Skip to main content
Erschienen in: Inflammation 2/2019

30.10.2018 | ORIGINAL ARTICLE

ApoM-S1P Modulates Ox-LDL-Induced Inflammation Through the PI3K/Akt Signaling Pathway in HUVECs

verfasst von: Zhi Zheng, Yongzhi Zeng, Xiao Zhu, Ying Tan, Yi Li, Qian Li, Guanghui Yi

Erschienen in: Inflammation | Ausgabe 2/2019

Einloggen, um Zugang zu erhalten

Abstract

Studies have shown that apolipoprotein M (apoM), the main carrier of sphingosine-1-phosphate (S1P), is closely related to lipid metabolism and inflammation. While there are many studies on apoM and lipid metabolism, little is known about the role of apoM in inflammation. Atherosclerosis is a chronic inflammatory process. To clarify what role apoM plays in atherosclerosis, we used oxidized low-density lipoprotein (ox-LDL) to induce an inflammatory model of atherosclerosis. Our preliminary results indicate that ox-LDL upregulates the expression of S1P receptor 2 (S1PR2) in human umbilical vein endothelial cells (HUVECs). Ox-LDL-induced HUVECs were treated with apoM-bound S1P (apoM-S1P), free S1P or apoM, and apoM-S1P was found to significantly inhibit the expression of inflammatory factors and adhesion molecules. In addition, apoM-S1P inhibits ox-LDL-induced cellular inflammation via S1PR2. Moreover, apoM-S1P induces phosphorylation of phosphatidylinositol 3-kinase (PI3K)/Akt, preventing nuclear translocation of nuclear factor-κB (NF-κB). PI3K-specific inhibitors and Akt inhibitors suppress apoM-S1P/S1PR2-induced interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) release and affect nuclear translocation of NF-κB. In conclusion, the results demonstrate for the first time that apoM-S1P inhibits ox-LDL-induced inflammation in HUVECs via the S1PR2-mediated PI3K/Akt signaling pathway. This finding may aid in the development of new treatments for atherosclerosis.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Borup, A., P.M. Christensen, and L.B. Nielsen. 2015. Apolipoprotein M in lipid metabolism and cardiometabolic diseases. Current Opinion in Lipidology 26: 48–55.CrossRefPubMed Borup, A., P.M. Christensen, and L.B. Nielsen. 2015. Apolipoprotein M in lipid metabolism and cardiometabolic diseases. Current Opinion in Lipidology 26: 48–55.CrossRefPubMed
2.
Zurück zum Zitat Dahlbäck, B. 2006. Apolipoprotein M--a novel player in high-density lipoprotein metabolism and atherosclerosis. Current Opinion in Lipidology 17: 291–295.CrossRefPubMed Dahlbäck, B. 2006. Apolipoprotein M--a novel player in high-density lipoprotein metabolism and atherosclerosis. Current Opinion in Lipidology 17: 291–295.CrossRefPubMed
3.
Zurück zum Zitat Nádró, B., L. Juhász, A. Szentpéteri, D. Páll, G. Paragh, and M. Harangi. 2018. The role of apolipoprotein M and sphingosine 1-phosphate axis in the prevention of atherosclerosis. Orvosi Hetilap 159: 168–175.CrossRefPubMed Nádró, B., L. Juhász, A. Szentpéteri, D. Páll, G. Paragh, and M. Harangi. 2018. The role of apolipoprotein M and sphingosine 1-phosphate axis in the prevention of atherosclerosis. Orvosi Hetilap 159: 168–175.CrossRefPubMed
4.
Zurück zum Zitat Feingold, K.R., J.K. Shigenaga, L.G. Chui, A. Moser, W. Khovidhunkit, and C. Grunfeld. 2007. Infection and inflammation decrease apolipoprotein M expression. Atherosclerosis 199: 19–26.CrossRefPubMed Feingold, K.R., J.K. Shigenaga, L.G. Chui, A. Moser, W. Khovidhunkit, and C. Grunfeld. 2007. Infection and inflammation decrease apolipoprotein M expression. Atherosclerosis 199: 19–26.CrossRefPubMed
5.
Zurück zum Zitat Ma, X., Y.W. Hu, Z.L. Zhao, L. Zheng, Y.R. Qiu, J.L. Huang, X.J. Wu, X.R. Mao, J. Yang, J.Y. Zhao, S.F. Li, M.N. Gu, and Q. Wang. 2013. Anti-inflammatory effects of propofol are mediated by apolipoprotein M in a hepatocyte nuclear factor-1a-dependent manner. Archives of Biochemistry and Biophysics 533: 1–10.CrossRefPubMed Ma, X., Y.W. Hu, Z.L. Zhao, L. Zheng, Y.R. Qiu, J.L. Huang, X.J. Wu, X.R. Mao, J. Yang, J.Y. Zhao, S.F. Li, M.N. Gu, and Q. Wang. 2013. Anti-inflammatory effects of propofol are mediated by apolipoprotein M in a hepatocyte nuclear factor-1a-dependent manner. Archives of Biochemistry and Biophysics 533: 1–10.CrossRefPubMed
6.
Zurück zum Zitat Christoffersen, C., M. Jauhiainen, M. Moser, B. Porse, C. Ehnholm, M. Boesl, B. Dahlbäck, and L.B. Nielsen. 2008. Effect of apolipoprotein M on high density lipoprotein metabolism and atherosclerosis in low density lipoprotein receptor knock-out mice. J Biol Chem 283: 1839–1847.CrossRefPubMed Christoffersen, C., M. Jauhiainen, M. Moser, B. Porse, C. Ehnholm, M. Boesl, B. Dahlbäck, and L.B. Nielsen. 2008. Effect of apolipoprotein M on high density lipoprotein metabolism and atherosclerosis in low density lipoprotein receptor knock-out mice. J Biol Chem 283: 1839–1847.CrossRefPubMed
7.
Zurück zum Zitat Sevvana, M., J. Ahnström, C. Egerer-Sieber, H.A. Lange, B. Dahlbäck, and Y.A. Muller. 2009. Serendipitous fatty acid binding reveals the structural determinants for ligand recognition in apolipoprotein M. J Biol 393: 920–936. Sevvana, M., J. Ahnström, C. Egerer-Sieber, H.A. Lange, B. Dahlbäck, and Y.A. Muller. 2009. Serendipitous fatty acid binding reveals the structural determinants for ligand recognition in apolipoprotein M. J Biol 393: 920–936.
8.
Zurück zum Zitat Christoffersen, C., H. binata, S.B. Kumaraswamy, S. Galvani, J. Ahnström, M. Sevvana, C. Egerer-Sieber, Y.A. Muller, and T. Hla. 2011. Endothelium-protective sphingosine-1-phosphate provided by HDL-associated apolipoprotein M. Proceedings of the National Academy of Sciences of the United States of America 108: 9613–9618.CrossRefPubMedPubMedCentral Christoffersen, C., H. binata, S.B. Kumaraswamy, S. Galvani, J. Ahnström, M. Sevvana, C. Egerer-Sieber, Y.A. Muller, and T. Hla. 2011. Endothelium-protective sphingosine-1-phosphate provided by HDL-associated apolipoprotein M. Proceedings of the National Academy of Sciences of the United States of America 108: 9613–9618.CrossRefPubMedPubMedCentral
10.
Zurück zum Zitat Vestri, A., F. Pierucci, A. Frati, L. Monaco, and E. Meacci. 2017. Sphingosine 1-phosphate receptors: Do they have a therapeutic potential in cardiac fibrosis? Frontiers in Pharmacology 8: 296.CrossRefPubMedPubMedCentral Vestri, A., F. Pierucci, A. Frati, L. Monaco, and E. Meacci. 2017. Sphingosine 1-phosphate receptors: Do they have a therapeutic potential in cardiac fibrosis? Frontiers in Pharmacology 8: 296.CrossRefPubMedPubMedCentral
11.
Zurück zum Zitat Lai, W.Q., F.L. Chia, and B.P. Leung. 2012. Sphingosine kinase and sphingosine-1-phosphate receptors: Novel therapeutic targets of rheumatoid arthritis? Future Medicinal Chemistry 4: 727–733.CrossRefPubMed Lai, W.Q., F.L. Chia, and B.P. Leung. 2012. Sphingosine kinase and sphingosine-1-phosphate receptors: Novel therapeutic targets of rheumatoid arthritis? Future Medicinal Chemistry 4: 727–733.CrossRefPubMed
12.
Zurück zum Zitat Liu, H., H. Jin, X. Yue, J. Han, P. Baum, D.R. Abendschein, and Z. Tu. 2017. PET study of sphingosine-1-phosphate receptor 1 expression in response to vascular inflammation in a rat model of carotid injury. Molecular Imaging 6: 1536012116689770. Liu, H., H. Jin, X. Yue, J. Han, P. Baum, D.R. Abendschein, and Z. Tu. 2017. PET study of sphingosine-1-phosphate receptor 1 expression in response to vascular inflammation in a rat model of carotid injury. Molecular Imaging 6: 1536012116689770.
14.
Zurück zum Zitat Johnston, T.P. 2009. Poloxamer 407 increases soluble adhesion molecules, ICAM-1, VCAM-1 and E-selectin, in C57BL/6 mice. The Journal of Pharmacy and Pharmacology 61: 1681–1688.PubMed Johnston, T.P. 2009. Poloxamer 407 increases soluble adhesion molecules, ICAM-1, VCAM-1 and E-selectin, in C57BL/6 mice. The Journal of Pharmacy and Pharmacology 61: 1681–1688.PubMed
15.
Zurück zum Zitat Pyne, N.J., M. McNaughton, S. Boomkamp, N. MacRitchie, C. Evangelisti, A.M. Martelli, H.R. Jiang, S. Ubhi, and S. Pyne. 2016. Role of sphingosine 1-phosphate receptors, sphingosine kinases and sphingosine in cancer and inflammation. Advances in Biological Regulation 60: 151–159.CrossRefPubMed Pyne, N.J., M. McNaughton, S. Boomkamp, N. MacRitchie, C. Evangelisti, A.M. Martelli, H.R. Jiang, S. Ubhi, and S. Pyne. 2016. Role of sphingosine 1-phosphate receptors, sphingosine kinases and sphingosine in cancer and inflammation. Advances in Biological Regulation 60: 151–159.CrossRefPubMed
16.
Zurück zum Zitat Ren, K., Y.J. Lu, Z.C. Mo, X. Liu, Z.L. Tang, Y. Jiang, X.S. Peng, L. Li, Q.H. Zhang, and G.H. Yi. 2017. ApoA-I/SR-BI modulates S1P/S1PR2-mediated inflammation through the PI3K/Akt signaling pathway in HUVECs. Journal of Physiology and Biochemistry 73: 287–296.CrossRefPubMed Ren, K., Y.J. Lu, Z.C. Mo, X. Liu, Z.L. Tang, Y. Jiang, X.S. Peng, L. Li, Q.H. Zhang, and G.H. Yi. 2017. ApoA-I/SR-BI modulates S1P/S1PR2-mediated inflammation through the PI3K/Akt signaling pathway in HUVECs. Journal of Physiology and Biochemistry 73: 287–296.CrossRefPubMed
17.
Zurück zum Zitat Hamed, S. 2006. Endothelial progenitor cells and atherosclerosis. Harefuah 145: 358–361.PubMed Hamed, S. 2006. Endothelial progenitor cells and atherosclerosis. Harefuah 145: 358–361.PubMed
18.
Zurück zum Zitat Berliner, J.A., and J.W. Heinecke. 1996. The role of oxidized lipoproteins in atherosclerosis. Free Radical Biology & Medicine 20: 707–727.CrossRef Berliner, J.A., and J.W. Heinecke. 1996. The role of oxidized lipoproteins in atherosclerosis. Free Radical Biology & Medicine 20: 707–727.CrossRef
19.
Zurück zum Zitat Obinata, H. 2012. Sphingosine 1-phosphate in coagulation and inflammation. Seminars in Immunopathology 34: 73–91.CrossRefPubMed Obinata, H. 2012. Sphingosine 1-phosphate in coagulation and inflammation. Seminars in Immunopathology 34: 73–91.CrossRefPubMed
20.
Zurück zum Zitat Du, J., C. Zeng, Q. Li, B. Chen, H. Liu, X. Huang, and Q. Huang. 2012. LPS and TNF-α induce expression of sphingosine-1-phosphate receptor-2 in human microvascular endothelial cells. Pathology, Research and Practice 208: 82–88.CrossRefPubMed Du, J., C. Zeng, Q. Li, B. Chen, H. Liu, X. Huang, and Q. Huang. 2012. LPS and TNF-α induce expression of sphingosine-1-phosphate receptor-2 in human microvascular endothelial cells. Pathology, Research and Practice 208: 82–88.CrossRefPubMed
21.
Zurück zum Zitat Kosmas, C.E., I. Martinez, A. Sourlas, K.V. Bouza, F.N. Campos, V. Torres, P.D. Montan, and E. Guzman. 2018. High-density lipoprotein (HDL) functionality and its relevance to atherosclerotic cardiovascular disease. Drugs Context 7: 212525.PubMedPubMedCentral Kosmas, C.E., I. Martinez, A. Sourlas, K.V. Bouza, F.N. Campos, V. Torres, P.D. Montan, and E. Guzman. 2018. High-density lipoprotein (HDL) functionality and its relevance to atherosclerotic cardiovascular disease. Drugs Context 7: 212525.PubMedPubMedCentral
22.
Zurück zum Zitat Hait, N.C., C.A. Oskeritzian, S.W. Paugh, S. Milstien, and S. Spiegel. 2006. Sphingosine kinases, sphingosine 1-phosphate, apoptosis and diseases. Biochimica et Biophysica Acta 1758: 2016–2026.CrossRefPubMed Hait, N.C., C.A. Oskeritzian, S.W. Paugh, S. Milstien, and S. Spiegel. 2006. Sphingosine kinases, sphingosine 1-phosphate, apoptosis and diseases. Biochimica et Biophysica Acta 1758: 2016–2026.CrossRefPubMed
23.
Zurück zum Zitat Książek, M., M. Chacińska, A. Chabowski, and M. Baranowski. 2015. Sources, metabolism, and regulation of circulating sphingosine-1-phosphate. Journal of Lipid Research 56: 1271–1281.CrossRefPubMedPubMedCentral Książek, M., M. Chacińska, A. Chabowski, and M. Baranowski. 2015. Sources, metabolism, and regulation of circulating sphingosine-1-phosphate. Journal of Lipid Research 56: 1271–1281.CrossRefPubMedPubMedCentral
24.
Zurück zum Zitat Spiegel, S., and S. Milstien. 2003. Sphingosine-1-phosphate: An enigmatic signalling lipid. Nature Reviews. Molecular Cell Biology 4: 397–407.CrossRefPubMed Spiegel, S., and S. Milstien. 2003. Sphingosine-1-phosphate: An enigmatic signalling lipid. Nature Reviews. Molecular Cell Biology 4: 397–407.CrossRefPubMed
26.
Zurück zum Zitat Kurano, M., K. Tsuneyama, Y. Morimoto, T. Shimizu, M. Jona, H. Kassai, K. Nakao, A. Aiba, and Y. Yatomi. 2018. Apolipoprotein M protects lipopolysaccharide-treated mice from death and organ injury. Thrombosis and Haemostasis 118: 1021–1035.CrossRefPubMed Kurano, M., K. Tsuneyama, Y. Morimoto, T. Shimizu, M. Jona, H. Kassai, K. Nakao, A. Aiba, and Y. Yatomi. 2018. Apolipoprotein M protects lipopolysaccharide-treated mice from death and organ injury. Thrombosis and Haemostasis 118: 1021–1035.CrossRefPubMed
27.
Zurück zum Zitat Jiang, Y., L.L. Jiang, X.M. Maimaitirexiati, Y. Zhang, and L. Wu. 2015. Irbesartan attenuates TNF-α-induced ICAM-1, VCAM-1, and E-selectin expression through suppression of NF-κB pathway in HUVECs. European Review for Medical and Pharmacological Sciences 19: 3295–3302.PubMed Jiang, Y., L.L. Jiang, X.M. Maimaitirexiati, Y. Zhang, and L. Wu. 2015. Irbesartan attenuates TNF-α-induced ICAM-1, VCAM-1, and E-selectin expression through suppression of NF-κB pathway in HUVECs. European Review for Medical and Pharmacological Sciences 19: 3295–3302.PubMed
28.
Zurück zum Zitat Osborn, L., C. Hession, R. Tizard, C. Vassallo, S. Luhowskyj, G. Chi-Rosso, and R. Lobb. 1989. Direct expression cloning of vascular cell adhesion molecule 1, a cytokine-induced endothelial protein that binds to lymphocytes. Cell 59: 1203–1211.CrossRefPubMed Osborn, L., C. Hession, R. Tizard, C. Vassallo, S. Luhowskyj, G. Chi-Rosso, and R. Lobb. 1989. Direct expression cloning of vascular cell adhesion molecule 1, a cytokine-induced endothelial protein that binds to lymphocytes. Cell 59: 1203–1211.CrossRefPubMed
29.
Zurück zum Zitat Takuwa, Y., Y. Okamoto, and K. Yoshioka. 2012. Sphingosine-1-phosphate signaling in physiology and diseases. Biofactors 38: 329–337.CrossRefPubMed Takuwa, Y., Y. Okamoto, and K. Yoshioka. 2012. Sphingosine-1-phosphate signaling in physiology and diseases. Biofactors 38: 329–337.CrossRefPubMed
30.
Zurück zum Zitat Brown, J.D., C.Y. Lin, Q. Duan, G. Griffin, A. Federation, R.M. Paranal, S. Bair, G. Newton, A. Lichtman, A. Kung, T. Yang, and H. Wang. 2014. NF-kappaB directs dynamic super enhancer formation in inflammation and atherogenesis. Molecular Cell 56: 219–231.CrossRefPubMedPubMedCentral Brown, J.D., C.Y. Lin, Q. Duan, G. Griffin, A. Federation, R.M. Paranal, S. Bair, G. Newton, A. Lichtman, A. Kung, T. Yang, and H. Wang. 2014. NF-kappaB directs dynamic super enhancer formation in inflammation and atherogenesis. Molecular Cell 56: 219–231.CrossRefPubMedPubMedCentral
Metadaten
Titel
ApoM-S1P Modulates Ox-LDL-Induced Inflammation Through the PI3K/Akt Signaling Pathway in HUVECs
verfasst von
Zhi Zheng
Yongzhi Zeng
Xiao Zhu
Ying Tan
Yi Li
Qian Li
Guanghui Yi
Publikationsdatum
30.10.2018
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 2/2019
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-018-0918-0

Weitere Artikel der Ausgabe 2/2019

Inflammation 2/2019 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.