Skip to main content
Erschienen in: Annals of Surgical Oncology 9/2020

29.03.2020 | Translational Research and Biomarkers

ANO9 Regulated Cell Cycle in Human Esophageal Squamous Cell Carcinoma

verfasst von: Keita Katsurahara, MD, Atsushi Shiozaki, MD, PhD, Toshiyuki Kosuga, MD, PhD, Michihiro Kudou, MD, PhD, Katsutoshi Shoda, MD, PhD, Tomohiro Arita, MD, PhD, Hirotaka Konishi, MD, PhD, Shuhei Komatsu, MD, PhD, Takeshi Kubota, MD, PhD, Hitoshi Fujiwara, MD, PhD, Kazuma Okamoto, MD, PhD, Mitsuo Kishimoto, MD, PhD, Eiichi Konishi, Yoshinori Marunaka, MD, PhD, Eigo Otsuji, MD, PhD

Erschienen in: Annals of Surgical Oncology | Ausgabe 9/2020

Einloggen, um Zugang zu erhalten

Abstract

Background

Few studies have reported the function and activation mechanism of ANO9 in esophageal squamous cell carcinoma (ESCC). The current study aimed to investigate the role of ANO9 in the regulation of tumor progression.

Methods

Knockdown experiments with human ESCC cell lines were performed using ANO9 siRNA, and the effects on cell proliferation, the cell cycle, apoptosis, and cellular movement were analyzed. Immunohistochemistry (IHC) analysis was performed on 57 primary tumor samples obtained from ESCC patients.

Results

In an in vitro study, depletion of ANO9 reduced cell proliferation, invasion, and migration in KYSE150 and KYSE 790 cells. In the cell cycle analysis, depletion of ANO9 increased the number of cells in G0/G1 arrest. In addition, the knockdown of ANO9 increased apoptosis. The results of the microarray analysis indicated that various centrosome-related genes such as CEP120, CNTRL, and SPAST were up- or downregulated in ANO9-depleted KYSE150 cells. The IHC results showed that high expression of ANO9 was associated with poor prognosis.

Conclusions

The results of the current study suggest that ANO9 regulates the cell cycle via centrosome-related genes in ESCC.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Schreiber R, Uliyakina I, Kongsuphol P, et al. Expression and function of epithelial anoctamins. J Biol Chem. 2010;285:7838–45.PubMedPubMedCentral Schreiber R, Uliyakina I, Kongsuphol P, et al. Expression and function of epithelial anoctamins. J Biol Chem. 2010;285:7838–45.PubMedPubMedCentral
2.
Zurück zum Zitat Brunner JD, Schenck S, Dutzler R. Structural basis for phospholipid scrambling in the TMEM16 family. Curr Opin Struct Biol. 2016;39:61–70.PubMed Brunner JD, Schenck S, Dutzler R. Structural basis for phospholipid scrambling in the TMEM16 family. Curr Opin Struct Biol. 2016;39:61–70.PubMed
3.
Zurück zum Zitat Kunzelmann K. TMEM16, LRRC8A, bestrophin: chloride channels controlled by Ca(2+) and cell volume. Trends Biochem Sci. 2015;40:535–43.PubMed Kunzelmann K. TMEM16, LRRC8A, bestrophin: chloride channels controlled by Ca(2+) and cell volume. Trends Biochem Sci. 2015;40:535–43.PubMed
4.
Zurück zum Zitat Wanitchakool P, Wolf L, Koehl GE, et al. Role of anoctamins in cancer and apoptosis. Philos Trans R Soc Lond B Biol Sci. 2014;369:20130096.PubMedPubMedCentral Wanitchakool P, Wolf L, Koehl GE, et al. Role of anoctamins in cancer and apoptosis. Philos Trans R Soc Lond B Biol Sci. 2014;369:20130096.PubMedPubMedCentral
5.
Zurück zum Zitat Pedemonte N, Galietta LJ. Structure and function of TMEM16 proteins (anoctamins). Physiol Rev. 2014;94:419–59.PubMed Pedemonte N, Galietta LJ. Structure and function of TMEM16 proteins (anoctamins). Physiol Rev. 2014;94:419–59.PubMed
6.
Zurück zum Zitat Kunzelmann K, Tian Y, Martins JR, et al. Anoctamins. Pflugers Arch. 2011;462:195–208.PubMed Kunzelmann K, Tian Y, Martins JR, et al. Anoctamins. Pflugers Arch. 2011;462:195–208.PubMed
7.
Zurück zum Zitat Kunzelmann K, Kongsuphol P, Chootip K, et al. Role of the Ca2+-activated Cl– channels bestrophin and anoctamin in epithelial cells. Biol Chem. 2011;392:125–34.PubMed Kunzelmann K, Kongsuphol P, Chootip K, et al. Role of the Ca2+-activated Cl channels bestrophin and anoctamin in epithelial cells. Biol Chem. 2011;392:125–34.PubMed
8.
Zurück zum Zitat Kunzelmann K, Kongsuphol P, Aldehni F, et al. Bestrophin and TMEM16-Ca(2+) activated Cl(−) channels with different functions. Cell Calcium. 2009;46:233–41.PubMed Kunzelmann K, Kongsuphol P, Aldehni F, et al. Bestrophin and TMEM16-Ca(2+) activated Cl(−) channels with different functions. Cell Calcium. 2009;46:233–41.PubMed
9.
Zurück zum Zitat Duran C, Hartzell HC. Physiological roles and diseases of Tmem16/Anoctamin proteins: are they all chloride channels? Acta Pharmacol Sin. 2011;32:685–92.PubMedPubMedCentral Duran C, Hartzell HC. Physiological roles and diseases of Tmem16/Anoctamin proteins: are they all chloride channels? Acta Pharmacol Sin. 2011;32:685–92.PubMedPubMedCentral
10.
Zurück zum Zitat Hartzell HC, Yu K, Xiao Q, Chien LT, Qu Z. Anoctamin/TMEM16 family members are Ca2+-activated Cl− channels. J Physiol. 2009;587(Pt 10):2127–39.PubMed Hartzell HC, Yu K, Xiao Q, Chien LT, Qu Z. Anoctamin/TMEM16 family members are Ca2+-activated Cl channels. J Physiol. 2009;587(Pt 10):2127–39.PubMed
11.
Zurück zum Zitat Lu G, Shi W, Zheng H. Inhibition of STAT6/anoctamin-1 activation suppresses proliferation and invasion of gastric cancer cells. Cancer Biother Radiopharm. 2018;33:3–7.PubMed Lu G, Shi W, Zheng H. Inhibition of STAT6/anoctamin-1 activation suppresses proliferation and invasion of gastric cancer cells. Cancer Biother Radiopharm. 2018;33:3–7.PubMed
12.
Zurück zum Zitat Wu H, Wang H, Guan S, et al. Cell-specific regulation of proliferation by ANO1/TMEM16A in breast cancer with different ER, PR, and HER2 status. Oncotarget. 2017;8:84996–5013.PubMedPubMedCentral Wu H, Wang H, Guan S, et al. Cell-specific regulation of proliferation by ANO1/TMEM16A in breast cancer with different ER, PR, and HER2 status. Oncotarget. 2017;8:84996–5013.PubMedPubMedCentral
13.
Zurück zum Zitat Seo Y, Ryu K, Park J, et al. Inhibition of ANO1 by luteolin and its cytotoxicity in human prostate cancer PC-3 cells. PLoS ONE. 2017;12:e0174935.PubMedPubMedCentral Seo Y, Ryu K, Park J, et al. Inhibition of ANO1 by luteolin and its cytotoxicity in human prostate cancer PC-3 cells. PLoS ONE. 2017;12:e0174935.PubMedPubMedCentral
14.
Zurück zum Zitat Fujimoto M, Inoue T, Kito H, et al. Transcriptional repression of HER2 by ANO1 Cl(−) channel inhibition in human breast cancer cells with resistance to trastuzumab. Biochem Biophys Res Commun. 2017;482:188–94.PubMed Fujimoto M, Inoue T, Kito H, et al. Transcriptional repression of HER2 by ANO1 Cl(−) channel inhibition in human breast cancer cells with resistance to trastuzumab. Biochem Biophys Res Commun. 2017;482:188–94.PubMed
15.
Zurück zum Zitat Shang L, Hao JJ, Zhao XK, et al. ANO1 protein as a potential biomarker for esophageal cancer prognosis and precancerous lesion development prediction. Oncotarget. 2016;7:24374–82.PubMedPubMedCentral Shang L, Hao JJ, Zhao XK, et al. ANO1 protein as a potential biomarker for esophageal cancer prognosis and precancerous lesion development prediction. Oncotarget. 2016;7:24374–82.PubMedPubMedCentral
16.
Zurück zum Zitat Jia L, Liu W, Guan L, Lu M, Wang K. Inhibition of calcium-activated chloride channel ANO1/TMEM16A suppresses tumor growth and invasion in human lung cancer. PLoS ONE. 2015;10:e0136584.PubMedPubMedCentral Jia L, Liu W, Guan L, Lu M, Wang K. Inhibition of calcium-activated chloride channel ANO1/TMEM16A suppresses tumor growth and invasion in human lung cancer. PLoS ONE. 2015;10:e0136584.PubMedPubMedCentral
17.
Zurück zum Zitat Bill A, Gutierrez A, Kulkarni S, et al. ANO1/TMEM16A interacts with EGFR and correlates with sensitivity to EGFR-targeting therapy in head and neck cancer. Oncotarget. 2015;6:9173–88.PubMedPubMedCentral Bill A, Gutierrez A, Kulkarni S, et al. ANO1/TMEM16A interacts with EGFR and correlates with sensitivity to EGFR-targeting therapy in head and neck cancer. Oncotarget. 2015;6:9173–88.PubMedPubMedCentral
18.
Zurück zum Zitat Britschgi A, Bill A, Brinkhaus H, et al. Calcium-activated chloride channel ANO1 promotes breast cancer progression by activating EGFR and CAMK signaling. Proc Natl Acad Sci USA. 2013;110:E1026–34.PubMedPubMedCentral Britschgi A, Bill A, Brinkhaus H, et al. Calcium-activated chloride channel ANO1 promotes breast cancer progression by activating EGFR and CAMK signaling. Proc Natl Acad Sci USA. 2013;110:E1026–34.PubMedPubMedCentral
19.
Zurück zum Zitat Suzuki J, Fujii T, Imao T, Ishihara K, Kuba H, Nagata S. Calcium-dependent phospholipid scramblase activity of TMEM16 protein family members. J Biol Chem. 2013;288:13305–16.PubMedPubMedCentral Suzuki J, Fujii T, Imao T, Ishihara K, Kuba H, Nagata S. Calcium-dependent phospholipid scramblase activity of TMEM16 protein family members. J Biol Chem. 2013;288:13305–16.PubMedPubMedCentral
20.
Zurück zum Zitat Dutertre M, Lacroix-Triki M, Driouch K, et al. Exon-based clustering of murine breast tumor transcriptomes reveals alternative exons whose expression is associated with metastasis. Cancer Res. 2010;70:896–905.PubMed Dutertre M, Lacroix-Triki M, Driouch K, et al. Exon-based clustering of murine breast tumor transcriptomes reveals alternative exons whose expression is associated with metastasis. Cancer Res. 2010;70:896–905.PubMed
21.
Zurück zum Zitat Li C, Cai S, Wang X, Jiang Z. Identification and characterization of ANO9 in stage II and III colorectal carcinoma. Oncotarget. 2015;6:29324–34.PubMedPubMedCentral Li C, Cai S, Wang X, Jiang Z. Identification and characterization of ANO9 in stage II and III colorectal carcinoma. Oncotarget. 2015;6:29324–34.PubMedPubMedCentral
22.
Zurück zum Zitat Jun I, Park HS, Piao H, et al. ANO9/TMEM16J promotes tumourigenesis via EGFR and is a novel therapeutic target for pancreatic cancer. Br J Cancer. 2017;117:1798–809.PubMedPubMedCentral Jun I, Park HS, Piao H, et al. ANO9/TMEM16J promotes tumourigenesis via EGFR and is a novel therapeutic target for pancreatic cancer. Br J Cancer. 2017;117:1798–809.PubMedPubMedCentral
23.
Zurück zum Zitat Shiozaki A, Nako Y, Ichikawa D, et al. Role of the Na(+)/K(+)/2Cl(−) cotransporter NKCC1 in cell cycle progression in human esophageal squamous cell carcinoma. World J Gastroenterol. 2014;20:6844–59.PubMedPubMedCentral Shiozaki A, Nako Y, Ichikawa D, et al. Role of the Na(+)/K(+)/2Cl(−) cotransporter NKCC1 in cell cycle progression in human esophageal squamous cell carcinoma. World J Gastroenterol. 2014;20:6844–59.PubMedPubMedCentral
24.
Zurück zum Zitat Shiozaki A, Takemoto K, Ichikawa D, et al. The K-Cl cotransporter KCC3 as an independent prognostic factor in human esophageal squamous cell carcinoma. Biomed Res Int. 2014;2014:936401.PubMedPubMedCentral Shiozaki A, Takemoto K, Ichikawa D, et al. The K-Cl cotransporter KCC3 as an independent prognostic factor in human esophageal squamous cell carcinoma. Biomed Res Int. 2014;2014:936401.PubMedPubMedCentral
25.
Zurück zum Zitat Shiozaki A, Kudou M, Ichikawa D, et al. Expression and role of anion exchanger 1 in esophageal squamous cell carcinoma. Oncotarget. 2017;8:17921–35.PubMedPubMedCentral Shiozaki A, Kudou M, Ichikawa D, et al. Expression and role of anion exchanger 1 in esophageal squamous cell carcinoma. Oncotarget. 2017;8:17921–35.PubMedPubMedCentral
26.
Zurück zum Zitat Shiozaki A, Hikami S, Ichikawa D, et al. Anion exchanger 2 suppresses cellular movement and has prognostic significance in esophageal squamous cell carcinoma. Oncotarget. 2018;9:25993–6006.PubMedPubMedCentral Shiozaki A, Hikami S, Ichikawa D, et al. Anion exchanger 2 suppresses cellular movement and has prognostic significance in esophageal squamous cell carcinoma. Oncotarget. 2018;9:25993–6006.PubMedPubMedCentral
27.
Zurück zum Zitat Shimizu H, Shiozaki A, Ichikawa D, et al. The expression and role of Aquaporin 5 in esophageal squamous cell carcinoma. J Gastroenterol. 2014;49:655–66.PubMed Shimizu H, Shiozaki A, Ichikawa D, et al. The expression and role of Aquaporin 5 in esophageal squamous cell carcinoma. J Gastroenterol. 2014;49:655–66.PubMed
28.
Zurück zum Zitat Miyazaki H, Shiozaki A, Niisato N, Marunaka Y. Physiological significance of hypotonicity-induced regulatory volume decrease: reduction in intracellular Cl– concentration acting as an intracellular signaling. Am J Physiol Renal Physiol. 2007;292:F1411–7.PubMed Miyazaki H, Shiozaki A, Niisato N, Marunaka Y. Physiological significance of hypotonicity-induced regulatory volume decrease: reduction in intracellular Cl– concentration acting as an intracellular signaling. Am J Physiol Renal Physiol. 2007;292:F1411–7.PubMed
29.
Zurück zum Zitat James DB, Mary KG, Christian W. International Union Against Cancer (UICC) TNM Classification of Malignant Tumors. 8th ed. Wiley, New York. 2017. James DB, Mary KG, Christian W. International Union Against Cancer (UICC) TNM Classification of Malignant Tumors. 8th ed. Wiley, New York. 2017.
30.
Zurück zum Zitat Kuo YW, Trottier O, Mahamdeh M, Howard J. Spastin is a dual-function enzyme that severs microtubules and promotes their regrowth to increase the number and mass of microtubules. Proc Natl Acad Sci USA. 2019;116:5533–41.PubMedPubMedCentral Kuo YW, Trottier O, Mahamdeh M, Howard J. Spastin is a dual-function enzyme that severs microtubules and promotes their regrowth to increase the number and mass of microtubules. Proc Natl Acad Sci USA. 2019;116:5533–41.PubMedPubMedCentral
31.
Zurück zum Zitat Kumari A, Panda D. Regulation of microtubule stability by centrosomal proteins. IUBMB Life. 2018;70:602–11.PubMed Kumari A, Panda D. Regulation of microtubule stability by centrosomal proteins. IUBMB Life. 2018;70:602–11.PubMed
32.
Zurück zum Zitat Kumar A, Rajendran V, Sethumadhavan R, Purohit R. CEP proteins: the knights of centrosome dynasty. Protoplasma. 2013;250:965–83.PubMed Kumar A, Rajendran V, Sethumadhavan R, Purohit R. CEP proteins: the knights of centrosome dynasty. Protoplasma. 2013;250:965–83.PubMed
33.
Zurück zum Zitat Rock JR, Harfe BD. Expression of TMEM16 paralogs during murine embryogenesis. Dev Dyn. 2008;237:2566–74.PubMed Rock JR, Harfe BD. Expression of TMEM16 paralogs during murine embryogenesis. Dev Dyn. 2008;237:2566–74.PubMed
34.
Zurück zum Zitat Katoh M, Katoh M. Identification and characterization of human TP53I5 and mouse Tp53i5 genes in silico. Int J Oncol. 2004;25:225–30.PubMed Katoh M, Katoh M. Identification and characterization of human TP53I5 and mouse Tp53i5 genes in silico. Int J Oncol. 2004;25:225–30.PubMed
35.
Zurück zum Zitat Liu Z, Zhang S, Hou F, Zhang C, Gao J, Wang K. Inhibition of Ca(2+)-activated chloride channel ANO1 suppresses ovarian cancer through inactivating PI3K/Akt signaling. Int J Cancer. 2019;144:2215–26.PubMed Liu Z, Zhang S, Hou F, Zhang C, Gao J, Wang K. Inhibition of Ca(2+)-activated chloride channel ANO1 suppresses ovarian cancer through inactivating PI3K/Akt signaling. Int J Cancer. 2019;144:2215–26.PubMed
36.
Zurück zum Zitat Song Y, Gao J, Guan L, Chen X, Gao J, Wang K. Inhibition of ANO1/TMEM16A induces apoptosis in human prostate carcinoma cells by activating TNF-alpha signaling. Cell Death Dis. 2018;9:703.PubMedPubMedCentral Song Y, Gao J, Guan L, Chen X, Gao J, Wang K. Inhibition of ANO1/TMEM16A induces apoptosis in human prostate carcinoma cells by activating TNF-alpha signaling. Cell Death Dis. 2018;9:703.PubMedPubMedCentral
37.
Zurück zum Zitat Betleja E, Nanjundappa R, Cheng T, Mahjoub MR. A novel Cep120-dependent mechanism inhibits centriole maturation in quiescent cells. Elife. 2018;7:e35439.PubMedPubMedCentral Betleja E, Nanjundappa R, Cheng T, Mahjoub MR. A novel Cep120-dependent mechanism inhibits centriole maturation in quiescent cells. Elife. 2018;7:e35439.PubMedPubMedCentral
38.
Zurück zum Zitat Srsen V, Gnadt N, Dammermann A, Merdes A. Inhibition of centrosome protein assembly leads to p53-dependent exit from the cell cycle. J Cell Biol. 2006;174:625–30.PubMedPubMedCentral Srsen V, Gnadt N, Dammermann A, Merdes A. Inhibition of centrosome protein assembly leads to p53-dependent exit from the cell cycle. J Cell Biol. 2006;174:625–30.PubMedPubMedCentral
39.
Zurück zum Zitat Gromley A, Jurczyk A, Sillibourne J, et al. A novel human protein of the maternal centriole is required for the final stages of cytokinesis and entry into S phase. J Cell Biol. 2003;161:535–45.PubMedPubMedCentral Gromley A, Jurczyk A, Sillibourne J, et al. A novel human protein of the maternal centriole is required for the final stages of cytokinesis and entry into S phase. J Cell Biol. 2003;161:535–45.PubMedPubMedCentral
40.
Zurück zum Zitat O’Garra A, Redford PS, McNab FW, Bloom CI, Wilkinson RJ, Berry MP. The immune response in tuberculosis. Annu Rev Immunol. 2013;31:475–527.PubMed O’Garra A, Redford PS, McNab FW, Bloom CI, Wilkinson RJ, Berry MP. The immune response in tuberculosis. Annu Rev Immunol. 2013;31:475–527.PubMed
41.
Zurück zum Zitat Garlanda C, Dinarello CA, Mantovani A. The interleukin-1 family: back to the future. Immunity. 2013;39:1003–18.PubMedPubMedCentral Garlanda C, Dinarello CA, Mantovani A. The interleukin-1 family: back to the future. Immunity. 2013;39:1003–18.PubMedPubMedCentral
42.
Zurück zum Zitat Kunzelmann K, Ousingsawat J, Benedetto R, Cabrita I, Schreiber R. Contribution of anoctamins to cell survival and cell death. Cancers (Basel). 2019;11(3):382.PubMedCentral Kunzelmann K, Ousingsawat J, Benedetto R, Cabrita I, Schreiber R. Contribution of anoctamins to cell survival and cell death. Cancers (Basel). 2019;11(3):382.PubMedCentral
43.
Zurück zum Zitat Wanitchakool P, Ousingsawat J, Sirianant L, MacAulay N, Schreiber R, Kunzelmann K. Cl(−) channels in apoptosis. Eur Biophys J. 2016;45:599–610.PubMed Wanitchakool P, Ousingsawat J, Sirianant L, MacAulay N, Schreiber R, Kunzelmann K. Cl(−) channels in apoptosis. Eur Biophys J. 2016;45:599–610.PubMed
Metadaten
Titel
ANO9 Regulated Cell Cycle in Human Esophageal Squamous Cell Carcinoma
verfasst von
Keita Katsurahara, MD
Atsushi Shiozaki, MD, PhD
Toshiyuki Kosuga, MD, PhD
Michihiro Kudou, MD, PhD
Katsutoshi Shoda, MD, PhD
Tomohiro Arita, MD, PhD
Hirotaka Konishi, MD, PhD
Shuhei Komatsu, MD, PhD
Takeshi Kubota, MD, PhD
Hitoshi Fujiwara, MD, PhD
Kazuma Okamoto, MD, PhD
Mitsuo Kishimoto, MD, PhD
Eiichi Konishi
Yoshinori Marunaka, MD, PhD
Eigo Otsuji, MD, PhD
Publikationsdatum
29.03.2020
Verlag
Springer International Publishing
Erschienen in
Annals of Surgical Oncology / Ausgabe 9/2020
Print ISSN: 1068-9265
Elektronische ISSN: 1534-4681
DOI
https://doi.org/10.1245/s10434-020-08368-y

Weitere Artikel der Ausgabe 9/2020

Annals of Surgical Oncology 9/2020 Zur Ausgabe

Wie erfolgreich ist eine Re-Ablation nach Rezidiv?

23.04.2024 Ablationstherapie Nachrichten

Nach der Katheterablation von Vorhofflimmern kommt es bei etwa einem Drittel der Patienten zu Rezidiven, meist binnen eines Jahres. Wie sich spätere Rückfälle auf die Erfolgschancen einer erneuten Ablation auswirken, haben Schweizer Kardiologen erforscht.

Hinter dieser Appendizitis steckte ein Erreger

23.04.2024 Appendizitis Nachrichten

Schmerzen im Unterbauch, aber sonst nicht viel, was auf eine Appendizitis hindeutete: Ein junger Mann hatte Glück, dass trotzdem eine Laparoskopie mit Appendektomie durchgeführt und der Wurmfortsatz histologisch untersucht wurde.

Mehr Schaden als Nutzen durch präoperatives Aussetzen von GLP-1-Agonisten?

23.04.2024 Operationsvorbereitung Nachrichten

Derzeit wird empfohlen, eine Therapie mit GLP-1-Rezeptoragonisten präoperativ zu unterbrechen. Eine neue Studie nährt jedoch Zweifel an der Notwendigkeit der Maßnahme.

Ureterstriktur: Innovative OP-Technik bewährt sich

19.04.2024 EAU 2024 Kongressbericht

Die Ureterstriktur ist eine relativ seltene Komplikation, trotzdem bedarf sie einer differenzierten Versorgung. In komplexen Fällen wird dies durch die roboterassistierte OP-Technik gewährleistet. Erste Resultate ermutigen.

Update Chirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.

S3-Leitlinie „Diagnostik und Therapie des Karpaltunnelsyndroms“

Karpaltunnelsyndrom BDC Leitlinien Webinare
CME: 2 Punkte

Das Karpaltunnelsyndrom ist die häufigste Kompressionsneuropathie peripherer Nerven. Obwohl die Anamnese mit dem nächtlichen Einschlafen der Hand (Brachialgia parästhetica nocturna) sehr typisch ist, ist eine klinisch-neurologische Untersuchung und Elektroneurografie in manchen Fällen auch eine Neurosonografie erforderlich. Im Anfangsstadium sind konservative Maßnahmen (Handgelenksschiene, Ergotherapie) empfehlenswert. Bei nicht Ansprechen der konservativen Therapie oder Auftreten von neurologischen Ausfällen ist eine Dekompression des N. medianus am Karpaltunnel indiziert.

Prof. Dr. med. Gregor Antoniadis
Berufsverband der Deutschen Chirurgie e.V.

S2e-Leitlinie „Distale Radiusfraktur“

Radiusfraktur BDC Leitlinien Webinare
CME: 2 Punkte

Das Webinar beschäftigt sich mit Fragen und Antworten zu Diagnostik und Klassifikation sowie Möglichkeiten des Ausschlusses von Zusatzverletzungen. Die Referenten erläutern, welche Frakturen konservativ behandelt werden können und wie. Das Webinar beantwortet die Frage nach aktuellen operativen Therapiekonzepten: Welcher Zugang, welches Osteosynthesematerial? Auf was muss bei der Nachbehandlung der distalen Radiusfraktur geachtet werden?

PD Dr. med. Oliver Pieske
Dr. med. Benjamin Meyknecht
Berufsverband der Deutschen Chirurgie e.V.

S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“

Appendizitis BDC Leitlinien Webinare
CME: 2 Punkte

Inhalte des Webinars zur S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“ sind die Darstellung des Projektes und des Erstellungswegs zur S1-Leitlinie, die Erläuterung der klinischen Relevanz der Klassifikation EAES 2015, die wissenschaftliche Begründung der wichtigsten Empfehlungen und die Darstellung stadiengerechter Therapieoptionen.

Dr. med. Mihailo Andric
Berufsverband der Deutschen Chirurgie e.V.