Skip to main content
Erschienen in: Archives of Orthopaedic and Trauma Surgery 3/2019

31.10.2018 | Orthopaedic Surgery

Articular cartilage regeneration and tissue engineering models: a systematic review

verfasst von: Sebastian G. Walter, Robert Ossendorff, Frank A. Schildberg

Erschienen in: Archives of Orthopaedic and Trauma Surgery | Ausgabe 3/2019

Einloggen, um Zugang zu erhalten

Abstract

Introduction

Cartilage regeneration and restoration is a major topic in orthopedic research as cartilaginous degeneration and damage is associated with osteoarthritis and joint destruction. This systematic review aims to summarize current research strategies in cartilage regeneration research.

Materials and methods

A Pubmed search for models investigating single-site cartilage defects as well as chondrogenesis was conducted and articles were evaluated for content by title and abstract. Finally, only manuscripts were included, which report new models or approaches of cartilage regeneration.

Results

The search resulted in 2217 studies, 200 of which were eligible for inclusion in this review. The identified manuscripts consisted of a large spectrum of research approaches spanning from cell culture to tissue engineering and transplantation as well as sophisticated computational modeling.

Conclusions

In the past three decades, knowledge about articular cartilage and its defects has multiplied in clinical and experimental settings and the respective body of research literature has grown significantly. However, current strategies for articular cartilage repair have not yet succeeded to replicate the structure and function of innate articular cartilage, which makes it even more important to understand the current strategies and their impact. Therefore, the purpose of this review was to globally summarize experimental strategies investigating cartilage regeneration in vitro as well as in vivo. This will allow for better referencing when designing new models or strategies and potentially improve research translation from bench to bedside.
Literatur
1.
Zurück zum Zitat Felson DT, Lawrence RC, Dieppe PA et al (2000) Osteoarthritis: new insights. Part 1: the disease and its risk factors. Ann Intern Med 133:635–646CrossRefPubMed Felson DT, Lawrence RC, Dieppe PA et al (2000) Osteoarthritis: new insights. Part 1: the disease and its risk factors. Ann Intern Med 133:635–646CrossRefPubMed
2.
Zurück zum Zitat Furukawa T, Eyre DR, Koide S, Glimcher MJ (1980) Biochemical studies on repair cartilage resurfacing experimental defects in the rabbit knee. J Bone Jt Surg Am Vol 62:79–89CrossRef Furukawa T, Eyre DR, Koide S, Glimcher MJ (1980) Biochemical studies on repair cartilage resurfacing experimental defects in the rabbit knee. J Bone Jt Surg Am Vol 62:79–89CrossRef
3.
Zurück zum Zitat Hurtig MB, Fretz PB, Doige CE, Schnurr DL (1988) Effects of lesion size and location on equine articular cartilage repair. Can J Vet Res 52:137–146PubMedPubMedCentral Hurtig MB, Fretz PB, Doige CE, Schnurr DL (1988) Effects of lesion size and location on equine articular cartilage repair. Can J Vet Res 52:137–146PubMedPubMedCentral
4.
Zurück zum Zitat Mankin HJ (1982) The response of articular cartilage to mechanical injury. J Bone Jt Surg Am Vol 64:460–466CrossRef Mankin HJ (1982) The response of articular cartilage to mechanical injury. J Bone Jt Surg Am Vol 64:460–466CrossRef
5.
Zurück zum Zitat O’Driscoll SW, Salter RB (1986) The repair of major osteochondral defects in joint surfaces by neochondrogenesis with autogenous osteoperiosteal grafts stimulated by continuous passive motion. An experimental investigation in the rabbit. Clin Orthop Relat Res 208:131–140 O’Driscoll SW, Salter RB (1986) The repair of major osteochondral defects in joint surfaces by neochondrogenesis with autogenous osteoperiosteal grafts stimulated by continuous passive motion. An experimental investigation in the rabbit. Clin Orthop Relat Res 208:131–140
6.
Zurück zum Zitat Lawrence RC, Felson DT, Helmick CG et al (2008) Estimates of the prevalence of arthritis and other rheumatic conditions in the United States. Part II. Arthritis Rheum 58:26–35CrossRefPubMedPubMedCentral Lawrence RC, Felson DT, Helmick CG et al (2008) Estimates of the prevalence of arthritis and other rheumatic conditions in the United States. Part II. Arthritis Rheum 58:26–35CrossRefPubMedPubMedCentral
7.
Zurück zum Zitat Martel-Pelletier J, Barr AJ, Cicuttini FM et al (2016) Osteoarthritis. Nat Rev Dis Prim 2:16072CrossRefPubMed Martel-Pelletier J, Barr AJ, Cicuttini FM et al (2016) Osteoarthritis. Nat Rev Dis Prim 2:16072CrossRefPubMed
8.
Zurück zum Zitat Mollon B, Kandel R, Chahal J, Theodoropoulos J (2013) The clinical status of cartilage tissue regeneration in humans. Osteoarthr Cartil OARS Osteoarthr Res Soc 21:1824–1833CrossRef Mollon B, Kandel R, Chahal J, Theodoropoulos J (2013) The clinical status of cartilage tissue regeneration in humans. Osteoarthr Cartil OARS Osteoarthr Res Soc 21:1824–1833CrossRef
9.
Zurück zum Zitat Nelson AE (2018) Osteoarthritis year in review 2017: clinical. Osteoarthr Cartil OARS Osteoarthr Res Soc 26(3):319–325CrossRef Nelson AE (2018) Osteoarthritis year in review 2017: clinical. Osteoarthr Cartil OARS Osteoarthr Res Soc 26(3):319–325CrossRef
10.
Zurück zum Zitat Karmarkar TD, Maurer A, Parks ML et al (2017) A fresh perspective on a familiar problem: examining disparities in knee osteoarthritis using a Markov model. Med Care 55:993–1000CrossRefPubMedPubMedCentral Karmarkar TD, Maurer A, Parks ML et al (2017) A fresh perspective on a familiar problem: examining disparities in knee osteoarthritis using a Markov model. Med Care 55:993–1000CrossRefPubMedPubMedCentral
11.
Zurück zum Zitat Schrock JB, Kraeutler MJ, Houck DA, McQueen MB, McCarty EC (2017) A cost-effectiveness analysis of surgical treatment modalities for chondral lesions of the knee: microfracture, osteochondral autograft transplantation, and autologous chondrocyte implantation. Orthop J Sports Med 5:2325967117704634PubMedPubMedCentral Schrock JB, Kraeutler MJ, Houck DA, McQueen MB, McCarty EC (2017) A cost-effectiveness analysis of surgical treatment modalities for chondral lesions of the knee: microfracture, osteochondral autograft transplantation, and autologous chondrocyte implantation. Orthop J Sports Med 5:2325967117704634PubMedPubMedCentral
12.
Zurück zum Zitat Caminal M, Fonseca C, Peris D et al (2014) Use of a chronic model of articular cartilage and meniscal injury for the assessment of long-term effects after autologous mesenchymal stromal cell treatment in sheep. N Biotechnol 31:492–498CrossRefPubMed Caminal M, Fonseca C, Peris D et al (2014) Use of a chronic model of articular cartilage and meniscal injury for the assessment of long-term effects after autologous mesenchymal stromal cell treatment in sheep. N Biotechnol 31:492–498CrossRefPubMed
13.
Zurück zum Zitat Matsuoka M, Onodera T, Sasazawa F et al (2015) An articular cartilage repair model in common C57Bl/6 mice. Tissue Eng Part C Methods 21:767–772CrossRefPubMedPubMedCentral Matsuoka M, Onodera T, Sasazawa F et al (2015) An articular cartilage repair model in common C57Bl/6 mice. Tissue Eng Part C Methods 21:767–772CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat Intema F, DeGroot J, Elshof B et al (2008) The canine bilateral groove model of osteoarthritis. J Orthop Res Off Publ Orthop Res Soc 26:1471–1477CrossRef Intema F, DeGroot J, Elshof B et al (2008) The canine bilateral groove model of osteoarthritis. J Orthop Res Off Publ Orthop Res Soc 26:1471–1477CrossRef
15.
Zurück zum Zitat To N, Curtiss S, Neu CP, Salgado CJ, Jamali AA (2011) Rabbit trochlear model of osteochondral allograft transplantation. Comp Med 61:427–435PubMedPubMedCentral To N, Curtiss S, Neu CP, Salgado CJ, Jamali AA (2011) Rabbit trochlear model of osteochondral allograft transplantation. Comp Med 61:427–435PubMedPubMedCentral
16.
Zurück zum Zitat Gotterbarm T, Breusch SJ, Schneider U, Jung M (2008) The minipig model for experimental chondral and osteochondral defect repair in tissue engineering: retrospective analysis of 180 defects. Lab Anim 42:71–82CrossRefPubMed Gotterbarm T, Breusch SJ, Schneider U, Jung M (2008) The minipig model for experimental chondral and osteochondral defect repair in tissue engineering: retrospective analysis of 180 defects. Lab Anim 42:71–82CrossRefPubMed
17.
Zurück zum Zitat Christensen BB, Foldager CB, Olesen ML et al (2015) Experimental articular cartilage repair in the Gottingen minipig: the influence of multiple defects per knee. J Exp Orthop 2:13CrossRefPubMedPubMedCentral Christensen BB, Foldager CB, Olesen ML et al (2015) Experimental articular cartilage repair in the Gottingen minipig: the influence of multiple defects per knee. J Exp Orthop 2:13CrossRefPubMedPubMedCentral
18.
Zurück zum Zitat Flanigan DC, Harris JD, Brockmeier PM, Lathrop RL, Siston RA (2014) The effects of defect size, orientation, and location on subchondral bone contact in oval-shaped experimental articular cartilage defects in a bovine knee model. Knee Surg Sports Traumatol Arthrosc Off J ESSKA 22:174–180CrossRef Flanigan DC, Harris JD, Brockmeier PM, Lathrop RL, Siston RA (2014) The effects of defect size, orientation, and location on subchondral bone contact in oval-shaped experimental articular cartilage defects in a bovine knee model. Knee Surg Sports Traumatol Arthrosc Off J ESSKA 22:174–180CrossRef
19.
Zurück zum Zitat Alves AC, Albertini R, dos Santos SA et al (2014) Effect of low-level laser therapy on metalloproteinase MMP-2 and MMP-9 production and percentage of collagen types I and III in a papain cartilage injury model. Lasers Med Sci 29:911–919CrossRefPubMed Alves AC, Albertini R, dos Santos SA et al (2014) Effect of low-level laser therapy on metalloproteinase MMP-2 and MMP-9 production and percentage of collagen types I and III in a papain cartilage injury model. Lasers Med Sci 29:911–919CrossRefPubMed
21.
Zurück zum Zitat Fujimoto M, Ohte S, Shin M et al (2014) Establishment of a novel model of chondrogenesis using murine embryonic stem cells carrying fibrodysplasia ossificans progressiva-associated mutant ALK2. Biochem Biophys Res Commun 455:347–352CrossRefPubMed Fujimoto M, Ohte S, Shin M et al (2014) Establishment of a novel model of chondrogenesis using murine embryonic stem cells carrying fibrodysplasia ossificans progressiva-associated mutant ALK2. Biochem Biophys Res Commun 455:347–352CrossRefPubMed
22.
Zurück zum Zitat Bragdon B, Lam S, Aly S et al (2017) Earliest phases of chondrogenesis are dependent upon angiogenesis during ectopic bone formation in mice. Bone 101:49–61CrossRefPubMedPubMedCentral Bragdon B, Lam S, Aly S et al (2017) Earliest phases of chondrogenesis are dependent upon angiogenesis during ectopic bone formation in mice. Bone 101:49–61CrossRefPubMedPubMedCentral
23.
Zurück zum Zitat Schuller GC, Tichy B, Majdisova Z et al (2008) An in vivo mouse model for human cartilage regeneration. J Tissue Eng Regen Med 2:202–209CrossRefPubMed Schuller GC, Tichy B, Majdisova Z et al (2008) An in vivo mouse model for human cartilage regeneration. J Tissue Eng Regen Med 2:202–209CrossRefPubMed
24.
Zurück zum Zitat Mueller-Rath R, Gavenis K, Gravius S, Andereya S, Mumme T, Schneider U (2007) In vivo cultivation of human articular chondrocytes in a nude mouse-based contained defect organ culture model. Biomed Mater Eng 17:357–366PubMed Mueller-Rath R, Gavenis K, Gravius S, Andereya S, Mumme T, Schneider U (2007) In vivo cultivation of human articular chondrocytes in a nude mouse-based contained defect organ culture model. Biomed Mater Eng 17:357–366PubMed
25.
Zurück zum Zitat Bartz C, Meixner M, Giesemann P, Roel G, Bulwin GC, Smink JJ (2016) An ex vivo human cartilage repair model to evaluate the potency of a cartilage cell transplant. J Transl Med 14:317CrossRefPubMedPubMedCentral Bartz C, Meixner M, Giesemann P, Roel G, Bulwin GC, Smink JJ (2016) An ex vivo human cartilage repair model to evaluate the potency of a cartilage cell transplant. J Transl Med 14:317CrossRefPubMedPubMedCentral
26.
Zurück zum Zitat de Vries-van Melle ML, Mandl EW, Kops N, Koevoet WJ, Verhaar JA, van Osch GJ (2012) An osteochondral culture model to study mechanisms involved in articular cartilage repair. Tissue Eng Part C Methods 18:45–53CrossRefPubMed de Vries-van Melle ML, Mandl EW, Kops N, Koevoet WJ, Verhaar JA, van Osch GJ (2012) An osteochondral culture model to study mechanisms involved in articular cartilage repair. Tissue Eng Part C Methods 18:45–53CrossRefPubMed
27.
Zurück zum Zitat Tam HK, Srivastava A, Colwell CW Jr, D’Lima DD (2007) In vitro model of full-thickness cartilage defect healing. J Orthop Res Off Publ Orthop Res Soc 25:1136–1144CrossRef Tam HK, Srivastava A, Colwell CW Jr, D’Lima DD (2007) In vitro model of full-thickness cartilage defect healing. J Orthop Res Off Publ Orthop Res Soc 25:1136–1144CrossRef
28.
Zurück zum Zitat Glenn RE Jr, McCarty EC, Potter HG, Juliao SF, Gordon JD, Spindler KP (2006) Comparison of fresh osteochondral autografts and allografts: a canine model. Am J Sports Med 34:1084–1093CrossRefPubMed Glenn RE Jr, McCarty EC, Potter HG, Juliao SF, Gordon JD, Spindler KP (2006) Comparison of fresh osteochondral autografts and allografts: a canine model. Am J Sports Med 34:1084–1093CrossRefPubMed
29.
Zurück zum Zitat Jackson DW, Halbrecht J, Proctor C, Van Sickle D, Simon TM (1996) Assessment of donor cell and matrix survival in fresh articular cartilage allografts in a goat model. J Orthop Res Off Publ Orthop Res Soc 14:255–264CrossRef Jackson DW, Halbrecht J, Proctor C, Van Sickle D, Simon TM (1996) Assessment of donor cell and matrix survival in fresh articular cartilage allografts in a goat model. J Orthop Res Off Publ Orthop Res Soc 14:255–264CrossRef
30.
Zurück zum Zitat Namba RS, Meuli M, Sullivan KM, Le AX, Adzick NS (1998) Spontaneous repair of superficial defects in articular cartilage in a fetal lamb model. J Bone Jt Surg Am Vol 80:4–10CrossRef Namba RS, Meuli M, Sullivan KM, Le AX, Adzick NS (1998) Spontaneous repair of superficial defects in articular cartilage in a fetal lamb model. J Bone Jt Surg Am Vol 80:4–10CrossRef
31.
Zurück zum Zitat Seol D, Yu Y, Choe H et al (2014) Effect of short-term enzymatic treatment on cell migration and cartilage regeneration: in vitro organ culture of bovine articular cartilage. Tissue Eng Part A 20:1807–1814CrossRefPubMedPubMedCentral Seol D, Yu Y, Choe H et al (2014) Effect of short-term enzymatic treatment on cell migration and cartilage regeneration: in vitro organ culture of bovine articular cartilage. Tissue Eng Part A 20:1807–1814CrossRefPubMedPubMedCentral
32.
Zurück zum Zitat Meretoja VV, Dahlin RL, Kasper FK, Mikos AG (2012) Enhanced chondrogenesis in co-cultures with articular chondrocytes and mesenchymal stem cells. Biomaterials 33:6362–6369CrossRefPubMedPubMedCentral Meretoja VV, Dahlin RL, Kasper FK, Mikos AG (2012) Enhanced chondrogenesis in co-cultures with articular chondrocytes and mesenchymal stem cells. Biomaterials 33:6362–6369CrossRefPubMedPubMedCentral
33.
Zurück zum Zitat Dahlin RL, Kinard LA, Lam J et al (2014) Articular chondrocytes and mesenchymal stem cells seeded on biodegradable scaffolds for the repair of cartilage in a rat osteochondral defect model. Biomaterials 35:7460–7469CrossRefPubMedPubMedCentral Dahlin RL, Kinard LA, Lam J et al (2014) Articular chondrocytes and mesenchymal stem cells seeded on biodegradable scaffolds for the repair of cartilage in a rat osteochondral defect model. Biomaterials 35:7460–7469CrossRefPubMedPubMedCentral
34.
Zurück zum Zitat Cakmak S, Cakmak AS, Kaplan DL, Gumusderelioglu M (2016) A silk fibroin and peptide amphiphile-based co-culture model for osteochondral tissue engineering. Macromol Biosci 16:1212–1226CrossRefPubMed Cakmak S, Cakmak AS, Kaplan DL, Gumusderelioglu M (2016) A silk fibroin and peptide amphiphile-based co-culture model for osteochondral tissue engineering. Macromol Biosci 16:1212–1226CrossRefPubMed
35.
Zurück zum Zitat Kazemi D, Shams Asenjan K, Dehdilani N, Parsa H (2017) Canine articular cartilage regeneration using mesenchymal stem cells seeded on platelet rich fibrin: macroscopic and histological assessments. Bone Jt Res 6:98–107CrossRef Kazemi D, Shams Asenjan K, Dehdilani N, Parsa H (2017) Canine articular cartilage regeneration using mesenchymal stem cells seeded on platelet rich fibrin: macroscopic and histological assessments. Bone Jt Res 6:98–107CrossRef
36.
Zurück zum Zitat Betsch M, Schneppendahl J, Thuns S et al (2013) Bone marrow aspiration concentrate and platelet rich plasma for osteochondral repair in a porcine osteochondral defect model. PloS One 8:e71602CrossRefPubMedPubMedCentral Betsch M, Schneppendahl J, Thuns S et al (2013) Bone marrow aspiration concentrate and platelet rich plasma for osteochondral repair in a porcine osteochondral defect model. PloS One 8:e71602CrossRefPubMedPubMedCentral
37.
Zurück zum Zitat Wilke MM, Nydam DV, Nixon AJ (2007) Enhanced early chondrogenesis in articular defects following arthroscopic mesenchymal stem cell implantation in an equine model. J Orthop Res Off Publ Orthop Res Soc 25:913–925CrossRef Wilke MM, Nydam DV, Nixon AJ (2007) Enhanced early chondrogenesis in articular defects following arthroscopic mesenchymal stem cell implantation in an equine model. J Orthop Res Off Publ Orthop Res Soc 25:913–925CrossRef
38.
Zurück zum Zitat Bornes TD, Adesida AB, Jomha NM (2018) Articular cartilage repair with mesenchymal stem cells after chondrogenic priming: a pilot study. Tissue Eng Part A 24(9–10):761–774CrossRefPubMed Bornes TD, Adesida AB, Jomha NM (2018) Articular cartilage repair with mesenchymal stem cells after chondrogenic priming: a pilot study. Tissue Eng Part A 24(9–10):761–774CrossRefPubMed
39.
Zurück zum Zitat Nam HY, Karunanithi P, Loo WC et al (2013) The effects of staged intra-articular injection of cultured autologous mesenchymal stromal cells on the repair of damaged cartilage: a pilot study in caprine model. Arthritis Res Ther 15:R129CrossRefPubMedPubMedCentral Nam HY, Karunanithi P, Loo WC et al (2013) The effects of staged intra-articular injection of cultured autologous mesenchymal stromal cells on the repair of damaged cartilage: a pilot study in caprine model. Arthritis Res Ther 15:R129CrossRefPubMedPubMedCentral
40.
Zurück zum Zitat Sato M, Uchida K, Nakajima H et al (2012) Direct transplantation of mesenchymal stem cells into the knee joints of Hartley strain guinea pigs with spontaneous osteoarthritis. Arthritis Res Ther 14:R31CrossRefPubMedPubMedCentral Sato M, Uchida K, Nakajima H et al (2012) Direct transplantation of mesenchymal stem cells into the knee joints of Hartley strain guinea pigs with spontaneous osteoarthritis. Arthritis Res Ther 14:R31CrossRefPubMedPubMedCentral
41.
Zurück zum Zitat Bell AD, Hurtig MB, Quenneville E, Rivard GE, Hoemann CD (2017) Effect of a rapidly degrading presolidified 10 kDa chitosan/blood implant and subchondral marrow stimulation surgical approach on cartilage resurfacing in a sheep model. Cartilage 8:417–431CrossRefPubMed Bell AD, Hurtig MB, Quenneville E, Rivard GE, Hoemann CD (2017) Effect of a rapidly degrading presolidified 10 kDa chitosan/blood implant and subchondral marrow stimulation surgical approach on cartilage resurfacing in a sheep model. Cartilage 8:417–431CrossRefPubMed
42.
Zurück zum Zitat Munoz-Criado I, Meseguer-Ripolles J, Mellado-Lopez M et al (2017) Human suprapatellar fat pad-derived mesenchymal stem cells induce chondrogenesis and cartilage repair in a model of severe osteoarthritis. Stem Cells Int 2017:4758930CrossRefPubMedPubMedCentral Munoz-Criado I, Meseguer-Ripolles J, Mellado-Lopez M et al (2017) Human suprapatellar fat pad-derived mesenchymal stem cells induce chondrogenesis and cartilage repair in a model of severe osteoarthritis. Stem Cells Int 2017:4758930CrossRefPubMedPubMedCentral
43.
Zurück zum Zitat Park YB, Ha CW, Kim JA et al (2016) Effect of transplanting various concentrations of a composite of human umbilical cord blood-derived mesenchymal stem cells and hyaluronic acid hydrogel on articular cartilage repair in a rabbit model. PloS One 11:e0165446CrossRefPubMedPubMedCentral Park YB, Ha CW, Kim JA et al (2016) Effect of transplanting various concentrations of a composite of human umbilical cord blood-derived mesenchymal stem cells and hyaluronic acid hydrogel on articular cartilage repair in a rabbit model. PloS One 11:e0165446CrossRefPubMedPubMedCentral
44.
Zurück zum Zitat Zhang Y, Liu S, Guo W et al (2018) Human umbilical cord Wharton’s jelly mesenchymal stem cells combined with an acellular cartilage extracellular matrix scaffold improve cartilage repair compared with microfracture in a caprine model. Osteoarthr Cartil OARS Osteoarthr Res Soc 26(7):954–965CrossRef Zhang Y, Liu S, Guo W et al (2018) Human umbilical cord Wharton’s jelly mesenchymal stem cells combined with an acellular cartilage extracellular matrix scaffold improve cartilage repair compared with microfracture in a caprine model. Osteoarthr Cartil OARS Osteoarthr Res Soc 26(7):954–965CrossRef
45.
Zurück zum Zitat Yan H, Yu C (2007) Repair of full-thickness cartilage defects with cells of different origin in a rabbit model. Arthrosc J Arthrosc Relat Surg Off Publ Arthrosc Assoc N Am Int Arthrosc Assoc 23:178–187CrossRef Yan H, Yu C (2007) Repair of full-thickness cartilage defects with cells of different origin in a rabbit model. Arthrosc J Arthrosc Relat Surg Off Publ Arthrosc Assoc N Am Int Arthrosc Assoc 23:178–187CrossRef
46.
Zurück zum Zitat Hindle P, Baily J, Khan N, Biant LC, Simpson AH, Peault B (2016) Perivascular mesenchymal stem cells in sheep: characterization and autologous transplantation in a model of articular cartilage repair. Stem Cells Dev 25:1659–1669CrossRefPubMed Hindle P, Baily J, Khan N, Biant LC, Simpson AH, Peault B (2016) Perivascular mesenchymal stem cells in sheep: characterization and autologous transplantation in a model of articular cartilage repair. Stem Cells Dev 25:1659–1669CrossRefPubMed
47.
Zurück zum Zitat de Vries-van Melle ML, Narcisi R, Kops N et al (2014) Chondrogenesis of mesenchymal stem cells in an osteochondral environment is mediated by the subchondral bone. Tissue Eng Part A 20:23–33CrossRefPubMed de Vries-van Melle ML, Narcisi R, Kops N et al (2014) Chondrogenesis of mesenchymal stem cells in an osteochondral environment is mediated by the subchondral bone. Tissue Eng Part A 20:23–33CrossRefPubMed
48.
Zurück zum Zitat Jiang L, Ma A, Song L et al (2014) Cartilage regeneration by selected chondrogenic clonal mesenchymal stem cells in the collagenase-induced monkey osteoarthritis model. J Tissue Eng Regen Med 8:896–905CrossRefPubMed Jiang L, Ma A, Song L et al (2014) Cartilage regeneration by selected chondrogenic clonal mesenchymal stem cells in the collagenase-induced monkey osteoarthritis model. J Tissue Eng Regen Med 8:896–905CrossRefPubMed
49.
Zurück zum Zitat Fu WL, Zhou CY, Yu JK (2014) A new source of mesenchymal stem cells for articular cartilage repair: MSCs derived from mobilized peripheral blood share similar biological characteristics in vitro and chondrogenesis in vivo as MSCs from bone marrow in a rabbit model. Am J Sports Med 42:592–601CrossRefPubMed Fu WL, Zhou CY, Yu JK (2014) A new source of mesenchymal stem cells for articular cartilage repair: MSCs derived from mobilized peripheral blood share similar biological characteristics in vitro and chondrogenesis in vivo as MSCs from bone marrow in a rabbit model. Am J Sports Med 42:592–601CrossRefPubMed
50.
Zurück zum Zitat Yoshioka T, Mishima H, Sakai S, Uemura T (2013) Long-term results of cartilage repair after allogeneic transplantation of cartilaginous aggregates formed from bone marrow-derived cells for large osteochondral defects in rabbit knees. Cartilage 4:339–344CrossRefPubMedPubMedCentral Yoshioka T, Mishima H, Sakai S, Uemura T (2013) Long-term results of cartilage repair after allogeneic transplantation of cartilaginous aggregates formed from bone marrow-derived cells for large osteochondral defects in rabbit knees. Cartilage 4:339–344CrossRefPubMedPubMedCentral
51.
Zurück zum Zitat Sun Q, Zhang L, Xu T et al (2018) Combined use of adipose derived stem cells and TGF-beta3 microspheres promotes articular cartilage regeneration in vivo. Biotech Histochem 93(3):168–176CrossRefPubMed Sun Q, Zhang L, Xu T et al (2018) Combined use of adipose derived stem cells and TGF-beta3 microspheres promotes articular cartilage regeneration in vivo. Biotech Histochem 93(3):168–176CrossRefPubMed
52.
Zurück zum Zitat Tsuchida AI, Beekhuizen M, Rutgers M et al (2012) Interleukin-6 is elevated in synovial fluid of patients with focal cartilage defects and stimulates cartilage matrix production in an in vitro regeneration model. Arthritis Res Ther 14:R262CrossRefPubMedPubMedCentral Tsuchida AI, Beekhuizen M, Rutgers M et al (2012) Interleukin-6 is elevated in synovial fluid of patients with focal cartilage defects and stimulates cartilage matrix production in an in vitro regeneration model. Arthritis Res Ther 14:R262CrossRefPubMedPubMedCentral
53.
Zurück zum Zitat Ossendorff R, Grad S, Stoddart MJ et al (2018) Autologous chondrocyte implantation in osteoarthritic surroundings: TNFalpha and its inhibition by adalimumab in a knee-specific bioreactor. Am J Sports Med 46:431–440CrossRefPubMed Ossendorff R, Grad S, Stoddart MJ et al (2018) Autologous chondrocyte implantation in osteoarthritic surroundings: TNFalpha and its inhibition by adalimumab in a knee-specific bioreactor. Am J Sports Med 46:431–440CrossRefPubMed
54.
Zurück zum Zitat Hingert D, Barreto Henriksson H, Brisby H (2018) Human mesenchymal stem cells pretreated with interleukin-1beta and stimulated with bone morphogenetic growth factor-3 enhance chondrogenesis. Tissue Eng Part A 24(9–10):775–785CrossRefPubMed Hingert D, Barreto Henriksson H, Brisby H (2018) Human mesenchymal stem cells pretreated with interleukin-1beta and stimulated with bone morphogenetic growth factor-3 enhance chondrogenesis. Tissue Eng Part A 24(9–10):775–785CrossRefPubMed
55.
Zurück zum Zitat Madry H, Orth P, Kaul G et al (2010) Acceleration of articular cartilage repair by combined gene transfer of human insulin-like growth factor I and fibroblast growth factor-2 in vivo. Arch Orthop Trauma Surg 130:1311–1322CrossRefPubMed Madry H, Orth P, Kaul G et al (2010) Acceleration of articular cartilage repair by combined gene transfer of human insulin-like growth factor I and fibroblast growth factor-2 in vivo. Arch Orthop Trauma Surg 130:1311–1322CrossRefPubMed
56.
Zurück zum Zitat Goodrich LR, Hidaka C, Robbins PD, Evans CH, Nixon AJ (2007) Genetic modification of chondrocytes with insulin-like growth factor-1 enhances cartilage healing in an equine model. J Bone Jt Surg Br Vol 89:672–685CrossRef Goodrich LR, Hidaka C, Robbins PD, Evans CH, Nixon AJ (2007) Genetic modification of chondrocytes with insulin-like growth factor-1 enhances cartilage healing in an equine model. J Bone Jt Surg Br Vol 89:672–685CrossRef
57.
Zurück zum Zitat Deng MW, Wei SJ, Yew TL et al (2015) Cell therapy With G-CSF-mobilized stem cells in a rat osteoarthritis model. Cell Transplant 24:1085–1096CrossRefPubMed Deng MW, Wei SJ, Yew TL et al (2015) Cell therapy With G-CSF-mobilized stem cells in a rat osteoarthritis model. Cell Transplant 24:1085–1096CrossRefPubMed
58.
Zurück zum Zitat Zhang X, Wu S, Naccarato T et al (2017) Regeneration of hyaline-like cartilage in situ with SOX9 stimulation of bone marrow-derived mesenchymal stem cells. PloS One 12:e0180138CrossRefPubMedPubMedCentral Zhang X, Wu S, Naccarato T et al (2017) Regeneration of hyaline-like cartilage in situ with SOX9 stimulation of bone marrow-derived mesenchymal stem cells. PloS One 12:e0180138CrossRefPubMedPubMedCentral
59.
Zurück zum Zitat Lin S, Lee WYW, Feng Q et al (2017) Synergistic effects on mesenchymal stem cell-based cartilage regeneration by chondrogenic preconditioning and mechanical stimulation. Stem Cell Res Ther 8:221CrossRefPubMedPubMedCentral Lin S, Lee WYW, Feng Q et al (2017) Synergistic effects on mesenchymal stem cell-based cartilage regeneration by chondrogenic preconditioning and mechanical stimulation. Stem Cell Res Ther 8:221CrossRefPubMedPubMedCentral
60.
Zurück zum Zitat Enders JT, Otto TJ, Peters HC et al (2010) A model for studying human articular cartilage integration in vitro. J Biomed Mater Res A 94:509–514PubMed Enders JT, Otto TJ, Peters HC et al (2010) A model for studying human articular cartilage integration in vitro. J Biomed Mater Res A 94:509–514PubMed
61.
Zurück zum Zitat Igarashi T, Iwasaki N, Kawamura D et al (2012) Repair of articular cartilage defects with a novel injectable in situ forming material in a canine model. J Biomed Mater Res A 100:180–187CrossRefPubMed Igarashi T, Iwasaki N, Kawamura D et al (2012) Repair of articular cartilage defects with a novel injectable in situ forming material in a canine model. J Biomed Mater Res A 100:180–187CrossRefPubMed
62.
Zurück zum Zitat Kitahara S, Nakagawa K, Sah RL et al (2008) In vivo maturation of scaffold-free engineered articular cartilage on hydroxyapatite. Tissue Eng Part A 14:1905–1913CrossRefPubMed Kitahara S, Nakagawa K, Sah RL et al (2008) In vivo maturation of scaffold-free engineered articular cartilage on hydroxyapatite. Tissue Eng Part A 14:1905–1913CrossRefPubMed
63.
Zurück zum Zitat Saw KY, Hussin P, Loke SC et al (2009) Articular cartilage regeneration with autologous marrow aspirate and hyaluronic acid: an experimental study in a goat model. Arthrosc J Arthrosc Relat Surg Off Publ Arthrosc Assoc N Am Int Arthrosc Assoc 25:1391–1400CrossRef Saw KY, Hussin P, Loke SC et al (2009) Articular cartilage regeneration with autologous marrow aspirate and hyaluronic acid: an experimental study in a goat model. Arthrosc J Arthrosc Relat Surg Off Publ Arthrosc Assoc N Am Int Arthrosc Assoc 25:1391–1400CrossRef
64.
Zurück zum Zitat Watts AE, Ackerman-Yost JC, Nixon AJ (2013) A comparison of three-dimensional culture systems to evaluate in vitro chondrogenesis of equine bone marrow-derived mesenchymal stem cells. Tissue Eng Part A 19:2275–2283CrossRefPubMedPubMedCentral Watts AE, Ackerman-Yost JC, Nixon AJ (2013) A comparison of three-dimensional culture systems to evaluate in vitro chondrogenesis of equine bone marrow-derived mesenchymal stem cells. Tissue Eng Part A 19:2275–2283CrossRefPubMedPubMedCentral
65.
Zurück zum Zitat Ude CC, Sulaiman SB, Min-Hwei N et al (2014) Cartilage regeneration by chondrogenic induced adult stem cells in osteoarthritic sheep model. PloS One 9:e98770CrossRefPubMedPubMedCentral Ude CC, Sulaiman SB, Min-Hwei N et al (2014) Cartilage regeneration by chondrogenic induced adult stem cells in osteoarthritic sheep model. PloS One 9:e98770CrossRefPubMedPubMedCentral
66.
Zurück zum Zitat Mehlhorn AT, Zwingmann J, Finkenzeller G et al (2009) Chondrogenesis of adipose-derived adult stem cells in a poly-lactide-co-glycolide scaffold. Tissue Eng Part A 15:1159–1167CrossRefPubMed Mehlhorn AT, Zwingmann J, Finkenzeller G et al (2009) Chondrogenesis of adipose-derived adult stem cells in a poly-lactide-co-glycolide scaffold. Tissue Eng Part A 15:1159–1167CrossRefPubMed
67.
Zurück zum Zitat Mifune Y, Matsumoto T, Murasawa S et al (2013) Therapeutic superiority for cartilage repair by CD271-positive marrow stromal cell transplantation. Cell Transplant 22:1201–1211CrossRefPubMed Mifune Y, Matsumoto T, Murasawa S et al (2013) Therapeutic superiority for cartilage repair by CD271-positive marrow stromal cell transplantation. Cell Transplant 22:1201–1211CrossRefPubMed
68.
Zurück zum Zitat Matsumoto T, Cooper GM, Gharaibeh B et al (2009) Cartilage repair in a rat model of osteoarthritis through intraarticular transplantation of muscle-derived stem cells expressing bone morphogenetic protein 4 and soluble Flt-1. Arthritis Rheum 60:1390–1405CrossRefPubMedPubMedCentral Matsumoto T, Cooper GM, Gharaibeh B et al (2009) Cartilage repair in a rat model of osteoarthritis through intraarticular transplantation of muscle-derived stem cells expressing bone morphogenetic protein 4 and soluble Flt-1. Arthritis Rheum 60:1390–1405CrossRefPubMedPubMedCentral
69.
Zurück zum Zitat Shimomura K, Ando W, Tateishi K et al (2010) The influence of skeletal maturity on allogenic synovial mesenchymal stem cell-based repair of cartilage in a large animal model. Biomaterials 31:8004–8011CrossRefPubMed Shimomura K, Ando W, Tateishi K et al (2010) The influence of skeletal maturity on allogenic synovial mesenchymal stem cell-based repair of cartilage in a large animal model. Biomaterials 31:8004–8011CrossRefPubMed
70.
Zurück zum Zitat Liu J, Nie H, Xu Z et al (2014) The effect of 3D nanofibrous scaffolds on the chondrogenesis of induced pluripotent stem cells and their application in restoration of cartilage defects. PloS One 9:e111566CrossRefPubMedPubMedCentral Liu J, Nie H, Xu Z et al (2014) The effect of 3D nanofibrous scaffolds on the chondrogenesis of induced pluripotent stem cells and their application in restoration of cartilage defects. PloS One 9:e111566CrossRefPubMedPubMedCentral
71.
Zurück zum Zitat Diekman BO, Christoforou N, Willard VP et al (2012) Cartilage tissue engineering using differentiated and purified induced pluripotent stem cells. Proc Natl Acad Sci USA 109:19172–19177CrossRefPubMedPubMedCentral Diekman BO, Christoforou N, Willard VP et al (2012) Cartilage tissue engineering using differentiated and purified induced pluripotent stem cells. Proc Natl Acad Sci USA 109:19172–19177CrossRefPubMedPubMedCentral
72.
Zurück zum Zitat Toh WS, Lee EH, Guo XM et al (2010) Cartilage repair using hyaluronan hydrogel-encapsulated human embryonic stem cell-derived chondrogenic cells. Biomaterials 31:6968–6980CrossRefPubMed Toh WS, Lee EH, Guo XM et al (2010) Cartilage repair using hyaluronan hydrogel-encapsulated human embryonic stem cell-derived chondrogenic cells. Biomaterials 31:6968–6980CrossRefPubMed
73.
Zurück zum Zitat Williams R, Khan IM, Richardson K et al (2010) Identification and clonal characterisation of a progenitor cell sub-population in normal human articular cartilage. PloS One 5:e13246CrossRefPubMedPubMedCentral Williams R, Khan IM, Richardson K et al (2010) Identification and clonal characterisation of a progenitor cell sub-population in normal human articular cartilage. PloS One 5:e13246CrossRefPubMedPubMedCentral
74.
Zurück zum Zitat Sato M, Yamato M, Hamahashi K, Okano T, Mochida J (2014) Articular cartilage regeneration using cell sheet technology. Anat Rec (Hoboken) 297:36–43CrossRef Sato M, Yamato M, Hamahashi K, Okano T, Mochida J (2014) Articular cartilage regeneration using cell sheet technology. Anat Rec (Hoboken) 297:36–43CrossRef
75.
Zurück zum Zitat Ebihara G, Sato M, Yamato M et al (2012) Cartilage repair in transplanted scaffold-free chondrocyte sheets using a minipig model. Biomaterials 33:3846–3851CrossRefPubMed Ebihara G, Sato M, Yamato M et al (2012) Cartilage repair in transplanted scaffold-free chondrocyte sheets using a minipig model. Biomaterials 33:3846–3851CrossRefPubMed
76.
Zurück zum Zitat Kim TK, Sharma B, Williams CG et al (2003) Experimental model for cartilage tissue engineering to regenerate the zonal organization of articular cartilage. Osteoarthr Cartil OARS Osteoarthr Res Soc 11:653–664CrossRef Kim TK, Sharma B, Williams CG et al (2003) Experimental model for cartilage tissue engineering to regenerate the zonal organization of articular cartilage. Osteoarthr Cartil OARS Osteoarthr Res Soc 11:653–664CrossRef
77.
Zurück zum Zitat Breinan HA, Minas T, Hsu HP, Nehrer S, Sledge CB, Spector M (1997) Effect of cultured autologous chondrocytes on repair of chondral defects in a canine model. J Bone Jt Surg Am Vol 79:1439–1451CrossRef Breinan HA, Minas T, Hsu HP, Nehrer S, Sledge CB, Spector M (1997) Effect of cultured autologous chondrocytes on repair of chondral defects in a canine model. J Bone Jt Surg Am Vol 79:1439–1451CrossRef
78.
Zurück zum Zitat Brehm W, Aklin B, Yamashita T et al (2006) Repair of superficial osteochondral defects with an autologous scaffold-free cartilage construct in a caprine model: implantation method and short-term results. Osteoarthr Cartil OARS Osteoarthr Res Soc 14:1214–1226CrossRef Brehm W, Aklin B, Yamashita T et al (2006) Repair of superficial osteochondral defects with an autologous scaffold-free cartilage construct in a caprine model: implantation method and short-term results. Osteoarthr Cartil OARS Osteoarthr Res Soc 14:1214–1226CrossRef
79.
Zurück zum Zitat Frisbie DD, Bowman SM, Colhoun HA, DiCarlo EF, Kawcak CE, McIlwraith CW (2008) Evaluation of autologous chondrocyte transplantation via a collagen membrane in equine articular defects: results at 12 and 18 months. Osteoarthr Cartil OARS Osteoarthr Res Soc 16:667–679CrossRef Frisbie DD, Bowman SM, Colhoun HA, DiCarlo EF, Kawcak CE, McIlwraith CW (2008) Evaluation of autologous chondrocyte transplantation via a collagen membrane in equine articular defects: results at 12 and 18 months. Osteoarthr Cartil OARS Osteoarthr Res Soc 16:667–679CrossRef
80.
Zurück zum Zitat Petersen JP, Ueblacker P, Goepfert C et al (2008) Long term results after implantation of tissue engineered cartilage for the treatment of osteochondral lesions in a minipig model. J Mater Sci Mater Med 19:2029–2038CrossRefPubMed Petersen JP, Ueblacker P, Goepfert C et al (2008) Long term results after implantation of tissue engineered cartilage for the treatment of osteochondral lesions in a minipig model. J Mater Sci Mater Med 19:2029–2038CrossRefPubMed
81.
Zurück zum Zitat Breinan HA, Martin SD, Hsu HP, Spector M (2000) Healing of canine articular cartilage defects treated with microfracture, a type-II collagen matrix, or cultured autologous chondrocytes. J Orthop Res Off Publ Orthop Res Soc 18:781–789CrossRef Breinan HA, Martin SD, Hsu HP, Spector M (2000) Healing of canine articular cartilage defects treated with microfracture, a type-II collagen matrix, or cultured autologous chondrocytes. J Orthop Res Off Publ Orthop Res Soc 18:781–789CrossRef
82.
Zurück zum Zitat Orth P, Duffner J, Zurakowski D, Cucchiarini M, Madry H (2016) Small-diameter awls improve articular cartilage repair after microfracture treatment in a translational animal model. Am J Sports Med 44:209–219CrossRefPubMed Orth P, Duffner J, Zurakowski D, Cucchiarini M, Madry H (2016) Small-diameter awls improve articular cartilage repair after microfracture treatment in a translational animal model. Am J Sports Med 44:209–219CrossRefPubMed
83.
Zurück zum Zitat Zedde P, Cudoni S, Manunta L et al (2017) Second generation needling techniques for the treatment of chondral defects in animal model. Joints 5:27–33CrossRefPubMedPubMedCentral Zedde P, Cudoni S, Manunta L et al (2017) Second generation needling techniques for the treatment of chondral defects in animal model. Joints 5:27–33CrossRefPubMedPubMedCentral
84.
Zurück zum Zitat Christensen BB, Foldager CB, Olesen ML, Hede KC, Lind M (2016) Implantation of autologous cartilage chips improves cartilage repair tissue quality in osteochondral defects: a study in gottingen minipigs. Am J Sports Med 44:1597–1604CrossRefPubMed Christensen BB, Foldager CB, Olesen ML, Hede KC, Lind M (2016) Implantation of autologous cartilage chips improves cartilage repair tissue quality in osteochondral defects: a study in gottingen minipigs. Am J Sports Med 44:1597–1604CrossRefPubMed
85.
Zurück zum Zitat Baumbach K, Petersen JP, Ueblacker P et al (2008) The fate of osteochondral grafts after autologous osteochondral transplantation: a one-year follow-up study in a minipig model. Arch Orthop Trauma Surg 128:1255–1263CrossRefPubMed Baumbach K, Petersen JP, Ueblacker P et al (2008) The fate of osteochondral grafts after autologous osteochondral transplantation: a one-year follow-up study in a minipig model. Arch Orthop Trauma Surg 128:1255–1263CrossRefPubMed
86.
Zurück zum Zitat Kleemann RU, Schell H, Thompson M, Epari DR, Duda GN, Weiler A (2007) Mechanical behavior of articular cartilage after osteochondral autograft transfer in an ovine model. Am J Sports Med 35:555–563CrossRefPubMed Kleemann RU, Schell H, Thompson M, Epari DR, Duda GN, Weiler A (2007) Mechanical behavior of articular cartilage after osteochondral autograft transfer in an ovine model. Am J Sports Med 35:555–563CrossRefPubMed
87.
Zurück zum Zitat Nakaji N, Fujioka H, Nagura I et al (2006) The structural properties of an osteochondral cylinder graft-recipient construct on autologous osteochondral transplantation. Arthrosc J Arthrosc Relat Surg Off Publ Arthrosc Assoc N Am Int Arthrosc Assoc 22:422–427CrossRef Nakaji N, Fujioka H, Nagura I et al (2006) The structural properties of an osteochondral cylinder graft-recipient construct on autologous osteochondral transplantation. Arthrosc J Arthrosc Relat Surg Off Publ Arthrosc Assoc N Am Int Arthrosc Assoc 22:422–427CrossRef
88.
Zurück zum Zitat Smyth NA, Ross KA, Haleem AM et al (2018) Platelet-rich plasma and hyaluronic acid are not synergistic when used as biological adjuncts with autologous osteochondral transplantation. Cartilage 9(3):321–328CrossRefPubMed Smyth NA, Ross KA, Haleem AM et al (2018) Platelet-rich plasma and hyaluronic acid are not synergistic when used as biological adjuncts with autologous osteochondral transplantation. Cartilage 9(3):321–328CrossRefPubMed
89.
Zurück zum Zitat Bonasia DE, Martin JA, Marmotti A et al (2016) The use of autologous adult, allogenic juvenile, and combined juvenile-adult cartilage fragments for the repair of chondral defects. Knee Surg Sports Traumatol Arthrosc Off J ESSKA 24:3988–3996CrossRef Bonasia DE, Martin JA, Marmotti A et al (2016) The use of autologous adult, allogenic juvenile, and combined juvenile-adult cartilage fragments for the repair of chondral defects. Knee Surg Sports Traumatol Arthrosc Off J ESSKA 24:3988–3996CrossRef
90.
Zurück zum Zitat Gelse K, Riedel D, Pachowsky M, Hennig FF, Trattnig S, Welsch GH (2015) Limited integrative repair capacity of native cartilage autografts within cartilage defects in a sheep model. J Orthop Res Off Publ Orthop Res Soc 33:390–397CrossRef Gelse K, Riedel D, Pachowsky M, Hennig FF, Trattnig S, Welsch GH (2015) Limited integrative repair capacity of native cartilage autografts within cartilage defects in a sheep model. J Orthop Res Off Publ Orthop Res Soc 33:390–397CrossRef
91.
Zurück zum Zitat Guillen-Garcia P, Rodriguez-Inigo E, Guillen-Vicente I et al (2014) Increasing the dose of autologous chondrocytes improves articular cartilage repair: histological and molecular study in the sheep animal model. Cartilage 5:114–122CrossRefPubMedPubMedCentral Guillen-Garcia P, Rodriguez-Inigo E, Guillen-Vicente I et al (2014) Increasing the dose of autologous chondrocytes improves articular cartilage repair: histological and molecular study in the sheep animal model. Cartilage 5:114–122CrossRefPubMedPubMedCentral
92.
Zurück zum Zitat Nixon AJ, Begum L, Mohammed HO, Huibregtse B, O’Callaghan MM, Matthews GL (2011) Autologous chondrocyte implantation drives early chondrogenesis and organized repair in extensive full- and partial-thickness cartilage defects in an equine model. J Orthop Res Off Publ Orthop Res Soc 29:1121–1130CrossRef Nixon AJ, Begum L, Mohammed HO, Huibregtse B, O’Callaghan MM, Matthews GL (2011) Autologous chondrocyte implantation drives early chondrogenesis and organized repair in extensive full- and partial-thickness cartilage defects in an equine model. J Orthop Res Off Publ Orthop Res Soc 29:1121–1130CrossRef
93.
Zurück zum Zitat Aroen A, Heir S, Loken S, Engebretsen L, Reinholt FP (2006) Healing of articular cartilage defects. An experimental study of vascular and minimal vascular microenvironment. J Orthop Res Off Publ Orthop Res Soc 24:1069–1077CrossRef Aroen A, Heir S, Loken S, Engebretsen L, Reinholt FP (2006) Healing of articular cartilage defects. An experimental study of vascular and minimal vascular microenvironment. J Orthop Res Off Publ Orthop Res Soc 24:1069–1077CrossRef
94.
Zurück zum Zitat Chen H, Chevrier A, Hoemann CD, Sun J, Picard G, Buschmann MD (2013) Bone marrow stimulation of the medial femoral condyle produces inferior cartilage and bone repair compared to the trochlea in a rabbit surgical model. J Orthop Res Off Publ Orthop Res Soc 31:1757–1764CrossRef Chen H, Chevrier A, Hoemann CD, Sun J, Picard G, Buschmann MD (2013) Bone marrow stimulation of the medial femoral condyle produces inferior cartilage and bone repair compared to the trochlea in a rabbit surgical model. J Orthop Res Off Publ Orthop Res Soc 31:1757–1764CrossRef
95.
Zurück zum Zitat Lee JM, Kim BS, Lee H, Im GI (2012) In vivo tracking of mesechymal stem cells using fluorescent nanoparticles in an osteochondral repair model. Mol Ther 20:1434–1442CrossRefPubMedPubMedCentral Lee JM, Kim BS, Lee H, Im GI (2012) In vivo tracking of mesechymal stem cells using fluorescent nanoparticles in an osteochondral repair model. Mol Ther 20:1434–1442CrossRefPubMedPubMedCentral
96.
Zurück zum Zitat Chen J, Wang F, Zhang Y et al (2012) In vivo tracking of superparamagnetic iron oxide nanoparticle labeled chondrocytes in large animal model. Ann Biomed Eng 40:2568–2578CrossRefPubMed Chen J, Wang F, Zhang Y et al (2012) In vivo tracking of superparamagnetic iron oxide nanoparticle labeled chondrocytes in large animal model. Ann Biomed Eng 40:2568–2578CrossRefPubMed
97.
Zurück zum Zitat Hori J, Deie M, Kobayashi T, Yasunaga Y, Kawamata S, Ochi M (2011) Articular cartilage repair using an intra-articular magnet and synovium-derived cells. J Orthop Res Off Publ Orthop Res Soc 29:531–538CrossRef Hori J, Deie M, Kobayashi T, Yasunaga Y, Kawamata S, Ochi M (2011) Articular cartilage repair using an intra-articular magnet and synovium-derived cells. J Orthop Res Off Publ Orthop Res Soc 29:531–538CrossRef
98.
Zurück zum Zitat Robinson D, Guetsky M, Halperin R, Schneider D, Nevo Z (2002) Articular cartilage reconstruction using xenogeneic epiphyses slices. Cell Tissue Bank 3:269–277CrossRefPubMed Robinson D, Guetsky M, Halperin R, Schneider D, Nevo Z (2002) Articular cartilage reconstruction using xenogeneic epiphyses slices. Cell Tissue Bank 3:269–277CrossRefPubMed
99.
Zurück zum Zitat Ramallal M, Maneiro E, Lopez E et al (2004) Xeno-implantation of pig chondrocytes into rabbit to treat localized articular cartilage defects: an animal model. Wound Repair Regen 12:337–345CrossRefPubMed Ramallal M, Maneiro E, Lopez E et al (2004) Xeno-implantation of pig chondrocytes into rabbit to treat localized articular cartilage defects: an animal model. Wound Repair Regen 12:337–345CrossRefPubMed
100.
Zurück zum Zitat Stone KR, Walgenbach AW, Abrams JT, Nelson J, Gillett N, Galili U (1997) Porcine and bovine cartilage transplants in cynomolgus monkey: I. A model for chronic xenograft rejection. Transplantation 63:640–645CrossRefPubMed Stone KR, Walgenbach AW, Abrams JT, Nelson J, Gillett N, Galili U (1997) Porcine and bovine cartilage transplants in cynomolgus monkey: I. A model for chronic xenograft rejection. Transplantation 63:640–645CrossRefPubMed
101.
Zurück zum Zitat Prado D, Fuentes-Boquete IM, Blanco FJ (2012) In vitro repair model of focal articular cartilage defects in humans. Methods Mol Biol 885:251–261CrossRefPubMed Prado D, Fuentes-Boquete IM, Blanco FJ (2012) In vitro repair model of focal articular cartilage defects in humans. Methods Mol Biol 885:251–261CrossRefPubMed
102.
Zurück zum Zitat Marquina M, Collado JA, Perez-Cruz M et al (2017) Biodistribution and immunogenicity of allogeneic mesenchymal stem cells in a rat model of intraarticular chondrocyte xenotransplantation. Front Immunol 8:1465CrossRefPubMedPubMedCentral Marquina M, Collado JA, Perez-Cruz M et al (2017) Biodistribution and immunogenicity of allogeneic mesenchymal stem cells in a rat model of intraarticular chondrocyte xenotransplantation. Front Immunol 8:1465CrossRefPubMedPubMedCentral
103.
Zurück zum Zitat Pallante AL, Gortz S, Chen AC et al (2012) Treatment of articular cartilage defects in the goat with frozen versus fresh osteochondral allografts: effects on cartilage stiffness, zonal composition, and structure at six months. J Bone Jt Surg Am Vol 94:1984–1995CrossRef Pallante AL, Gortz S, Chen AC et al (2012) Treatment of articular cartilage defects in the goat with frozen versus fresh osteochondral allografts: effects on cartilage stiffness, zonal composition, and structure at six months. J Bone Jt Surg Am Vol 94:1984–1995CrossRef
104.
Zurück zum Zitat Shibuya N, Imai Y, Lee YS, Kochi T, Tachi M (2014) Acute rejection of knee joint articular cartilage in a rat composite tissue allotransplantation model. J Bone Jt Surg Am Vol 96:1033–1039CrossRef Shibuya N, Imai Y, Lee YS, Kochi T, Tachi M (2014) Acute rejection of knee joint articular cartilage in a rat composite tissue allotransplantation model. J Bone Jt Surg Am Vol 96:1033–1039CrossRef
105.
Zurück zum Zitat Jing L, Zhang J, Leng H, Guo Q, Hu Y (2015) Repair of articular cartilage defects in the knee with autologous iliac crest cartilage in a rabbit model. Knee Surg Sports Traumatol Arthrosc Off J ESSKA 23:1119–1127CrossRef Jing L, Zhang J, Leng H, Guo Q, Hu Y (2015) Repair of articular cartilage defects in the knee with autologous iliac crest cartilage in a rabbit model. Knee Surg Sports Traumatol Arthrosc Off J ESSKA 23:1119–1127CrossRef
106.
Zurück zum Zitat Baragi VM, Renkiewicz RR, Qiu L et al (1997) Transplantation of adenovirally transduced allogeneic chondrocytes into articular cartilage defects in vivo. Osteoarthr Cartil OARS Osteoarthr Res Soc 5:275–282CrossRef Baragi VM, Renkiewicz RR, Qiu L et al (1997) Transplantation of adenovirally transduced allogeneic chondrocytes into articular cartilage defects in vivo. Osteoarthr Cartil OARS Osteoarthr Res Soc 5:275–282CrossRef
107.
Zurück zum Zitat Huwe LW, Brown WE, Hu JC, Athanasiou KA (2018) Characterization of costal cartilage and its suitability as a cell source for articular cartilage tissue engineering. J Tissue Eng Regen Med 12(5):1163–1176CrossRefPubMedPubMedCentral Huwe LW, Brown WE, Hu JC, Athanasiou KA (2018) Characterization of costal cartilage and its suitability as a cell source for articular cartilage tissue engineering. J Tissue Eng Regen Med 12(5):1163–1176CrossRefPubMedPubMedCentral
108.
Zurück zum Zitat Wong CC, Chen CH, Chiu LH et al (2018) Facilitating in vivo articular cartilage repair by tissue-engineered cartilage grafts produced from auricular chondrocytes. Am J Sports Med 46(3):713–727CrossRefPubMed Wong CC, Chen CH, Chiu LH et al (2018) Facilitating in vivo articular cartilage repair by tissue-engineered cartilage grafts produced from auricular chondrocytes. Am J Sports Med 46(3):713–727CrossRefPubMed
109.
Zurück zum Zitat Olofsson LB, Svensson O, Lorentzon R, Lindstrom I, Alfredson H (2007) Periosteal transplantation to the rabbit patella. Knee Surg Sports Traumatol Arthrosc Off J ESSKA 15:560–563CrossRef Olofsson LB, Svensson O, Lorentzon R, Lindstrom I, Alfredson H (2007) Periosteal transplantation to the rabbit patella. Knee Surg Sports Traumatol Arthrosc Off J ESSKA 15:560–563CrossRef
110.
Zurück zum Zitat Turhan AU, Aynaci O, Turgutalp H, Aydin H (1999) Treatment of osteochondral defects with tendon autografts in a dog knee model. Knee Surg Sports Traumatol Arthrosc Off J ESSKA 7:64–68CrossRef Turhan AU, Aynaci O, Turgutalp H, Aydin H (1999) Treatment of osteochondral defects with tendon autografts in a dog knee model. Knee Surg Sports Traumatol Arthrosc Off J ESSKA 7:64–68CrossRef
111.
Zurück zum Zitat Pretzel D, Linss S, Ahrem H et al (2013) A novel in vitro bovine cartilage punch model for assessing the regeneration of focal cartilage defects with biocompatible bacterial nanocellulose. Arthritis Res Ther 15:R59CrossRefPubMedPubMedCentral Pretzel D, Linss S, Ahrem H et al (2013) A novel in vitro bovine cartilage punch model for assessing the regeneration of focal cartilage defects with biocompatible bacterial nanocellulose. Arthritis Res Ther 15:R59CrossRefPubMedPubMedCentral
112.
113.
Zurück zum Zitat Coburn J, Gibson M, Bandalini PA et al (2011) Biomimetics of the extracellular matrix: an integrated three-dimensional fiber-hydrogel composite for cartilage tissue engineering. Smart Struct Syst 7:213–222CrossRefPubMedPubMedCentral Coburn J, Gibson M, Bandalini PA et al (2011) Biomimetics of the extracellular matrix: an integrated three-dimensional fiber-hydrogel composite for cartilage tissue engineering. Smart Struct Syst 7:213–222CrossRefPubMedPubMedCentral
114.
Zurück zum Zitat Kon E, Delcogliano M, Filardo G et al (2010) Orderly osteochondral regeneration in a sheep model using a novel nano-composite multilayered biomaterial. J Orthop Res Off Publ Orthop Res Soc 28:116–124 Kon E, Delcogliano M, Filardo G et al (2010) Orderly osteochondral regeneration in a sheep model using a novel nano-composite multilayered biomaterial. J Orthop Res Off Publ Orthop Res Soc 28:116–124
115.
Zurück zum Zitat Sartori M, Pagani S, Ferrari A et al (2017) A new bi-layered scaffold for osteochondral tissue regeneration: in vitro and in vivo preclinical investigations. Mater Sci Eng C Mater Biol Appl 70:101–111CrossRefPubMed Sartori M, Pagani S, Ferrari A et al (2017) A new bi-layered scaffold for osteochondral tissue regeneration: in vitro and in vivo preclinical investigations. Mater Sci Eng C Mater Biol Appl 70:101–111CrossRefPubMed
116.
Zurück zum Zitat Gille J, Kunow J, Boisch L et al (2010) Cell-laden and cell-free matrix-induced chondrogenesis versus microfracture for the treatment of articular cartilage defects: a histological and biomechanical study in sheep. Cartilage 1:29–42CrossRefPubMedPubMedCentral Gille J, Kunow J, Boisch L et al (2010) Cell-laden and cell-free matrix-induced chondrogenesis versus microfracture for the treatment of articular cartilage defects: a histological and biomechanical study in sheep. Cartilage 1:29–42CrossRefPubMedPubMedCentral
117.
Zurück zum Zitat Kon E, Filardo G, Robinson D et al (2014) Osteochondral regeneration using a novel aragonite-hyaluronate bi-phasic scaffold in a goat model. Knee Surg Sports Traumatol Arthrosc Off J ESSKA 22:1452–1464CrossRef Kon E, Filardo G, Robinson D et al (2014) Osteochondral regeneration using a novel aragonite-hyaluronate bi-phasic scaffold in a goat model. Knee Surg Sports Traumatol Arthrosc Off J ESSKA 22:1452–1464CrossRef
118.
Zurück zum Zitat Ronken S, Wirz D, Daniels AU, Kurokawa T, Gong JP, Arnold MP (2013) Double-network acrylamide hydrogel compositions adapted to achieve cartilage-like dynamic stiffness. Biomech Model Mechanobiol 12:243–248CrossRefPubMed Ronken S, Wirz D, Daniels AU, Kurokawa T, Gong JP, Arnold MP (2013) Double-network acrylamide hydrogel compositions adapted to achieve cartilage-like dynamic stiffness. Biomech Model Mechanobiol 12:243–248CrossRefPubMed
119.
Zurück zum Zitat Higa K, Kitamura N, Goto K et al (2017) Effects of osteochondral defect size on cartilage regeneration using a double-network hydrogel. BMC Musculoskelet Disord 18:210CrossRefPubMedPubMedCentral Higa K, Kitamura N, Goto K et al (2017) Effects of osteochondral defect size on cartilage regeneration using a double-network hydrogel. BMC Musculoskelet Disord 18:210CrossRefPubMedPubMedCentral
120.
Zurück zum Zitat Miljkovic ND, Lin YC, Cherubino M, Minteer D, Marra KG (2009) A novel injectable hydrogel in combination with a surgical sealant in a rat knee osteochondral defect model. Knee Surg Sports Traumatol Arthrosc Off J ESSKA 17:1326–1331CrossRef Miljkovic ND, Lin YC, Cherubino M, Minteer D, Marra KG (2009) A novel injectable hydrogel in combination with a surgical sealant in a rat knee osteochondral defect model. Knee Surg Sports Traumatol Arthrosc Off J ESSKA 17:1326–1331CrossRef
121.
Zurück zum Zitat Pound JC, Green DW, Roach HI, Mann S, Oreffo RO (2007) An ex vivo model for chondrogenesis and osteogenesis. Biomaterials 28:2839–2849CrossRefPubMed Pound JC, Green DW, Roach HI, Mann S, Oreffo RO (2007) An ex vivo model for chondrogenesis and osteogenesis. Biomaterials 28:2839–2849CrossRefPubMed
122.
Zurück zum Zitat Hoemann CD, Hurtig M, Rossomacha E et al (2005) Chitosan-glycerol phosphate/blood implants improve hyaline cartilage repair in ovine microfracture defects. J Bone Jt Surg Am Vol 87:2671–2686CrossRef Hoemann CD, Hurtig M, Rossomacha E et al (2005) Chitosan-glycerol phosphate/blood implants improve hyaline cartilage repair in ovine microfracture defects. J Bone Jt Surg Am Vol 87:2671–2686CrossRef
123.
Zurück zum Zitat Nagura I, Fujioka H, Kokubu T, Makino T, Sumi Y, Kurosaka M (2007) Repair of osteochondral defects with a new porous synthetic polymer scaffold. J Bone Jt Surg Br Vol 89:258–264CrossRef Nagura I, Fujioka H, Kokubu T, Makino T, Sumi Y, Kurosaka M (2007) Repair of osteochondral defects with a new porous synthetic polymer scaffold. J Bone Jt Surg Br Vol 89:258–264CrossRef
124.
Zurück zum Zitat Huang X, Yang D, Yan W et al (2007) Osteochondral repair using the combination of fibroblast growth factor and amorphous calcium phosphate/poly(L-lactic acid) hybrid materials. Biomaterials 28:3091–3100CrossRefPubMed Huang X, Yang D, Yan W et al (2007) Osteochondral repair using the combination of fibroblast growth factor and amorphous calcium phosphate/poly(L-lactic acid) hybrid materials. Biomaterials 28:3091–3100CrossRefPubMed
125.
Zurück zum Zitat Williams RJ, Gamradt SC (2008) Articular cartilage repair using a resorbable matrix scaffold. Instr Course Lect 57:563–571PubMed Williams RJ, Gamradt SC (2008) Articular cartilage repair using a resorbable matrix scaffold. Instr Course Lect 57:563–571PubMed
126.
Zurück zum Zitat Woodfield TB, Van Blitterswijk CA, De Wijn J, Sims TJ, Hollander AP, Riesle J (2005) Polymer scaffolds fabricated with pore-size gradients as a model for studying the zonal organization within tissue-engineered cartilage constructs. Tissue Eng 11:1297–1311CrossRefPubMed Woodfield TB, Van Blitterswijk CA, De Wijn J, Sims TJ, Hollander AP, Riesle J (2005) Polymer scaffolds fabricated with pore-size gradients as a model for studying the zonal organization within tissue-engineered cartilage constructs. Tissue Eng 11:1297–1311CrossRefPubMed
127.
Zurück zum Zitat Holland TA, Bodde EW, Baggett LS, Tabata Y, Mikos AG, Jansen JA (2005) Osteochondral repair in the rabbit model utilizing bilayered, degradable oligo(poly(ethylene glycol) fumarate) hydrogel scaffolds. J Biomed Mater Res A 75:156–167CrossRefPubMed Holland TA, Bodde EW, Baggett LS, Tabata Y, Mikos AG, Jansen JA (2005) Osteochondral repair in the rabbit model utilizing bilayered, degradable oligo(poly(ethylene glycol) fumarate) hydrogel scaffolds. J Biomed Mater Res A 75:156–167CrossRefPubMed
128.
Zurück zum Zitat Hunter CJ, Levenston ME (2004) Maturation and integration of tissue-engineered cartilages within an in vitro defect repair model. Tissue Eng 10:736–746CrossRefPubMed Hunter CJ, Levenston ME (2004) Maturation and integration of tissue-engineered cartilages within an in vitro defect repair model. Tissue Eng 10:736–746CrossRefPubMed
129.
Zurück zum Zitat Yang Q, Peng J, Lu SB et al (2011) Evaluation of an extracellular matrix-derived acellular biphasic scaffold/cell construct in the repair of a large articular high-load-bearing osteochondral defect in a canine model. Chin Med J (Engl) 124:3930–3938 Yang Q, Peng J, Lu SB et al (2011) Evaluation of an extracellular matrix-derived acellular biphasic scaffold/cell construct in the repair of a large articular high-load-bearing osteochondral defect in a canine model. Chin Med J (Engl) 124:3930–3938
130.
Zurück zum Zitat Erggelet C, Endres M, Neumann K et al (2009) Formation of cartilage repair tissue in articular cartilage defects pretreated with microfracture and covered with cell-free polymer-based implants. J Orthop Res Off Publ Orthop Res Soc 27:1353–1360CrossRef Erggelet C, Endres M, Neumann K et al (2009) Formation of cartilage repair tissue in articular cartilage defects pretreated with microfracture and covered with cell-free polymer-based implants. J Orthop Res Off Publ Orthop Res Soc 27:1353–1360CrossRef
131.
Zurück zum Zitat Christensen BB, Foldager CB, Hansen OM et al (2012) A novel nano-structured porous polycaprolactone scaffold improves hyaline cartilage repair in a rabbit model compared to a collagen type I/III scaffold: in vitro and in vivo studies. Knee Surg Sports Traumatol Arthrosc Off J ESSKA 20:1192–1204CrossRef Christensen BB, Foldager CB, Hansen OM et al (2012) A novel nano-structured porous polycaprolactone scaffold improves hyaline cartilage repair in a rabbit model compared to a collagen type I/III scaffold: in vitro and in vivo studies. Knee Surg Sports Traumatol Arthrosc Off J ESSKA 20:1192–1204CrossRef
132.
Zurück zum Zitat Li WJ, Chiang H, Kuo TF, Lee HS, Jiang CC, Tuan RS (2009) Evaluation of articular cartilage repair using biodegradable nanofibrous scaffolds in a swine model: a pilot study. J Tissue Eng Regen Med 3:1–10CrossRefPubMedPubMedCentral Li WJ, Chiang H, Kuo TF, Lee HS, Jiang CC, Tuan RS (2009) Evaluation of articular cartilage repair using biodegradable nanofibrous scaffolds in a swine model: a pilot study. J Tissue Eng Regen Med 3:1–10CrossRefPubMedPubMedCentral
133.
Zurück zum Zitat Schagemann JC, Rudert N, Taylor ME et al (2016) Bilayer implants: electromechanical assessment of regenerated articular cartilage in a sheep model. Cartilage 7:346–360CrossRefPubMedPubMedCentral Schagemann JC, Rudert N, Taylor ME et al (2016) Bilayer implants: electromechanical assessment of regenerated articular cartilage in a sheep model. Cartilage 7:346–360CrossRefPubMedPubMedCentral
134.
Zurück zum Zitat Zylinska B, Stodolak-Zych E, Sobczynska-Rak A et al (2017) Osteochondral repair using porous three-dimensional nanocomposite scaffolds in a rabbit model. In Vivo 31:895–903PubMedPubMedCentral Zylinska B, Stodolak-Zych E, Sobczynska-Rak A et al (2017) Osteochondral repair using porous three-dimensional nanocomposite scaffolds in a rabbit model. In Vivo 31:895–903PubMedPubMedCentral
135.
Zurück zum Zitat Mrosek EH, Chung HW, Fitzsimmons JS, O’Driscoll SW, Reinholz GG, Schagemann JC (2016) Porous tantalum biocomposites for osteochondral defect repair: a follow-up study in a sheep model. Bone Jt Res 5:403–411CrossRef Mrosek EH, Chung HW, Fitzsimmons JS, O’Driscoll SW, Reinholz GG, Schagemann JC (2016) Porous tantalum biocomposites for osteochondral defect repair: a follow-up study in a sheep model. Bone Jt Res 5:403–411CrossRef
136.
Zurück zum Zitat Lin X, Chen J, Qiu P et al (2018) Biphasic hierarchical extracellular matrix scaffold for osteochondral defect regeneration. Osteoarthr Cartil OARS Osteoarthr Res Soc 26(3):433–444CrossRef Lin X, Chen J, Qiu P et al (2018) Biphasic hierarchical extracellular matrix scaffold for osteochondral defect regeneration. Osteoarthr Cartil OARS Osteoarthr Res Soc 26(3):433–444CrossRef
137.
Zurück zum Zitat Dresing I, Zeiter S, Auer J, Alini M, Eglin D (2014) Evaluation of a press-fit osteochondral poly(ester-urethane) scaffold in a rabbit defect model. J MATER SCI MATER MED 25:1691–1700CrossRefPubMed Dresing I, Zeiter S, Auer J, Alini M, Eglin D (2014) Evaluation of a press-fit osteochondral poly(ester-urethane) scaffold in a rabbit defect model. J MATER SCI MATER MED 25:1691–1700CrossRefPubMed
138.
Zurück zum Zitat Christensen BB, Foldager CB, Jensen J, Jensen NC, Lind M (2016) Poor osteochondral repair by a biomimetic collagen scaffold: 1- to 3-year clinical and radiological follow-up. Knee Surg Sports Traumatol Arthrosc Off J ESSKA 24(7):2380–2387CrossRef Christensen BB, Foldager CB, Jensen J, Jensen NC, Lind M (2016) Poor osteochondral repair by a biomimetic collagen scaffold: 1- to 3-year clinical and radiological follow-up. Knee Surg Sports Traumatol Arthrosc Off J ESSKA 24(7):2380–2387CrossRef
139.
Zurück zum Zitat Brix M, Kaipel M, Kellner R et al (2016) Successful osteoconduction but limited cartilage tissue quality following osteochondral repair by a cell-free multilayered nano-composite scaffold at the knee. Int Orthop 40(3):625–632CrossRefPubMed Brix M, Kaipel M, Kellner R et al (2016) Successful osteoconduction but limited cartilage tissue quality following osteochondral repair by a cell-free multilayered nano-composite scaffold at the knee. Int Orthop 40(3):625–632CrossRefPubMed
140.
Zurück zum Zitat Verhaegen J, Clockaerts S, Van Osch GJ, Somville J, Verdonk P, Mertens P (2015) TruFit plug for repair of osteochondral defects-where is the evidence? Systematic review of literature. Cartilage 6:12–19CrossRefPubMedPubMedCentral Verhaegen J, Clockaerts S, Van Osch GJ, Somville J, Verdonk P, Mertens P (2015) TruFit plug for repair of osteochondral defects-where is the evidence? Systematic review of literature. Cartilage 6:12–19CrossRefPubMedPubMedCentral
141.
Zurück zum Zitat Nettles DL, Kitaoka K, Hanson NA et al (2008) In situ crosslinking elastin-like polypeptide gels for application to articular cartilage repair in a goat osteochondral defect model. Tissue Eng Part A 14:1133–1140CrossRefPubMedPubMedCentral Nettles DL, Kitaoka K, Hanson NA et al (2008) In situ crosslinking elastin-like polypeptide gels for application to articular cartilage repair in a goat osteochondral defect model. Tissue Eng Part A 14:1133–1140CrossRefPubMedPubMedCentral
142.
Zurück zum Zitat Nakanishi T, Kawasaki K, Uchio Y, Kataoka H, Terashima M, Ochi M (2002) AG-041R, a cholecystokinin-B/gastrin receptor antagonist, stimulates the repair of osteochondral defect in rabbit model. Eur J Pharmacol 439:135–140CrossRefPubMed Nakanishi T, Kawasaki K, Uchio Y, Kataoka H, Terashima M, Ochi M (2002) AG-041R, a cholecystokinin-B/gastrin receptor antagonist, stimulates the repair of osteochondral defect in rabbit model. Eur J Pharmacol 439:135–140CrossRefPubMed
143.
Zurück zum Zitat Levato R, Webb WR, Otto IA et al (2017) The bio in the ink: cartilage regeneration with bioprintable hydrogels and articular cartilage-derived progenitor cells. Acta Biomater 61:41–53CrossRefPubMedPubMedCentral Levato R, Webb WR, Otto IA et al (2017) The bio in the ink: cartilage regeneration with bioprintable hydrogels and articular cartilage-derived progenitor cells. Acta Biomater 61:41–53CrossRefPubMedPubMedCentral
144.
Zurück zum Zitat Caterson EJ, Li WJ, Nesti LJ, Albert T, Danielson K, Tuan RS (2002) Polymer/alginate amalgam for cartilage-tissue engineering. Ann N Y Acad Sci 961:134–138CrossRefPubMed Caterson EJ, Li WJ, Nesti LJ, Albert T, Danielson K, Tuan RS (2002) Polymer/alginate amalgam for cartilage-tissue engineering. Ann N Y Acad Sci 961:134–138CrossRefPubMed
145.
Zurück zum Zitat Chu CR, Coutts RD, Yoshioka M, Harwood FL, Monosov AZ, Amiel D (1995) Articular cartilage repair using allogeneic perichondrocyte-seeded biodegradable porous polylactic acid (PLA): a tissue-engineering study. J Biomed Mater Res 29:1147–1154CrossRefPubMed Chu CR, Coutts RD, Yoshioka M, Harwood FL, Monosov AZ, Amiel D (1995) Articular cartilage repair using allogeneic perichondrocyte-seeded biodegradable porous polylactic acid (PLA): a tissue-engineering study. J Biomed Mater Res 29:1147–1154CrossRefPubMed
146.
Zurück zum Zitat Dounchis JS, Bae WC, Chen AC, Sah RL, Coutts RD, Amiel D (2000) Cartilage repair with autogenic perichondrium cell and polylactic acid grafts. Clin Orthop Relat Res (377):248–264 Dounchis JS, Bae WC, Chen AC, Sah RL, Coutts RD, Amiel D (2000) Cartilage repair with autogenic perichondrium cell and polylactic acid grafts. Clin Orthop Relat Res (377):248–264
147.
Zurück zum Zitat Qi Y, Du Y, Li W, Dai X, Zhao T, Yan W (2014) Cartilage repair using mesenchymal stem cell (MSC) sheet and MSCs-loaded bilayer PLGA scaffold in a rabbit model. Knee Surg Sports Traumatol Arthrosc Off J ESSKA 22:1424–1433CrossRef Qi Y, Du Y, Li W, Dai X, Zhao T, Yan W (2014) Cartilage repair using mesenchymal stem cell (MSC) sheet and MSCs-loaded bilayer PLGA scaffold in a rabbit model. Knee Surg Sports Traumatol Arthrosc Off J ESSKA 22:1424–1433CrossRef
148.
Zurück zum Zitat Shi J, Zhang X, Zeng X et al (2012) One-step articular cartilage repair: combination of in situ bone marrow stem cells with cell-free poly(l-lactic-co-glycolic acid) scaffold in a rabbit model. Orthopedics 35:e665–e671CrossRefPubMed Shi J, Zhang X, Zeng X et al (2012) One-step articular cartilage repair: combination of in situ bone marrow stem cells with cell-free poly(l-lactic-co-glycolic acid) scaffold in a rabbit model. Orthopedics 35:e665–e671CrossRefPubMed
149.
Zurück zum Zitat Guo X, Wang C, Zhang Y et al (2004) Repair of large articular cartilage defects with implants of autologous mesenchymal stem cells seeded into beta-tricalcium phosphate in a sheep model. Tissue Eng 10:1818–1829CrossRefPubMed Guo X, Wang C, Zhang Y et al (2004) Repair of large articular cartilage defects with implants of autologous mesenchymal stem cells seeded into beta-tricalcium phosphate in a sheep model. Tissue Eng 10:1818–1829CrossRefPubMed
150.
Zurück zum Zitat Endres M, Neumann K, Zhou B et al (2012) An ovine in vitro model for chondrocyte-based scaffold-assisted cartilage grafts. J Orthop Surg Res 7:37CrossRefPubMedPubMedCentral Endres M, Neumann K, Zhou B et al (2012) An ovine in vitro model for chondrocyte-based scaffold-assisted cartilage grafts. J Orthop Surg Res 7:37CrossRefPubMedPubMedCentral
151.
Zurück zum Zitat Theodoropoulos JS, De Croos JN, Park SS, Pilliar R, Kandel RA (2011) Integration of tissue-engineered cartilage with host cartilage: an in vitro model. Clin Orthop Relat Res 469:2785–2795CrossRefPubMedPubMedCentral Theodoropoulos JS, De Croos JN, Park SS, Pilliar R, Kandel RA (2011) Integration of tissue-engineered cartilage with host cartilage: an in vitro model. Clin Orthop Relat Res 469:2785–2795CrossRefPubMedPubMedCentral
152.
Zurück zum Zitat Vinardell T, Thorpe SD, Buckley CT, Kelly DJ (2009) Chondrogenesis and integration of mesenchymal stem cells within an in vitro cartilage defect repair model. Ann Biomed Eng 37:2556–2565CrossRefPubMed Vinardell T, Thorpe SD, Buckley CT, Kelly DJ (2009) Chondrogenesis and integration of mesenchymal stem cells within an in vitro cartilage defect repair model. Ann Biomed Eng 37:2556–2565CrossRefPubMed
153.
Zurück zum Zitat Russlies M, Behrens P, Wunsch L, Gille J, Ehlers EM (2002) A cell-seeded biocomposite for cartilage repair. Ann Anat 184:317–323CrossRefPubMed Russlies M, Behrens P, Wunsch L, Gille J, Ehlers EM (2002) A cell-seeded biocomposite for cartilage repair. Ann Anat 184:317–323CrossRefPubMed
154.
Zurück zum Zitat Ito Y, Ochi M, Adachi N et al (2005) Repair of osteochondral defect with tissue-engineered chondral plug in a rabbit model. Arthrosc J Arthrosc Relat Surg Off Publ Arthrosc Assoc N Am Int Arthrosc Assoc 21:1155–1163CrossRef Ito Y, Ochi M, Adachi N et al (2005) Repair of osteochondral defect with tissue-engineered chondral plug in a rabbit model. Arthrosc J Arthrosc Relat Surg Off Publ Arthrosc Assoc N Am Int Arthrosc Assoc 21:1155–1163CrossRef
155.
Zurück zum Zitat Schinhan M, Gruber M, Dorotka R et al (2013) Matrix-associated autologous chondrocyte transplantation in a compartmentalized early stage of osteoarthritis. Osteoarthr Cartil OARS Osteoarthr Res Soc 21:217–225CrossRef Schinhan M, Gruber M, Dorotka R et al (2013) Matrix-associated autologous chondrocyte transplantation in a compartmentalized early stage of osteoarthritis. Osteoarthr Cartil OARS Osteoarthr Res Soc 21:217–225CrossRef
156.
Zurück zum Zitat Chang CH, Kuo TF, Lin CC et al (2006) Tissue engineering-based cartilage repair with allogenous chondrocytes and gelatin-chondroitin-hyaluronan tri-copolymer scaffold: a porcine model assessed at 18, 24, and 36 weeks. Biomaterials 27:1876–1888CrossRefPubMed Chang CH, Kuo TF, Lin CC et al (2006) Tissue engineering-based cartilage repair with allogenous chondrocytes and gelatin-chondroitin-hyaluronan tri-copolymer scaffold: a porcine model assessed at 18, 24, and 36 weeks. Biomaterials 27:1876–1888CrossRefPubMed
157.
Zurück zum Zitat Arumugam S, Bhupesh Karthik B, Chinnuswami R et al (2017) Transplantation of autologous chondrocytes ex-vivo expanded using thermoreversible gelation polymer in a rabbit model of articular cartilage defect. J Orthop 14:223–225CrossRefPubMedPubMedCentral Arumugam S, Bhupesh Karthik B, Chinnuswami R et al (2017) Transplantation of autologous chondrocytes ex-vivo expanded using thermoreversible gelation polymer in a rabbit model of articular cartilage defect. J Orthop 14:223–225CrossRefPubMedPubMedCentral
158.
Zurück zum Zitat Nixon AJ, Sparks HD, Begum L et al (2017) Matrix-Induced autologous chondrocyte implantation (MACI) using a cell-seeded collagen membrane improves cartilage healing in the equine model. J Bone Jt Surg Am Vol 99:1987–1998CrossRef Nixon AJ, Sparks HD, Begum L et al (2017) Matrix-Induced autologous chondrocyte implantation (MACI) using a cell-seeded collagen membrane improves cartilage healing in the equine model. J Bone Jt Surg Am Vol 99:1987–1998CrossRef
159.
Zurück zum Zitat Dorotka R, Windberger U, Macfelda K, Bindreiter U, Toma C, Nehrer S (2005) Repair of articular cartilage defects treated by microfracture and a three-dimensional collagen matrix. Biomaterials 26:3617–3629CrossRefPubMed Dorotka R, Windberger U, Macfelda K, Bindreiter U, Toma C, Nehrer S (2005) Repair of articular cartilage defects treated by microfracture and a three-dimensional collagen matrix. Biomaterials 26:3617–3629CrossRefPubMed
160.
Zurück zum Zitat Fortier LA, Chapman HS, Pownder SL et al (2016) BioCartilage improves cartilage repair compared with microfracture alone in an equine model of full-thickness cartilage loss. Am J Sports Med 44:2366–2374CrossRefPubMed Fortier LA, Chapman HS, Pownder SL et al (2016) BioCartilage improves cartilage repair compared with microfracture alone in an equine model of full-thickness cartilage loss. Am J Sports Med 44:2366–2374CrossRefPubMed
161.
Zurück zum Zitat Sarem M, Arya N, Heizmann M et al (2018) Interplay between stiffness and degradation of architectured gelatin hydrogels leads to differential modulation of chondrogenesis in vitro and in vivo. Acta Biomater 69:83–94CrossRefPubMed Sarem M, Arya N, Heizmann M et al (2018) Interplay between stiffness and degradation of architectured gelatin hydrogels leads to differential modulation of chondrogenesis in vitro and in vivo. Acta Biomater 69:83–94CrossRefPubMed
162.
Zurück zum Zitat Schlichting K, Schell H, Kleemann RU et al (2008) Influence of scaffold stiffness on subchondral bone and subsequent cartilage regeneration in an ovine model of osteochondral defect healing. Am J Sports Med 36:2379–2391CrossRefPubMed Schlichting K, Schell H, Kleemann RU et al (2008) Influence of scaffold stiffness on subchondral bone and subsequent cartilage regeneration in an ovine model of osteochondral defect healing. Am J Sports Med 36:2379–2391CrossRefPubMed
163.
Zurück zum Zitat Vikingsson L, Gallego Ferrer G, Gomez-Tejedor JA, Gomez Ribelles JL (2014) An “in vitro” experimental model to predict the mechanical behavior of macroporous scaffolds implanted in articular cartilage. J Mech Behav Biomed Mater 32:125–131CrossRefPubMed Vikingsson L, Gallego Ferrer G, Gomez-Tejedor JA, Gomez Ribelles JL (2014) An “in vitro” experimental model to predict the mechanical behavior of macroporous scaffolds implanted in articular cartilage. J Mech Behav Biomed Mater 32:125–131CrossRefPubMed
164.
Zurück zum Zitat Friedman JM, Sennett ML, Bonadio MB et al (2018) Comparison of fixation techniques of 3D-woven poly(-caprolactone) scaffolds for cartilage repair in a weightbearing porcine large animal model. Cartilage 9(4):428–437CrossRefPubMed Friedman JM, Sennett ML, Bonadio MB et al (2018) Comparison of fixation techniques of 3D-woven poly(-caprolactone) scaffolds for cartilage repair in a weightbearing porcine large animal model. Cartilage 9(4):428–437CrossRefPubMed
165.
Zurück zum Zitat Efe T, Fuglein A, Heyse TJ et al (2012) Fibrin glue does not improve the fixation of press-fitted cell-free collagen gel plugs in an ex vivo cartilage repair model. Knee Surg Sports Traumatol Arthrosc Off J ESSKA 20:210–215CrossRef Efe T, Fuglein A, Heyse TJ et al (2012) Fibrin glue does not improve the fixation of press-fitted cell-free collagen gel plugs in an ex vivo cartilage repair model. Knee Surg Sports Traumatol Arthrosc Off J ESSKA 20:210–215CrossRef
166.
Zurück zum Zitat Chen W, Chen S, Morsi Y et al (2016) Superabsorbent 3D scaffold based on electrospun nanofibers for cartilage tissue engineering. ACS Appl Mater Interfaces 8:24415–24425CrossRefPubMed Chen W, Chen S, Morsi Y et al (2016) Superabsorbent 3D scaffold based on electrospun nanofibers for cartilage tissue engineering. ACS Appl Mater Interfaces 8:24415–24425CrossRefPubMed
167.
Zurück zum Zitat Marmotti A, Bruzzone M, Bonasia DE et al (2012) One-step osteochondral repair with cartilage fragments in a composite scaffold. Knee Surg Sports Traumatol Arthrosc Off J ESSKA 20:2590–2601CrossRef Marmotti A, Bruzzone M, Bonasia DE et al (2012) One-step osteochondral repair with cartilage fragments in a composite scaffold. Knee Surg Sports Traumatol Arthrosc Off J ESSKA 20:2590–2601CrossRef
168.
Zurück zum Zitat Desando G, Cavallo C, Tschon M et al (2012) Early-term effect of adult chondrocyte transplantation in an osteoarthritis animal model. Tissue Eng Part A 18:1617–1627CrossRefPubMed Desando G, Cavallo C, Tschon M et al (2012) Early-term effect of adult chondrocyte transplantation in an osteoarthritis animal model. Tissue Eng Part A 18:1617–1627CrossRefPubMed
169.
Zurück zum Zitat Silverman RP, Passaretti D, Huang W, Randolph MA, Yaremchuk MJ (1999) Injectable tissue-engineered cartilage using a fibrin glue polymer. Plast Reconstr Surg 103:1809–1818CrossRefPubMed Silverman RP, Passaretti D, Huang W, Randolph MA, Yaremchuk MJ (1999) Injectable tissue-engineered cartilage using a fibrin glue polymer. Plast Reconstr Surg 103:1809–1818CrossRefPubMed
170.
Zurück zum Zitat Custers RJ, Dhert WJ, Saris DB et al (2010) Cartilage degeneration in the goat knee caused by treating localized cartilage defects with metal implants. Osteoarthr Cartil OARS Osteoarthr Res Soc 18:377–388CrossRef Custers RJ, Dhert WJ, Saris DB et al (2010) Cartilage degeneration in the goat knee caused by treating localized cartilage defects with metal implants. Osteoarthr Cartil OARS Osteoarthr Res Soc 18:377–388CrossRef
172.
Zurück zum Zitat Pappa AK, Soleimani S, Caballero M, Halevi AE, van Aalst JA (2017) A pilot study comparing mechanical properties of tissue-engineered cartilages and various endogenous cartilages. Clin Biomech (Bristol Avon) 50:105–109CrossRef Pappa AK, Soleimani S, Caballero M, Halevi AE, van Aalst JA (2017) A pilot study comparing mechanical properties of tissue-engineered cartilages and various endogenous cartilages. Clin Biomech (Bristol Avon) 50:105–109CrossRef
173.
Zurück zum Zitat Juhasz T, Matta C, Somogyi C et al (2014) Mechanical loading stimulates chondrogenesis via the PKA/CREB-Sox9 and PP2A pathways in chicken micromass cultures. Cell Signal 26:468–482CrossRefPubMed Juhasz T, Matta C, Somogyi C et al (2014) Mechanical loading stimulates chondrogenesis via the PKA/CREB-Sox9 and PP2A pathways in chicken micromass cultures. Cell Signal 26:468–482CrossRefPubMed
174.
Zurück zum Zitat van Haaften EE, Ito K, van Donkelaar CC (2017) The initial repair response of articular cartilage after mechanically induced damage. J Orthop Res Off Publ Orthop Res Soc 35:1265–1273CrossRef van Haaften EE, Ito K, van Donkelaar CC (2017) The initial repair response of articular cartilage after mechanically induced damage. J Orthop Res Off Publ Orthop Res Soc 35:1265–1273CrossRef
175.
Zurück zum Zitat Theodoropoulos JS, DeCroos AJ, Petrera M, Park S, Kandel RA (2016) Mechanical stimulation enhances integration in an in vitro model of cartilage repair. Knee Surg Sports Traumatol Arthrosc Off J ESSKA 24:2055–2064CrossRef Theodoropoulos JS, DeCroos AJ, Petrera M, Park S, Kandel RA (2016) Mechanical stimulation enhances integration in an in vitro model of cartilage repair. Knee Surg Sports Traumatol Arthrosc Off J ESSKA 24:2055–2064CrossRef
176.
Zurück zum Zitat Wang S, Bao Y, Guan Y et al (2018) Strain distribution of repaired articular cartilage defects by tissue engineering under compression loading. J Orthop Surg Res 13:19CrossRefPubMedPubMedCentral Wang S, Bao Y, Guan Y et al (2018) Strain distribution of repaired articular cartilage defects by tissue engineering under compression loading. J Orthop Surg Res 13:19CrossRefPubMedPubMedCentral
177.
Zurück zum Zitat Nishino T, Ishii T, Chang F et al (2010) Effect of gradual weight-bearing on regenerated articular cartilage after joint distraction and motion in a rabbit model. J Orthop Res Off Publ Orthop Res Soc 28:600–606 Nishino T, Ishii T, Chang F et al (2010) Effect of gradual weight-bearing on regenerated articular cartilage after joint distraction and motion in a rabbit model. J Orthop Res Off Publ Orthop Res Soc 28:600–606
178.
Zurück zum Zitat Tagil M, Aspenberg P (1999) Cartilage induction by controlled mechanical stimulation in vivo. J Orthop Res Off Publ Orthop Res Soc 17:200–204CrossRef Tagil M, Aspenberg P (1999) Cartilage induction by controlled mechanical stimulation in vivo. J Orthop Res Off Publ Orthop Res Soc 17:200–204CrossRef
179.
Zurück zum Zitat Nishino T, Chang F, Ishii T, Yanai T, Mishima H, Ochiai N (2010) Joint distraction and movement for repair of articular cartilage in a rabbit model with subsequent weight-bearing. J Bone Jt Surg Br Vol 92:1033–1040CrossRef Nishino T, Chang F, Ishii T, Yanai T, Mishima H, Ochiai N (2010) Joint distraction and movement for repair of articular cartilage in a rabbit model with subsequent weight-bearing. J Bone Jt Surg Br Vol 92:1033–1040CrossRef
180.
Zurück zum Zitat Wiegant K, Intema F, van Roermund PM et al (2015) Evidence of cartilage repair by joint distraction in a canine model of osteoarthritis. Arthritis Rheumatol 67:465–474CrossRefPubMed Wiegant K, Intema F, van Roermund PM et al (2015) Evidence of cartilage repair by joint distraction in a canine model of osteoarthritis. Arthritis Rheumatol 67:465–474CrossRefPubMed
181.
Zurück zum Zitat Raimondi MT, Boschetti F, Falcone L et al (2002) Mechanobiology of engineered cartilage cultured under a quantified fluid-dynamic environment. Biomech Model Mechanobiol 1:69–82CrossRefPubMed Raimondi MT, Boschetti F, Falcone L et al (2002) Mechanobiology of engineered cartilage cultured under a quantified fluid-dynamic environment. Biomech Model Mechanobiol 1:69–82CrossRefPubMed
182.
Zurück zum Zitat Wu Y, Stoddart MJ, Wuertz-Kozak K, Grad S, Alini M, Ferguson SJ (2017) Hyaluronan supplementation as a mechanical regulator of cartilage tissue development under joint-kinematic-mimicking loading. J R Soc Interface 14(133):255–259CrossRef Wu Y, Stoddart MJ, Wuertz-Kozak K, Grad S, Alini M, Ferguson SJ (2017) Hyaluronan supplementation as a mechanical regulator of cartilage tissue development under joint-kinematic-mimicking loading. J R Soc Interface 14(133):255–259CrossRef
183.
Zurück zum Zitat Yamasaki T, Yasunaga Y, Oshima S, Ochi M (2016) Healing potential of the cartilage correlates with location on the femoral head: a basic research using a rabbit model. Hip Int 26:31–35CrossRefPubMed Yamasaki T, Yasunaga Y, Oshima S, Ochi M (2016) Healing potential of the cartilage correlates with location on the femoral head: a basic research using a rabbit model. Hip Int 26:31–35CrossRefPubMed
184.
Zurück zum Zitat Mendelson S, Wooley P, Lucas D, Markel D (2004) The effect of hyaluronic acid on a rabbit model of full-thickness cartilage repair. Clin Orthop Relat Res (424):266–271 Mendelson S, Wooley P, Lucas D, Markel D (2004) The effect of hyaluronic acid on a rabbit model of full-thickness cartilage repair. Clin Orthop Relat Res (424):266–271
185.
Zurück zum Zitat Nazempour A, Quisenberry CR, Van Wie BJ, Abu-Lail NI (2016) Nanomechanics of engineered articular cartilage: synergistic influences of transforming growth factor-beta3 and oscillating pressure. J Nanosci Nanotechnol 16:3136–3145CrossRefPubMedPubMedCentral Nazempour A, Quisenberry CR, Van Wie BJ, Abu-Lail NI (2016) Nanomechanics of engineered articular cartilage: synergistic influences of transforming growth factor-beta3 and oscillating pressure. J Nanosci Nanotechnol 16:3136–3145CrossRefPubMedPubMedCentral
186.
Zurück zum Zitat Boopalan PR, Arumugam S, Livingston A, Mohanty M, Chittaranjan S (2011) Pulsed electromagnetic field therapy results in healing of full thickness articular cartilage defect. Int Orthop 35:143–148CrossRefPubMed Boopalan PR, Arumugam S, Livingston A, Mohanty M, Chittaranjan S (2011) Pulsed electromagnetic field therapy results in healing of full thickness articular cartilage defect. Int Orthop 35:143–148CrossRefPubMed
187.
Zurück zum Zitat Yang SW, Kuo CL, Chang SJ et al (2014) Does low-intensity pulsed ultrasound treatment repair articular cartilage injury? A rabbit model study. BMC Musculoskelet Disord 15:36CrossRefPubMedPubMedCentral Yang SW, Kuo CL, Chang SJ et al (2014) Does low-intensity pulsed ultrasound treatment repair articular cartilage injury? A rabbit model study. BMC Musculoskelet Disord 15:36CrossRefPubMedPubMedCentral
188.
Zurück zum Zitat Raimondi MT, Bonacina E, Candiani G et al (2011) Comparative chondrogenesis of human cells in a 3D integrated experimental-computational mechanobiology model. Biomech Model Mechanobiol 10:259–268CrossRefPubMed Raimondi MT, Bonacina E, Candiani G et al (2011) Comparative chondrogenesis of human cells in a 3D integrated experimental-computational mechanobiology model. Biomech Model Mechanobiol 10:259–268CrossRefPubMed
189.
Zurück zum Zitat Kelly DJ, Prendergast PJ (2006) Prediction of the optimal mechanical properties for a scaffold used in osteochondral defect repair. Tissue Eng 12:2509–2519CrossRefPubMed Kelly DJ, Prendergast PJ (2006) Prediction of the optimal mechanical properties for a scaffold used in osteochondral defect repair. Tissue Eng 12:2509–2519CrossRefPubMed
190.
Zurück zum Zitat Wilson W, Driessen NJ, van Donkelaar CC, Ito K (2006) Prediction of collagen orientation in articular cartilage by a collagen remodeling algorithm. Osteoarthr Cartil OARS Osteoarthr Res Soc 14:1196–1202CrossRef Wilson W, Driessen NJ, van Donkelaar CC, Ito K (2006) Prediction of collagen orientation in articular cartilage by a collagen remodeling algorithm. Osteoarthr Cartil OARS Osteoarthr Res Soc 14:1196–1202CrossRef
191.
Zurück zum Zitat Bandeiras C, Completo A (2017) A mathematical model of tissue-engineered cartilage development under cyclic compressive loading. Biomech Model Mechanobiol 16:651–666CrossRefPubMed Bandeiras C, Completo A (2017) A mathematical model of tissue-engineered cartilage development under cyclic compressive loading. Biomech Model Mechanobiol 16:651–666CrossRefPubMed
192.
Zurück zum Zitat O’Reilly A, Kelly DJ (2016) Unravelling the role of mechanical stimuli in regulating cell fate during osteochondral defect repair. Ann Biomed Eng 44:3446–3459CrossRefPubMed O’Reilly A, Kelly DJ (2016) Unravelling the role of mechanical stimuli in regulating cell fate during osteochondral defect repair. Ann Biomed Eng 44:3446–3459CrossRefPubMed
193.
Zurück zum Zitat Appelman TP, Mizrahi J, Seliktar D (2011) A finite element model of cell-matrix interactions to study the differential effect of scaffold composition on chondrogenic response to mechanical stimulation. J Biomech Eng 133:041010CrossRefPubMed Appelman TP, Mizrahi J, Seliktar D (2011) A finite element model of cell-matrix interactions to study the differential effect of scaffold composition on chondrogenic response to mechanical stimulation. J Biomech Eng 133:041010CrossRefPubMed
194.
Zurück zum Zitat O’Reilly A, Kelly DJ (2016) Role of oxygen as a regulator of stem cell fate during the spontaneous repair of osteochondral defects. J Orthop Res Off Publ Orthop Res Soc 34:1026–1036CrossRef O’Reilly A, Kelly DJ (2016) Role of oxygen as a regulator of stem cell fate during the spontaneous repair of osteochondral defects. J Orthop Res Off Publ Orthop Res Soc 34:1026–1036CrossRef
195.
Zurück zum Zitat Catt CJ, Schuurman W, Sengers BG et al (2011) Mathematical modelling of tissue formation in chondrocyte filter cultures. Eur Cells Mater 22:377–392CrossRef Catt CJ, Schuurman W, Sengers BG et al (2011) Mathematical modelling of tissue formation in chondrocyte filter cultures. Eur Cells Mater 22:377–392CrossRef
196.
Zurück zum Zitat Trewenack AJ, Please CP, Landman KA (2009) A continuum model for the development of tissue-engineered cartilage around a chondrocyte. Math Med Biol 26:241–262CrossRefPubMed Trewenack AJ, Please CP, Landman KA (2009) A continuum model for the development of tissue-engineered cartilage around a chondrocyte. Math Med Biol 26:241–262CrossRefPubMed
197.
Zurück zum Zitat Pisu M, Lai N, Concas A, Cao G (2006) A novel simulation model for engineered cartilage growth in static systems. Tissue Eng 12:2311–2320CrossRefPubMed Pisu M, Lai N, Concas A, Cao G (2006) A novel simulation model for engineered cartilage growth in static systems. Tissue Eng 12:2311–2320CrossRefPubMed
198.
Zurück zum Zitat Stender ME, Carpenter RD, Regueiro RA, Ferguson VL (2016) An evolutionary model of osteoarthritis including articular cartilage damage, and bone remodeling in a computational study. J Biomech 49:3502–3508CrossRefPubMed Stender ME, Carpenter RD, Regueiro RA, Ferguson VL (2016) An evolutionary model of osteoarthritis including articular cartilage damage, and bone remodeling in a computational study. J Biomech 49:3502–3508CrossRefPubMed
199.
Zurück zum Zitat Lutianov M, Naire S, Roberts S, Kuiper JH (2011) A mathematical model of cartilage regeneration after cell therapy. J Theor Biol 289:136–150CrossRefPubMed Lutianov M, Naire S, Roberts S, Kuiper JH (2011) A mathematical model of cartilage regeneration after cell therapy. J Theor Biol 289:136–150CrossRefPubMed
200.
Zurück zum Zitat Nakagawa T, Lee SY, Reddi AH (2009) Induction of chondrogenesis from human embryonic stem cells without embryoid body formation by bone morphogenetic protein 7 and transforming growth factor beta1. Arthritis Rheum 60:3686–3692CrossRefPubMed Nakagawa T, Lee SY, Reddi AH (2009) Induction of chondrogenesis from human embryonic stem cells without embryoid body formation by bone morphogenetic protein 7 and transforming growth factor beta1. Arthritis Rheum 60:3686–3692CrossRefPubMed
201.
Zurück zum Zitat Chen MJ, Whiteley JP, Please CP et al (2018) Inducing chondrogenesis in MSC/chondrocyte co-cultures using exogenous TGF-beta: a mathematical model. J Theor Biol 439:1–13CrossRefPubMed Chen MJ, Whiteley JP, Please CP et al (2018) Inducing chondrogenesis in MSC/chondrocyte co-cultures using exogenous TGF-beta: a mathematical model. J Theor Biol 439:1–13CrossRefPubMed
Metadaten
Titel
Articular cartilage regeneration and tissue engineering models: a systematic review
verfasst von
Sebastian G. Walter
Robert Ossendorff
Frank A. Schildberg
Publikationsdatum
31.10.2018
Verlag
Springer Berlin Heidelberg
Erschienen in
Archives of Orthopaedic and Trauma Surgery / Ausgabe 3/2019
Print ISSN: 0936-8051
Elektronische ISSN: 1434-3916
DOI
https://doi.org/10.1007/s00402-018-3057-z

Weitere Artikel der Ausgabe 3/2019

Archives of Orthopaedic and Trauma Surgery 3/2019 Zur Ausgabe

Arthropedia

Grundlagenwissen der Arthroskopie und Gelenkchirurgie. Erweitert durch Fallbeispiele, Videos und Abbildungen. 
» Jetzt entdecken

Ein Drittel der jungen Ärztinnen und Ärzte erwägt abzuwandern

07.05.2024 Klinik aktuell Nachrichten

Extreme Arbeitsverdichtung und kaum Supervision: Dr. Andrea Martini, Sprecherin des Bündnisses Junge Ärztinnen und Ärzte (BJÄ) über den Frust des ärztlichen Nachwuchses und die Vorteile des Rucksack-Modells.

Aquatherapie bei Fibromyalgie wirksamer als Trockenübungen

03.05.2024 Fibromyalgiesyndrom Nachrichten

Bewegungs-, Dehnungs- und Entspannungsübungen im Wasser lindern die Beschwerden von Patientinnen mit Fibromyalgie besser als das Üben auf trockenem Land. Das geht aus einer spanisch-brasilianischen Vergleichsstudie hervor.

Endlich: Zi zeigt, mit welchen PVS Praxen zufrieden sind

IT für Ärzte Nachrichten

Darauf haben viele Praxen gewartet: Das Zi hat eine Liste von Praxisverwaltungssystemen veröffentlicht, die von Nutzern positiv bewertet werden. Eine gute Grundlage für wechselwillige Ärztinnen und Psychotherapeuten.

Proximale Humerusfraktur: Auch 100-Jährige operieren?

01.05.2024 DCK 2024 Kongressbericht

Mit dem demographischen Wandel versorgt auch die Chirurgie immer mehr betagte Menschen. Von Entwicklungen wie Fast-Track können auch ältere Menschen profitieren und bei proximaler Humerusfraktur können selbst manche 100-Jährige noch sicher operiert werden.

Update Orthopädie und Unfallchirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.