumours of the breast. 4th ed. Lyon: IARC Press; 2012. Lakhani SR, Ellis IO, Schnitt SJ, Tan PH, van de Vijver MJ. WHO classification of tumours of the breast. 4th ed. Lyon: IARC Press; 2012.
7.
Zurück zum Zitat Collaborative Group on Hormonal Factors in Breast Cancer. Familial breast cancer: collaborative reanalysis of individual data from 52 epidemiological studies including 58,209 women with breast cancer and 101,986 women without the disease. Lancet. 2001;27:1389–99. Collaborative Group on Hormonal Factors in Breast Cancer. Familial breast cancer: collaborative reanalysis of individual data from 52 epidemiological studies including 58,209 women with breast cancer and 101,986 women without the disease. Lancet. 2001;27:1389–99.
Metadaten
Titel
Annual report of the Japanese Breast Cancer Society registry for 2016
verfasst von
Makoto Kubo
Hiraku Kumamaru
Urara Isozumi
Minoru Miyashita
Masayuki Nagahashi
Takayuki Kadoya
Yasuyuki Kojima
Kenjiro Aogi
Naoki Hayashi
Kenji Tamura
Sota Asaga
Naoki Niikura
Etsuyo Ogo
Kotaro Iijima
Kenta Tanakura
Masayuki Yoshida
Hiroaki Miyata
Yutaka Yamamoto
Shigeru Imoto
Hiromitsu Jinno
Publikationsdatum
11.05.2020
Verlag
Springer Japan
Erschienen in
Breast Cancer / Ausgabe 4/2020
Print ISSN: 1340-6868
Elektronische ISSN: 1880-4233
DOI
https://doi.org/10.1007/s12282-020-01081-4

Weitere Artikel der Ausgabe 4/2020

Breast Cancer 4/2020 Zur Ausgabe

Adjuvante Immuntherapie verlängert Leben bei RCC

25.04.2024 Nierenkarzinom Nachrichten

Nun gibt es auch Resultate zum Gesamtüberleben: Eine adjuvante Pembrolizumab-Therapie konnte in einer Phase-3-Studie das Leben von Menschen mit Nierenzellkarzinom deutlich verlängern. Die Sterberate war im Vergleich zu Placebo um 38% geringer.

Alectinib verbessert krankheitsfreies Überleben bei ALK-positivem NSCLC

25.04.2024 NSCLC Nachrichten

Das Risiko für Rezidiv oder Tod von Patienten und Patientinnen mit reseziertem ALK-positivem NSCLC ist unter einer adjuvanten Therapie mit dem Tyrosinkinase-Inhibitor Alectinib signifikant geringer als unter platinbasierter Chemotherapie.

Bei Senioren mit Prostatakarzinom auf Anämie achten!

24.04.2024 DGIM 2024 Nachrichten

Patienten, die zur Behandlung ihres Prostatakarzinoms eine Androgendeprivationstherapie erhalten, entwickeln nicht selten eine Anämie. Wer ältere Patienten internistisch mitbetreut, sollte auf diese Nebenwirkung achten.

ICI-Therapie in der Schwangerschaft wird gut toleriert

Müssen sich Schwangere einer Krebstherapie unterziehen, rufen Immuncheckpointinhibitoren offenbar nicht mehr unerwünschte Wirkungen hervor als andere Mittel gegen Krebs.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.