Skip to main content
Erschienen in: Journal of Interventional Cardiac Electrophysiology 2/2009

01.03.2009

Arrhythmia phenotype in mouse models of human long QT

verfasst von: Guy Salama, Linda Baker , Robert Wolk, Jacques Barhanin, Barry London

Erschienen in: Journal of Interventional Cardiac Electrophysiology | Ausgabe 2/2009

Einloggen, um Zugang zu erhalten

Abstract

Enhanced dispersion of repolarization (DR) was proposed as a unifying mechanism, central to arrhythmia genesis in the long QT (LQT) syndrome. In mammalian hearts, K+ channels are heterogeneously expressed across the ventricles resulting in ‘intrinsic’ DR that may worsen in long QT. DR was shown to be central to the arrhythmia phenotype of transgenic mice with LQT caused by loss of function of the dominant mouse K+ currents. Here, we investigated the arrhythmia phenotype of mice with targeted deletions of KCNE1 and KCNH2 genes which encode for minK/IsK and Merg1 (mouse homolog of human ERG) proteins resulting in loss of function of IKs and IKr, respectively. Both currents are important human K+ currents associated with LQT5 and LQT2. Loss of minK, a protein subunit that interacts with KvLQT1, results in a marked reduction of IKs giving rise to the Jervell and Lange–Nielsen syndrome and the reduced KCNH2 gene reduces MERG and IKr.
Hearts were perfused, stained with di-4-ANEPPS and optically mapped to compare action potential durations (APDs) and arrhythmia phenotype in homozygous minK (minK−/−) and heterozygous Merg1 (Merg+/−) deletions and littermate control mice. MinK−/− mice has similar APDs and no arrhythmias (n = 4). Merg+/− mice had prolonged APDs (from 20 ± 6 to 32 ± 9 ms at the base, p < 0.01; from 18 ± 5 to 25 ± 9 ms at the apex, p < 0.01; n = 8), longer refractory periods (RP) (36 ± 14 to 63 ± 27 at the base, p < 0.01 and 34 ± 5 to 53 ± 21 ms at the apex, p < 0.03; n = 8), higher DR 10.4 ± 4.1 vs. 14 ± 2.3 ms, p < 0.02) and similar conduction velocities (n = 8). Programmed stimulation exposed a higher propensity to VT in Merg+/− mice (60% vs. 10%). A comparison of mouse models of LQT based on K+ channel mutations important to human and mouse repolarization emphasizes DR as a major determinant of arrhythmia vulnerability.
Literatur
1.
Zurück zum Zitat Schwartz, P., Locati, E., Napolitano, C., & Priore, S. (1995). The long QT syndrome. In D. Zipes, & J. Jalife (Eds.), Cardiac Electrophysiology: From cell to bedside (p. 788−811, 2ndnd ed.). Philadelphia, PA: WB Saunders. Schwartz, P., Locati, E., Napolitano, C., & Priore, S. (1995). The long QT syndrome. In D. Zipes, & J. Jalife (Eds.), Cardiac Electrophysiology: From cell to bedside (p. 788−811, 2ndnd ed.). Philadelphia, PA: WB Saunders.
2.
Zurück zum Zitat Surawicz, B. (1989). Electrophysiologic substrate of torsade de pointes: dispersion of repolarization or early afterdepolarizations? Journal of the American College of Cardiology, 14(1), 172−184.PubMedCrossRef Surawicz, B. (1989). Electrophysiologic substrate of torsade de pointes: dispersion of repolarization or early afterdepolarizations? Journal of the American College of Cardiology, 14(1), 172−184.PubMedCrossRef
3.
Zurück zum Zitat Ackerman, M. J. (1998). The long QT syndrome: ion channel diseases of the heart. Mayo Clinic Proceedings, 73(3), 250−269.PubMedCrossRef Ackerman, M. J. (1998). The long QT syndrome: ion channel diseases of the heart. Mayo Clinic Proceedings, 73(3), 250−269.PubMedCrossRef
4.
Zurück zum Zitat Dessertenne, F. (1966). Ventricular tachycardia with 2 variable opposing foci. Archives des Maladies du Coeur et des Vaisseaux, 59(2), 263−272.PubMed Dessertenne, F. (1966). Ventricular tachycardia with 2 variable opposing foci. Archives des Maladies du Coeur et des Vaisseaux, 59(2), 263−272.PubMed
5.
Zurück zum Zitat El-Sherif, N., Chinushi, M., Caref, E. B., & Restivo, M. (1997). Electrophysiological mechanism of the characteristic electrocardiographic morphology of torsade de pointes tachyarrhythmias in the long-QT syndrome: detailed analysis of ventricular tridimensional activation patterns. Circulation, 96(12), 4392–4399.PubMed El-Sherif, N., Chinushi, M., Caref, E. B., & Restivo, M. (1997). Electrophysiological mechanism of the characteristic electrocardiographic morphology of torsade de pointes tachyarrhythmias in the long-QT syndrome: detailed analysis of ventricular tridimensional activation patterns. Circulation, 96(12), 4392–4399.PubMed
6.
Zurück zum Zitat El-Sherif, N., Gough, W. B., & Restivo, M. (1991). Reentrant ventricular arrhythmias in the late myocardial infarction period: mechanism by which a short-long-short cardiac sequence facilitates the induction of reentry. Circulation, 83(1), 268–278.PubMed El-Sherif, N., Gough, W. B., & Restivo, M. (1991). Reentrant ventricular arrhythmias in the late myocardial infarction period: mechanism by which a short-long-short cardiac sequence facilitates the induction of reentry. Circulation, 83(1), 268–278.PubMed
7.
Zurück zum Zitat Frazier, D. W., Wolf, P. D., Wharton, J. M., Tang, A. S., Smith, W. M., & Ideker, R. E. (1989). Stimulus-induced critical point. Mechanism for electrical initiation of reentry in normal canine myocardium. The Journal of Clinical Investigation, 83(3), 1039–1052.PubMedCrossRef Frazier, D. W., Wolf, P. D., Wharton, J. M., Tang, A. S., Smith, W. M., & Ideker, R. E. (1989). Stimulus-induced critical point. Mechanism for electrical initiation of reentry in normal canine myocardium. The Journal of Clinical Investigation, 83(3), 1039–1052.PubMedCrossRef
8.
Zurück zum Zitat Smith, J. M., Clancy, E. A., Valeri, C. R., Ruskin, J. N., & Cohen, R. J. (1988). Electrical alternans and cardiac electrical instability. Circulation, 77(1), 110–121.PubMed Smith, J. M., Clancy, E. A., Valeri, C. R., Ruskin, J. N., & Cohen, R. J. (1988). Electrical alternans and cardiac electrical instability. Circulation, 77(1), 110–121.PubMed
9.
Zurück zum Zitat Shimizu, W., & Antzelevitch, C. (1998). Cellular basis for the ECG features of the LQT1 form of the long-QT syndrome: effects of beta-adrenergic agonists and antagonists and sodium channel blockers on transmural dispersion of repolarization and torsade de pointes. Circulation, 98(21), 2314–2322.PubMed Shimizu, W., & Antzelevitch, C. (1998). Cellular basis for the ECG features of the LQT1 form of the long-QT syndrome: effects of beta-adrenergic agonists and antagonists and sodium channel blockers on transmural dispersion of repolarization and torsade de pointes. Circulation, 98(21), 2314–2322.PubMed
10.
Zurück zum Zitat Wit, A. L., Allessie, M. A., Bonke, F. I., Lammers, W., Smeets, J., & Fenoglio Jr., J. J. (1982). Electrophysiologic mapping to determine the mechanism of experimental ventricular tachycardia initiated by premature impulses. Experimental approach and initial results demonstrating reentrant excitation. The American Journal of Cardiology, 49(1), 166–185.PubMedCrossRef Wit, A. L., Allessie, M. A., Bonke, F. I., Lammers, W., Smeets, J., & Fenoglio Jr., J. J. (1982). Electrophysiologic mapping to determine the mechanism of experimental ventricular tachycardia initiated by premature impulses. Experimental approach and initial results demonstrating reentrant excitation. The American Journal of Cardiology, 49(1), 166–185.PubMedCrossRef
11.
Zurück zum Zitat Antzelevitch, C., Sicouri, S., Litovsky, S. H., Lukas, A., Krishnan, S. C., Di Diego, J. M., Gintant, G. A., & Liu, D. W. (1991). Heterogeneity within the ventricular wall. Electrophysiology and pharmacology of epicardial, endocardial, and M cells. Circulation Research, 69(6), 1427–1449.PubMed Antzelevitch, C., Sicouri, S., Litovsky, S. H., Lukas, A., Krishnan, S. C., Di Diego, J. M., Gintant, G. A., & Liu, D. W. (1991). Heterogeneity within the ventricular wall. Electrophysiology and pharmacology of epicardial, endocardial, and M cells. Circulation Research, 69(6), 1427–1449.PubMed
12.
Zurück zum Zitat Antzelevitch, C., Sicouri, S., Lukas, A., Nesterenko, V., Liu, D.-W., & Di Diego, J. M. (1994). Regional differences in the ventricular cells: physical implications. In D. P. Zipes, & J. Jalife (Eds.), Cardiac Electrophysiology: From cell to bedside (pp. 228–245). Philadelphia: WB Saunders. Antzelevitch, C., Sicouri, S., Lukas, A., Nesterenko, V., Liu, D.-W., & Di Diego, J. M. (1994). Regional differences in the ventricular cells: physical implications. In D. P. Zipes, & J. Jalife (Eds.), Cardiac Electrophysiology: From cell to bedside (pp. 228–245). Philadelphia: WB Saunders.
13.
Zurück zum Zitat Barry, D. M., & Nerbonne, J. M. (1996). Myocardial potassium channels: electrophysiological and molecular diversity. Annual Review of Physiology, 58, 363–394.PubMedCrossRef Barry, D. M., & Nerbonne, J. M. (1996). Myocardial potassium channels: electrophysiological and molecular diversity. Annual Review of Physiology, 58, 363–394.PubMedCrossRef
14.
Zurück zum Zitat Salama, G., Lombardi, R., & Elson, J. (1987). Maps of optical action potentials and NADH fluorescence in intact working hearts. The American Journal of Physiology, 252(2 Pt 2), H384–H394.PubMed Salama, G., Lombardi, R., & Elson, J. (1987). Maps of optical action potentials and NADH fluorescence in intact working hearts. The American Journal of Physiology, 252(2 Pt 2), H384–H394.PubMed
15.
Zurück zum Zitat Efimov, I. R., Ermentrout, B., Huang, D. T., & Salama, G. (1996). Activation and repolarization patterns are governed by different structural characteristics of ventricular myocardium: experimental study with voltage-sensitive dyes and numerical simulations. Journal of Cardiovascular Electrophysiology, 7(6), 512–530.PubMedCrossRef Efimov, I. R., Ermentrout, B., Huang, D. T., & Salama, G. (1996). Activation and repolarization patterns are governed by different structural characteristics of ventricular myocardium: experimental study with voltage-sensitive dyes and numerical simulations. Journal of Cardiovascular Electrophysiology, 7(6), 512–530.PubMedCrossRef
16.
Zurück zum Zitat Choi, B. R., Nho, W., Liu, T., & Salama, G. (2002). Life span of ventricular fibrillation frequencies. Circulation Research, 91(4), 339–345.PubMedCrossRef Choi, B. R., Nho, W., Liu, T., & Salama, G. (2002). Life span of ventricular fibrillation frequencies. Circulation Research, 91(4), 339–345.PubMedCrossRef
17.
Zurück zum Zitat Baker, L. C., London, B., Choi, B. R., Koren, G., & Salama, G. (2000). Enhanced dispersion of repolarization and refractoriness in transgenic mouse hearts promotes reentrant ventricular tachycardia. Circulation Research, 86(4), 396–407.PubMed Baker, L. C., London, B., Choi, B. R., Koren, G., & Salama, G. (2000). Enhanced dispersion of repolarization and refractoriness in transgenic mouse hearts promotes reentrant ventricular tachycardia. Circulation Research, 86(4), 396–407.PubMed
18.
Zurück zum Zitat Szentadrassy, N., Banyasz, T., Biro, T., Szabo, G., Toth, B. I., Magyar, J., et al. (2005). Apico-basal inhomogeneity in distribution of ion channels in canine and human ventricular myocardium. Cardiovascular Research, 65(4), 851–860.PubMedCrossRef Szentadrassy, N., Banyasz, T., Biro, T., Szabo, G., Toth, B. I., Magyar, J., et al. (2005). Apico-basal inhomogeneity in distribution of ion channels in canine and human ventricular myocardium. Cardiovascular Research, 65(4), 851–860.PubMedCrossRef
19.
Zurück zum Zitat Mantravadi, R., Gabris, B., Liu, T., Choi, B. R., de Groat, W. C., Ng, G. A., et al. (2007). Autonomic nerve stimulation reverses ventricular repolarization sequence in rabbit hearts. Circulation Research, 100(7), e72–e80.PubMedCrossRef Mantravadi, R., Gabris, B., Liu, T., Choi, B. R., de Groat, W. C., Ng, G. A., et al. (2007). Autonomic nerve stimulation reverses ventricular repolarization sequence in rabbit hearts. Circulation Research, 100(7), e72–e80.PubMedCrossRef
20.
Zurück zum Zitat Niwa, N., Wang, W., Sha, Q., Marionneau, C., & Nerbonne, J. M. (2008). Kv4.3 is not required for the generation of functional Ito,f channels in adult mouse ventricles. Journal of Molecular and Cellular Cardiology, 44(1), 95–104.PubMedCrossRef Niwa, N., Wang, W., Sha, Q., Marionneau, C., & Nerbonne, J. M. (2008). Kv4.3 is not required for the generation of functional Ito,f channels in adult mouse ventricles. Journal of Molecular and Cellular Cardiology, 44(1), 95–104.PubMedCrossRef
21.
Zurück zum Zitat Nerbonne, J. M. (2000). Molecular basis of functional voltage-gated K+ channel diversity in the mammalian myocardium. The Journal of Physiology, 525(Pt 2), 285–298. In Process Citation.PubMedCrossRef Nerbonne, J. M. (2000). Molecular basis of functional voltage-gated K+ channel diversity in the mammalian myocardium. The Journal of Physiology, 525(Pt 2), 285–298. In Process Citation.PubMedCrossRef
22.
Zurück zum Zitat Xu, H., Guo, W., & Nerbonne, J. M. (1999). Four kinetically distinct depolarization-activated K+ currents in adult mouse ventricular myocytes. The Journal of General Physiology, 113(5), 661–678.PubMedCrossRef Xu, H., Guo, W., & Nerbonne, J. M. (1999). Four kinetically distinct depolarization-activated K+ currents in adult mouse ventricular myocytes. The Journal of General Physiology, 113(5), 661–678.PubMedCrossRef
23.
Zurück zum Zitat London, B., Wang, D. W., Hill, J. A., & Bennett, P. B. (1998). The transient outward current in mice lacking the potassium channel gene Kv1.4. The Journal of Physiology, 509(Pt 1), 171–182.PubMedCrossRef London, B., Wang, D. W., Hill, J. A., & Bennett, P. B. (1998). The transient outward current in mice lacking the potassium channel gene Kv1.4. The Journal of Physiology, 509(Pt 1), 171–182.PubMedCrossRef
24.
Zurück zum Zitat Guo, W., Li, H., London, B., & Nerbonne, J. M. (2000). Functional consequences of elimination of i(to,f) and i(to,s): early afterdepolarizations, atrioventricular block, and ventricular arrhythmias in mice lacking Kv1.4 and expressing a dominant-negative Kv4 alpha subunit. Circulation Research, 87(1), 73–79.PubMed Guo, W., Li, H., London, B., & Nerbonne, J. M. (2000). Functional consequences of elimination of i(to,f) and i(to,s): early afterdepolarizations, atrioventricular block, and ventricular arrhythmias in mice lacking Kv1.4 and expressing a dominant-negative Kv4 alpha subunit. Circulation Research, 87(1), 73–79.PubMed
25.
Zurück zum Zitat Brunet, S., Aimond, F., Li, H., Guo, W., Eldstrom, J., Fedida, D., Yamada, K. A., & Nerbonne, J. M. (2004). Heterogeneous expression of repolarizing, voltage-gated K+ currents in adult mouse ventricles. The Journal of Physiology, 559(Pt 1), 103–120.PubMedCrossRef Brunet, S., Aimond, F., Li, H., Guo, W., Eldstrom, J., Fedida, D., Yamada, K. A., & Nerbonne, J. M. (2004). Heterogeneous expression of repolarizing, voltage-gated K+ currents in adult mouse ventricles. The Journal of Physiology, 559(Pt 1), 103–120.PubMedCrossRef
26.
Zurück zum Zitat Barry, D. M., Xu, H., Schuessler, R. B., & Nerbonne, J. M. (1998). Functional knockout of the transient outward current, long-QT syndrome, and cardiac remodeling in mice expressing a dominant-negative Kv4 alpha subunit. Circulation Research, 83(5), 560–567.PubMed Barry, D. M., Xu, H., Schuessler, R. B., & Nerbonne, J. M. (1998). Functional knockout of the transient outward current, long-QT syndrome, and cardiac remodeling in mice expressing a dominant-negative Kv4 alpha subunit. Circulation Research, 83(5), 560–567.PubMed
27.
Zurück zum Zitat London, B., Baker, L. C., Petkova-Kirova, P., Nerbonne, J. M., Choi, B. R., & Salama, G. (2007). Dispersion of repolarization and refractoriness are determinants of arrhythmia phenotype in transgenic mice with long QT. The Journal of Physiology, 578(Pt 1), 115–129.PubMed London, B., Baker, L. C., Petkova-Kirova, P., Nerbonne, J. M., Choi, B. R., & Salama, G. (2007). Dispersion of repolarization and refractoriness are determinants of arrhythmia phenotype in transgenic mice with long QT. The Journal of Physiology, 578(Pt 1), 115–129.PubMed
28.
Zurück zum Zitat Salama, G., & London, B. (2007). Mouse models of long QT syndrome. The Journal of Physiology, 578(Pt 1), 43–53.PubMed Salama, G., & London, B. (2007). Mouse models of long QT syndrome. The Journal of Physiology, 578(Pt 1), 43–53.PubMed
29.
Zurück zum Zitat Choi, B. R., Burton, F., & Salama, G. (2002). Cytosolic Ca2+ triggers early afterdepolarizations and Torsade de Pointes in rabbit hearts with type 2 long QT syndrome. The Journal of Physiology, 543(Pt 2), 615–631.PubMedCrossRef Choi, B. R., Burton, F., & Salama, G. (2002). Cytosolic Ca2+ triggers early afterdepolarizations and Torsade de Pointes in rabbit hearts with type 2 long QT syndrome. The Journal of Physiology, 543(Pt 2), 615–631.PubMedCrossRef
30.
Zurück zum Zitat Killeen, M. J., & Sabir, I. N. (2007). Repolarization gradients and arrhythmogenicity in the murine heart. The Journal of Physiology, 583(Pt 2), 419–420.PubMedCrossRef Killeen, M. J., & Sabir, I. N. (2007). Repolarization gradients and arrhythmogenicity in the murine heart. The Journal of Physiology, 583(Pt 2), 419–420.PubMedCrossRef
31.
Zurück zum Zitat Pond, A. L., Scheve, B. K., Benedict, A. T., Petrecca, K., Van Wagoner, D. R., Shrier, A., et al. (2000). Expression of distinct ERG proteins in rat, mouse, and human heart. Relation to functional I(Kr) channels. The Journal of Biological Chemistry, 275(8), 5997−6006.PubMedCrossRef Pond, A. L., Scheve, B. K., Benedict, A. T., Petrecca, K., Van Wagoner, D. R., Shrier, A., et al. (2000). Expression of distinct ERG proteins in rat, mouse, and human heart. Relation to functional I(Kr) channels. The Journal of Biological Chemistry, 275(8), 5997−6006.PubMedCrossRef
32.
Zurück zum Zitat Babij, P., Askew, G. R., Nieuwenhuijsen, B., Su, C. M., Bridal, T. R., Jow, B., et al. (1998). Inhibition of cardiac delayed rectifier K+ current by overexpression of the long-QT syndrome HERG G628S mutation in transgenic mice. Circulation Research, 83(6), 668–678.PubMed Babij, P., Askew, G. R., Nieuwenhuijsen, B., Su, C. M., Bridal, T. R., Jow, B., et al. (1998). Inhibition of cardiac delayed rectifier K+ current by overexpression of the long-QT syndrome HERG G628S mutation in transgenic mice. Circulation Research, 83(6), 668–678.PubMed
33.
Zurück zum Zitat Lees-Miller, J. P., Guo, J., Somers, J. R., Roach, D. E., Sheldon, R. S., Rancourt, D. E., et al. (2003). Selective knockout of mouse ERG1 B potassium channel eliminates I(Kr) in adult ventricular myocytes and elicits episodes of abrupt sinus bradycardia. Molecular and Cellular Biology, 23(6), 1856–1862.PubMedCrossRef Lees-Miller, J. P., Guo, J., Somers, J. R., Roach, D. E., Sheldon, R. S., Rancourt, D. E., et al. (2003). Selective knockout of mouse ERG1 B potassium channel eliminates I(Kr) in adult ventricular myocytes and elicits episodes of abrupt sinus bradycardia. Molecular and Cellular Biology, 23(6), 1856–1862.PubMedCrossRef
34.
Zurück zum Zitat Kupershmidt, S., Yang, T., Anderson, M. E., Wessels, A., Niswender, K. D., Magnuson, M. A., et al. (1999). Replacement by homologous recombination of the minK gene with lacZ reveals restriction of minK expression to the mouse cardiac conduction system. Circulation Research, 84(2), 146–152.PubMed Kupershmidt, S., Yang, T., Anderson, M. E., Wessels, A., Niswender, K. D., Magnuson, M. A., et al. (1999). Replacement by homologous recombination of the minK gene with lacZ reveals restriction of minK expression to the mouse cardiac conduction system. Circulation Research, 84(2), 146–152.PubMed
35.
Zurück zum Zitat Drici, M. D., Arrighi, I., Chouabe, C., Mann, J. R., Lazdunski, M., Romey, G., et al. (1998). Involvement of IsK-associated K+ channel in heart rate control of repolarization in a murine engineered model of Jervell and Lange-Nielsen syndrome. Circulation Research, 83(1), 95–102.PubMed Drici, M. D., Arrighi, I., Chouabe, C., Mann, J. R., Lazdunski, M., Romey, G., et al. (1998). Involvement of IsK-associated K+ channel in heart rate control of repolarization in a murine engineered model of Jervell and Lange-Nielsen syndrome. Circulation Research, 83(1), 95–102.PubMed
36.
Zurück zum Zitat Casimiro, M. C., Knollmann, B. C., Ebert, S. N., Vary Jr, J. C., Greene, A. E., Franz, M. R., et al. (2001). Targeted disruption of the Kcnq1 gene produces a mouse model of Jervell and Lange-Nielsen syndrome. Proceedings of the National Academy of Sciences of the United States of America, 98(5), 2526–2531.PubMedCrossRef Casimiro, M. C., Knollmann, B. C., Ebert, S. N., Vary Jr, J. C., Greene, A. E., Franz, M. R., et al. (2001). Targeted disruption of the Kcnq1 gene produces a mouse model of Jervell and Lange-Nielsen syndrome. Proceedings of the National Academy of Sciences of the United States of America, 98(5), 2526–2531.PubMedCrossRef
37.
Zurück zum Zitat Lee, M. P., Ravenel, J. D., Hu, R. J., Lustig, L. R., Tomaselli, G., Berger, R. D., et al. (2000). Targeted disruption of the Kvlqt1 gene causes deafness and gastric hyperplasia in mice. The Journal of Clinical Investigation, 106(12), 1447–1455.PubMedCrossRef Lee, M. P., Ravenel, J. D., Hu, R. J., Lustig, L. R., Tomaselli, G., Berger, R. D., et al. (2000). Targeted disruption of the Kvlqt1 gene causes deafness and gastric hyperplasia in mice. The Journal of Clinical Investigation, 106(12), 1447–1455.PubMedCrossRef
38.
Zurück zum Zitat London, B., Trudeau, M. C., Newton, K. P., Beyer, A. K., Copeland, N. G., Gilbert, D. J., et al. (1997). Two isoforms of the mouse ether-a-go-go-related gene coassemble to form channels with properties similar to the rapidly activating component of the cardiac delayed rectifier K+ current. Circulation Research, 81(5), 870–878.PubMed London, B., Trudeau, M. C., Newton, K. P., Beyer, A. K., Copeland, N. G., Gilbert, D. J., et al. (1997). Two isoforms of the mouse ether-a-go-go-related gene coassemble to form channels with properties similar to the rapidly activating component of the cardiac delayed rectifier K+ current. Circulation Research, 81(5), 870–878.PubMed
39.
Zurück zum Zitat Marx, S. O., Kurokawa, J., Reiken, S., Motoike, H., D'Armiento, J., Marks, A. R., et al. (2002). Requirement of a macromolecular signaling complex for beta adrenergic receptor modulation of the KCNQ1-KCNE1 potassium channel. Science, 295(5554), 496–499.PubMedCrossRef Marx, S. O., Kurokawa, J., Reiken, S., Motoike, H., D'Armiento, J., Marks, A. R., et al. (2002). Requirement of a macromolecular signaling complex for beta adrenergic receptor modulation of the KCNQ1-KCNE1 potassium channel. Science, 295(5554), 496–499.PubMedCrossRef
40.
Zurück zum Zitat Sanguinetti, M. C. (2000). Long QT syndrome: ionic basis and arrhythmia mechanism in long QT syndrome type 1. Journal of Cardiovascular Electrophysiology, 11(6), 710–712. In Process Citation.PubMedCrossRef Sanguinetti, M. C. (2000). Long QT syndrome: ionic basis and arrhythmia mechanism in long QT syndrome type 1. Journal of Cardiovascular Electrophysiology, 11(6), 710–712. In Process Citation.PubMedCrossRef
41.
Zurück zum Zitat London, B., Newton, K. P., Vesely, M., Wong, J., Ginsberg, G., & Slater, C. (1995). Cloning the mouse homolog of the long QT syndrome gene HERG. Circulation, 92, I–223. London, B., Newton, K. P., Vesely, M., Wong, J., Ginsberg, G., & Slater, C. (1995). Cloning the mouse homolog of the long QT syndrome gene HERG. Circulation, 92, I–223.
42.
Zurück zum Zitat Barhanin, J., Lesage, F., Guillemare, E., Fink, M., Lazdunski, M., & Romey, G. K. (1996). (V)LQT1 and lsK (minK) proteins associate to form the I(Ks) cardiac potassium current. Nature, 384(6604), 78–80.PubMedCrossRef Barhanin, J., Lesage, F., Guillemare, E., Fink, M., Lazdunski, M., & Romey, G. K. (1996). (V)LQT1 and lsK (minK) proteins associate to form the I(Ks) cardiac potassium current. Nature, 384(6604), 78–80.PubMedCrossRef
43.
Zurück zum Zitat Vetter, D. E., Mann, J. R., Wangemann, P., Liu, J., McLaughlin, K. J., Lesage, F., et al. (1996). Inner ear defects induced by null mutation of the isk gene. Neuron, 17(6), 1251–1264.PubMedCrossRef Vetter, D. E., Mann, J. R., Wangemann, P., Liu, J., McLaughlin, K. J., Lesage, F., et al. (1996). Inner ear defects induced by null mutation of the isk gene. Neuron, 17(6), 1251–1264.PubMedCrossRef
44.
Zurück zum Zitat Baker, L. C., Wolk, R., Choi, B. R., Watkins, S., Plan, P., Shah, A., et al. (2004). Effects of mechanical uncouplers, diacetyl monoxime, and cytochalasin-D on the electrophysiology of perfused mouse hearts. American Journal of Physiology. Heart and Circulatory Physiology, 287(4), H1771–H1779.PubMedCrossRef Baker, L. C., Wolk, R., Choi, B. R., Watkins, S., Plan, P., Shah, A., et al. (2004). Effects of mechanical uncouplers, diacetyl monoxime, and cytochalasin-D on the electrophysiology of perfused mouse hearts. American Journal of Physiology. Heart and Circulatory Physiology, 287(4), H1771–H1779.PubMedCrossRef
45.
Zurück zum Zitat London, B., Baker, L. C., Lee, J. S., Shusterman, V., Choi, B. R., Kubota, T., et al. (2003). Calcium-dependent arrhythmias in transgenic mice with heart failure. American Journal of Physiology. Heart and Circulatory Physiology, 284(2), H431–H441.PubMed London, B., Baker, L. C., Lee, J. S., Shusterman, V., Choi, B. R., Kubota, T., et al. (2003). Calcium-dependent arrhythmias in transgenic mice with heart failure. American Journal of Physiology. Heart and Circulatory Physiology, 284(2), H431–H441.PubMed
46.
Zurück zum Zitat Trepanier-Boulay, V., St-Michel, C., Tremblay, A., & Fiset, C. (2001). Gender-based differences in cardiac repolarization in mouse ventricle. Circulation Research, 89(5), 437–444.PubMedCrossRef Trepanier-Boulay, V., St-Michel, C., Tremblay, A., & Fiset, C. (2001). Gender-based differences in cardiac repolarization in mouse ventricle. Circulation Research, 89(5), 437–444.PubMedCrossRef
47.
Zurück zum Zitat Drici, M. D., Baker, L., Plan, P., Barhanin, J., Romey, G., & Salama, G. (2002). Mice display sex differences in halothane-induced polymorphic ventricular tachycardia. Circulation, 106(4), 497–503.PubMedCrossRef Drici, M. D., Baker, L., Plan, P., Barhanin, J., Romey, G., & Salama, G. (2002). Mice display sex differences in halothane-induced polymorphic ventricular tachycardia. Circulation, 106(4), 497–503.PubMedCrossRef
48.
Zurück zum Zitat Brouillette, J., Rivard, K., Lizotte, E., & Fiset, C. (2005). Sex and strain differences in adult mouse cardiac repolarization: importance of androgens. Cardiovascular Research, 65(1), 148–157.PubMedCrossRef Brouillette, J., Rivard, K., Lizotte, E., & Fiset, C. (2005). Sex and strain differences in adult mouse cardiac repolarization: importance of androgens. Cardiovascular Research, 65(1), 148–157.PubMedCrossRef
49.
Zurück zum Zitat Choi, B. R., & Salama, G. (2000). Simultaneous maps of optical action potentials and calcium transients in guinea-pig hearts: mechanisms underlying concordant alternans. The Journal of Physiology, 529(Pt 1), 171–188. In Process Citation.PubMedCrossRef Choi, B. R., & Salama, G. (2000). Simultaneous maps of optical action potentials and calcium transients in guinea-pig hearts: mechanisms underlying concordant alternans. The Journal of Physiology, 529(Pt 1), 171–188. In Process Citation.PubMedCrossRef
50.
Zurück zum Zitat Kanai, A., & Salama, G. (1995). Optical mapping reveals that repolarization spreads anisotropically and is guided by fiber orientation in guinea pig hearts. Circulation Research, 77(4), 784–802.PubMed Kanai, A., & Salama, G. (1995). Optical mapping reveals that repolarization spreads anisotropically and is guided by fiber orientation in guinea pig hearts. Circulation Research, 77(4), 784–802.PubMed
51.
Zurück zum Zitat London, B., Jeron, A., Zhou, J., Buckett, P., Han, X., Mitchell, G. F., & Koren, G. (1998). Long QT and ventricular arrhythmias in transgenic mice expressing the N terminus and first transmembrane segment of a voltage-gated potassium channel. Proceedings of the National Academy of Sciences of the United States of America, 95(6), 2926–2931.PubMedCrossRef London, B., Jeron, A., Zhou, J., Buckett, P., Han, X., Mitchell, G. F., & Koren, G. (1998). Long QT and ventricular arrhythmias in transgenic mice expressing the N terminus and first transmembrane segment of a voltage-gated potassium channel. Proceedings of the National Academy of Sciences of the United States of America, 95(6), 2926–2931.PubMedCrossRef
52.
Zurück zum Zitat Zhou, J., Jeron, A., London, B., Han, X., & Koren, G. (1998). Characterization of a slowly inactivating outward current in adult mouse ventricular myocytes. Circulation Research, 83(8), 806–814.PubMed Zhou, J., Jeron, A., London, B., Han, X., & Koren, G. (1998). Characterization of a slowly inactivating outward current in adult mouse ventricular myocytes. Circulation Research, 83(8), 806–814.PubMed
53.
Zurück zum Zitat Shimizu, W., & Antzelevitch, C. (1998). Cellular basis for the ECG features of the LQT1 form of the long-QT syndrome: effects of beta-adrenergic agonists and antagonists and sodium channel blockers on transmural dispersion of repolarization and torsade de pointes. Circulation, 98(21), 2314–2322.PubMed Shimizu, W., & Antzelevitch, C. (1998). Cellular basis for the ECG features of the LQT1 form of the long-QT syndrome: effects of beta-adrenergic agonists and antagonists and sodium channel blockers on transmural dispersion of repolarization and torsade de pointes. Circulation, 98(21), 2314–2322.PubMed
54.
Zurück zum Zitat Han, W., Wang, Z., & Nattel, S. (2001). Slow delayed rectifier current and repolarization in canine cardiac Purkinje cells. American Journal of Physiology. Heart and Circulatory Physiology, 280(3), H1075–H1080.PubMed Han, W., Wang, Z., & Nattel, S. (2001). Slow delayed rectifier current and repolarization in canine cardiac Purkinje cells. American Journal of Physiology. Heart and Circulatory Physiology, 280(3), H1075–H1080.PubMed
55.
Zurück zum Zitat Balasubramaniam, R., Grace, A. A., Saumarez, R. C., Vandenberg, J. I., & Huang, C. L. (2003). Electrogram prolongation and nifedipine-suppressible ventricular arrhythmias in mice following targeted disruption of KCNE1. The Journal of Physiology, 552(Pt 2), 535–546.PubMedCrossRef Balasubramaniam, R., Grace, A. A., Saumarez, R. C., Vandenberg, J. I., & Huang, C. L. (2003). Electrogram prolongation and nifedipine-suppressible ventricular arrhythmias in mice following targeted disruption of KCNE1. The Journal of Physiology, 552(Pt 2), 535–546.PubMedCrossRef
56.
Zurück zum Zitat Thomas, G., Gurung, I. S., Killeen, M. J., Hakim, P., Goddard, C. A., Mahaut-Smith, M. P., et al. (2007). Effects of L-type Ca2+ channel antagonism on ventricular arrhythmogenesis in murine hearts containing a modification in the Scn5a gene modelling human long QT syndrome 3. The Journal of Physiology, 578(Pt 1), 85–97.PubMed Thomas, G., Gurung, I. S., Killeen, M. J., Hakim, P., Goddard, C. A., Mahaut-Smith, M. P., et al. (2007). Effects of L-type Ca2+ channel antagonism on ventricular arrhythmogenesis in murine hearts containing a modification in the Scn5a gene modelling human long QT syndrome 3. The Journal of Physiology, 578(Pt 1), 85–97.PubMed
57.
Zurück zum Zitat Thomas, G., Killeen, M. J., Gurung, I. S., Hakim, P., Balasubramaniam, R., Goddard, C. A., et al. (2007). Mechanisms of ventricular arrhythmogenesis in mice following targeted disruption of KCNE1 modelling long QT syndrome 5. The Journal of Physiology, 578(Pt 1), 99–114.PubMed Thomas, G., Killeen, M. J., Gurung, I. S., Hakim, P., Balasubramaniam, R., Goddard, C. A., et al. (2007). Mechanisms of ventricular arrhythmogenesis in mice following targeted disruption of KCNE1 modelling long QT syndrome 5. The Journal of Physiology, 578(Pt 1), 99–114.PubMed
58.
Zurück zum Zitat Jost, N., Virag, L., Bitay, M., Takacs, J., Lengyel, C., Biliczki, P., et al. (2005). Restricting excessive cardiac action potential and QT prolongation: a vital role for IKs in human ventricular muscle. Circulation, 112(10), 1392–1399.PubMedCrossRef Jost, N., Virag, L., Bitay, M., Takacs, J., Lengyel, C., Biliczki, P., et al. (2005). Restricting excessive cardiac action potential and QT prolongation: a vital role for IKs in human ventricular muscle. Circulation, 112(10), 1392–1399.PubMedCrossRef
59.
Zurück zum Zitat Royer, A., Demolombe, S., El Harchi, A., Le Quang, K., Piron, J., Toumaniantz, G., et al. (2005). Expression of human ERG K+ channels in the mouse heart exerts anti-arrhythmic activity. Cardiovascular Research, 65(1), 128–137.PubMedCrossRef Royer, A., Demolombe, S., El Harchi, A., Le Quang, K., Piron, J., Toumaniantz, G., et al. (2005). Expression of human ERG K+ channels in the mouse heart exerts anti-arrhythmic activity. Cardiovascular Research, 65(1), 128–137.PubMedCrossRef
60.
Zurück zum Zitat Liu, G. X., Zhou, J., Nattel, S., & Koren, G. (2004). Single-channel recordings of a rapid delayed rectifier current in adult mouse ventricular myocytes: basic properties and effects of divalent cations. The Journal of Physiology, 556(Pt 2), 401–413.PubMedCrossRef Liu, G. X., Zhou, J., Nattel, S., & Koren, G. (2004). Single-channel recordings of a rapid delayed rectifier current in adult mouse ventricular myocytes: basic properties and effects of divalent cations. The Journal of Physiology, 556(Pt 2), 401–413.PubMedCrossRef
61.
Zurück zum Zitat Kuo, H. C., Cheng, C. F., Clark, R. B., Lin, J. J., Lin, J. L., Hoshijima, M., et al. (2001). A defect in the Kv channel-interacting protein 2 (KChIP2) gene leads to a complete loss of I(to) and confers susceptibility to ventricular tachycardia. Cell, 107(6), 801–813.PubMedCrossRef Kuo, H. C., Cheng, C. F., Clark, R. B., Lin, J. J., Lin, J. L., Hoshijima, M., et al. (2001). A defect in the Kv channel-interacting protein 2 (KChIP2) gene leads to a complete loss of I(to) and confers susceptibility to ventricular tachycardia. Cell, 107(6), 801–813.PubMedCrossRef
62.
Zurück zum Zitat Hondeghem, L. M. (1992). Development of class III antiarrhythmic agents. J Cardiovasc Pharmacol, 20(Suppl 2(2), S17–22.PubMedCrossRef Hondeghem, L. M. (1992). Development of class III antiarrhythmic agents. J Cardiovasc Pharmacol, 20(Suppl 2(2), S17–22.PubMedCrossRef
64.
Zurück zum Zitat Surawicz, B. (1987). Contributions of cellular electrophysiology to the understanding of the electrocardiogram. Experientia, 43(10), 1061–1068.PubMedCrossRef Surawicz, B. (1987). Contributions of cellular electrophysiology to the understanding of the electrocardiogram. Experientia, 43(10), 1061–1068.PubMedCrossRef
Metadaten
Titel
Arrhythmia phenotype in mouse models of human long QT
verfasst von
Guy Salama
Linda Baker
Robert Wolk
Jacques Barhanin
Barry London
Publikationsdatum
01.03.2009
Verlag
Springer US
Erschienen in
Journal of Interventional Cardiac Electrophysiology / Ausgabe 2/2009
Print ISSN: 1383-875X
Elektronische ISSN: 1572-8595
DOI
https://doi.org/10.1007/s10840-008-9339-6

Weitere Artikel der Ausgabe 2/2009

Journal of Interventional Cardiac Electrophysiology 2/2009 Zur Ausgabe

Vorsicht, erhöhte Blutungsgefahr nach PCI!

10.05.2024 Koronare Herzerkrankung Nachrichten

Nach PCI besteht ein erhöhtes Blutungsrisiko, wenn die Behandelten eine verminderte linksventrikuläre Ejektionsfraktion aufweisen. Das Risiko ist umso höher, je stärker die Pumpfunktion eingeschränkt ist.

Triglyzeridsenker schützt nicht nur Hochrisikopatienten

10.05.2024 Hypercholesterinämie Nachrichten

Patienten mit Arteriosklerose-bedingten kardiovaskulären Erkrankungen, die trotz Statineinnahme zu hohe Triglyzeridspiegel haben, profitieren von einer Behandlung mit Icosapent-Ethyl, und zwar unabhängig vom individuellen Risikoprofil.

Gibt es eine Wende bei den bioresorbierbaren Gefäßstützen?

In den USA ist erstmals eine bioresorbierbare Gefäßstütze – auch Scaffold genannt – zur Rekanalisation infrapoplitealer Arterien bei schwerer PAVK zugelassen worden. Das markiert einen Wendepunkt in der Geschichte dieser speziellen Gefäßstützen.

Darf man die Behandlung eines Neonazis ablehnen?

08.05.2024 Gesellschaft Nachrichten

In einer Leseranfrage in der Zeitschrift Journal of the American Academy of Dermatology möchte ein anonymer Dermatologe bzw. eine anonyme Dermatologin wissen, ob er oder sie einen Patienten behandeln muss, der eine rassistische Tätowierung trägt.

Update Kardiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.