Skip to main content
Erschienen in: Pediatric Radiology 11/2019

01.10.2019 | Pediatric oncologic imaging

Artificial intelligence applications for pediatric oncology imaging

verfasst von: Heike Daldrup-Link

Erschienen in: Pediatric Radiology | Ausgabe 11/2019

Einloggen, um Zugang zu erhalten

Abstract

Machine learning algorithms can help to improve the accuracy and efficiency of cancer diagnosis, selection of personalized therapies and prediction of long-term outcomes. Artificial intelligence (AI) describes a subset of machine learning that can identify patterns in data and take actions to reach pre-set goals without specific programming. Machine learning tools can help to identify high-risk populations, prescribe personalized screening tests and enrich patient populations that are most likely to benefit from advanced imaging tests. AI algorithms can also help to plan personalized therapies and predict the impact of genomic variations on the sensitivity of normal and tumor tissue to chemotherapy or radiation therapy. The two main bottlenecks for successful AI applications in pediatric oncology imaging to date are the needs for large data sets and appropriate computer and memory power. With appropriate data entry and processing power, deep convolutional neural networks (CNNs) can process large amounts of imaging data, clinical data and medical literature in very short periods of time and thereby accelerate literature reviews, correct diagnoses and personalized treatments. This article provides a focused review of emerging AI applications that are relevant for the pediatric oncology imaging community.
Literatur
1.
Zurück zum Zitat Callaway E, Castelvecchi D, Cyranoski D et al (2017) 2017 in news: the science events that shaped the year. Nature 552:304–307CrossRefPubMed Callaway E, Castelvecchi D, Cyranoski D et al (2017) 2017 in news: the science events that shaped the year. Nature 552:304–307CrossRefPubMed
2.
Zurück zum Zitat Fetit AE, Novak J, Rodriguez D et al (2018) Radiomics in paediatric neuro-oncology: a multicentre study on MRI texture analysis. NMR Biomed 31:1–13CrossRef Fetit AE, Novak J, Rodriguez D et al (2018) Radiomics in paediatric neuro-oncology: a multicentre study on MRI texture analysis. NMR Biomed 31:1–13CrossRef
3.
Zurück zum Zitat Banerjee I, Crawley A, Bhethanabotla M et al (2018) Transfer learning on fused multiparametric MR images for classifying histopathological subtypes of rhabdomyosarcoma. Comput Med Imaging Graph 65:167–175CrossRefPubMed Banerjee I, Crawley A, Bhethanabotla M et al (2018) Transfer learning on fused multiparametric MR images for classifying histopathological subtypes of rhabdomyosarcoma. Comput Med Imaging Graph 65:167–175CrossRefPubMed
5.
Zurück zum Zitat Huang YH, Feng QJ (2018) Segmentation of brain tumor on magnetic resonance images using 3D full-convolutional densely connected convolutional networks. Nan Fang Yi Ke Da Xue Xue Bao 38:661–668PubMed Huang YH, Feng QJ (2018) Segmentation of brain tumor on magnetic resonance images using 3D full-convolutional densely connected convolutional networks. Nan Fang Yi Ke Da Xue Xue Bao 38:661–668PubMed
6.
Zurück zum Zitat Erickson BJ, Korfiatis P, Akkus Z et al (2017) Machine learning for medical imaging. Radiographics 37:505–515CrossRefPubMed Erickson BJ, Korfiatis P, Akkus Z et al (2017) Machine learning for medical imaging. Radiographics 37:505–515CrossRefPubMed
9.
10.
Zurück zum Zitat Zhang B, Liang XL, Gao HY et al (2016) Models of logistic regression analysis, support vector machine, and back-propagation neural network based on serum tumor markers in colorectal cancer diagnosis. Genet Mol Res 15(2). https://doi.org/10.4238/gmr.15028643 Zhang B, Liang XL, Gao HY et al (2016) Models of logistic regression analysis, support vector machine, and back-propagation neural network based on serum tumor markers in colorectal cancer diagnosis. Genet Mol Res 15(2). https://​doi.​org/​10.​4238/​gmr.​15028643
11.
Zurück zum Zitat Hornbrook MC, Goshen R, Choman E et al (2017) Early colorectal cancer detected by machine learning model using gender, age, and complete blood count data. Dig Dis Sci 62:2719–2727CrossRefPubMed Hornbrook MC, Goshen R, Choman E et al (2017) Early colorectal cancer detected by machine learning model using gender, age, and complete blood count data. Dig Dis Sci 62:2719–2727CrossRefPubMed
12.
Zurück zum Zitat Lu L, Sun J, Shi P et al (2017) Identification of circular RNAs as a promising new class of diagnostic biomarkers for human breast cancer. Oncotarget 8:44096–44107PubMedPubMedCentral Lu L, Sun J, Shi P et al (2017) Identification of circular RNAs as a promising new class of diagnostic biomarkers for human breast cancer. Oncotarget 8:44096–44107PubMedPubMedCentral
13.
Zurück zum Zitat Patterson AD, Maurhofer O, Beyoglu D et al (2011) Aberrant lipid metabolism in hepatocellular carcinoma revealed by plasma metabolomics and lipid profiling. Cancer Res 71:6590–6600CrossRefPubMedPubMedCentral Patterson AD, Maurhofer O, Beyoglu D et al (2011) Aberrant lipid metabolism in hepatocellular carcinoma revealed by plasma metabolomics and lipid profiling. Cancer Res 71:6590–6600CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat Kumar P, Gill RM, Phelps A et al (2018) Surveillance screening in Li-Fraumeni syndrome: raising awareness of false positives. Cureus 10:e2527PubMedPubMedCentral Kumar P, Gill RM, Phelps A et al (2018) Surveillance screening in Li-Fraumeni syndrome: raising awareness of false positives. Cureus 10:e2527PubMedPubMedCentral
15.
Zurück zum Zitat Schooler GR, Davis JT, Daldrup-Link HE et al (2018) Current utilization and procedural practices in pediatric whole-body MRI. Pediatr Radiol 48:1101–1107CrossRefPubMed Schooler GR, Davis JT, Daldrup-Link HE et al (2018) Current utilization and procedural practices in pediatric whole-body MRI. Pediatr Radiol 48:1101–1107CrossRefPubMed
16.
Zurück zum Zitat Kang E, Min J, Ye JC (2017) A deep convolutional neural network using directional wavelets for low-dose X-ray CT reconstruction. Med Phys 44:e360–e375CrossRefPubMed Kang E, Min J, Ye JC (2017) A deep convolutional neural network using directional wavelets for low-dose X-ray CT reconstruction. Med Phys 44:e360–e375CrossRefPubMed
17.
Zurück zum Zitat Gondara L (2016) Medical image denoising using convolutional denoising autoencoders. 2016 IEEE 16th International Conference on Data Mining Workshops (ICDMW), Barcelona, Spain, pp 241–246 Gondara L (2016) Medical image denoising using convolutional denoising autoencoders. 2016 IEEE 16th International Conference on Data Mining Workshops (ICDMW), Barcelona, Spain, pp 241–246
19.
Zurück zum Zitat Zhu B, Liu JZ, Cauley SF et al (2018) Image reconstruction by domain-transform manifold learning. Nature 555:487–492CrossRefPubMed Zhu B, Liu JZ, Cauley SF et al (2018) Image reconstruction by domain-transform manifold learning. Nature 555:487–492CrossRefPubMed
20.
Zurück zum Zitat Gong E, Pauly JM, Wintermark M et al (2018) Deep learning enables reduced gadolinium dose for contrast-enhanced brain MRI. J Magn Reson Imaging 48:330–340CrossRefPubMed Gong E, Pauly JM, Wintermark M et al (2018) Deep learning enables reduced gadolinium dose for contrast-enhanced brain MRI. J Magn Reson Imaging 48:330–340CrossRefPubMed
21.
Zurück zum Zitat Larson DB, Chen MC, Lungren MP et al (2018) Performance of a deep-learning neural network model in assessing skeletal maturity on pediatric hand radiographs. Radiology 287:313–322CrossRefPubMed Larson DB, Chen MC, Lungren MP et al (2018) Performance of a deep-learning neural network model in assessing skeletal maturity on pediatric hand radiographs. Radiology 287:313–322CrossRefPubMed
22.
Zurück zum Zitat Rajpurkar P, Irvin J, Zhu K et al (2018) CheXNet: radiologist-level pneumonia detection on chest X-rays with deep learning. IEEE Computer Society Conference on Computer Vision and Pattern Recognition. https://arxiv.org/abs/1711.05225. Accessed 18 Jan 2019 Rajpurkar P, Irvin J, Zhu K et al (2018) CheXNet: radiologist-level pneumonia detection on chest X-rays with deep learning. IEEE Computer Society Conference on Computer Vision and Pattern Recognition. https://​arxiv.​org/​abs/​1711.​05225. Accessed 18 Jan 2019
23.
Zurück zum Zitat Becker AS, Mueller M, Stoffel E et al (2018) Classification of breast cancer in ultrasound imaging using a generic deep learning analysis software: a pilot study. Br J Radiol 91:20170576PubMedPubMedCentral Becker AS, Mueller M, Stoffel E et al (2018) Classification of breast cancer in ultrasound imaging using a generic deep learning analysis software: a pilot study. Br J Radiol 91:20170576PubMedPubMedCentral
24.
Zurück zum Zitat Afifi A, Nakaguchi T (2015) Unsupervised detection of liver lesions in CT images. Conf Proc IEEE Eng Med Biol Soc 2015:2411–2414 Afifi A, Nakaguchi T (2015) Unsupervised detection of liver lesions in CT images. Conf Proc IEEE Eng Med Biol Soc 2015:2411–2414
25.
Zurück zum Zitat Soltaninejad M, Yang G, Lambrou T et al (2017) Automated brain tumour detection and segmentation using superpixel-based extremely randomized trees in FLAIR MRI. Int J Comput Assist Radiol Surg 12:183–203CrossRefPubMed Soltaninejad M, Yang G, Lambrou T et al (2017) Automated brain tumour detection and segmentation using superpixel-based extremely randomized trees in FLAIR MRI. Int J Comput Assist Radiol Surg 12:183–203CrossRefPubMed
26.
Zurück zum Zitat Bi L, Kim J, Kumar A et al (2017) Automatic detection and classification of regions of FDG uptake in whole-body PET-CT lymphoma studies. Comput Med Imaging Graph 60:3–10CrossRefPubMed Bi L, Kim J, Kumar A et al (2017) Automatic detection and classification of regions of FDG uptake in whole-body PET-CT lymphoma studies. Comput Med Imaging Graph 60:3–10CrossRefPubMed
27.
Zurück zum Zitat Helm EJ, Silva CT, Roberts HC et al (2009) Computer-aided detection for the identification of pulmonary nodules in pediatric oncology patients: initial experience. Pediatr Radiol 39:685–693CrossRefPubMed Helm EJ, Silva CT, Roberts HC et al (2009) Computer-aided detection for the identification of pulmonary nodules in pediatric oncology patients: initial experience. Pediatr Radiol 39:685–693CrossRefPubMed
28.
Zurück zum Zitat Linguraru MG, Richbourg WJ, Liu J et al (2012) Tumor burden analysis on computed tomography by automated liver and tumor segmentation. IEEE Trans Med Imaging 31:1965–1976CrossRefPubMedPubMedCentral Linguraru MG, Richbourg WJ, Liu J et al (2012) Tumor burden analysis on computed tomography by automated liver and tumor segmentation. IEEE Trans Med Imaging 31:1965–1976CrossRefPubMedPubMedCentral
29.
Zurück zum Zitat Tu SJ, Wang CW, Pan KT et al (2018) Localized thin-section CT with radiomics feature extraction and machine learning to classify early-detected pulmonary nodules from lung cancer screening. Phys Med Biol 63:065005CrossRefPubMed Tu SJ, Wang CW, Pan KT et al (2018) Localized thin-section CT with radiomics feature extraction and machine learning to classify early-detected pulmonary nodules from lung cancer screening. Phys Med Biol 63:065005CrossRefPubMed
30.
Zurück zum Zitat Chen S, Harmon S, Perk T et al (2017) Diagnostic classification of solitary pulmonary nodules using dual time (18)F-FDG PET/CT image texture features in granuloma-endemic regions. Sci Rep 7:9370CrossRefPubMedPubMedCentral Chen S, Harmon S, Perk T et al (2017) Diagnostic classification of solitary pulmonary nodules using dual time (18)F-FDG PET/CT image texture features in granuloma-endemic regions. Sci Rep 7:9370CrossRefPubMedPubMedCentral
31.
Zurück zum Zitat Perk T, Bradshaw T, Chen S et al (2018) Automated classification of benign and malignant lesions in (18)F-NaF PET/CT images using machine learning. Phys Med Biol 63:225019CrossRefPubMed Perk T, Bradshaw T, Chen S et al (2018) Automated classification of benign and malignant lesions in (18)F-NaF PET/CT images using machine learning. Phys Med Biol 63:225019CrossRefPubMed
32.
Zurück zum Zitat Kickingereder P, Bonekamp D, Nowosielski M et al (2016) Radiogenomics of glioblastoma: machine learning-based classification of molecular characteristics by using multiparametric and multiregional MR imaging features. Radiology 281:907–918CrossRefPubMed Kickingereder P, Bonekamp D, Nowosielski M et al (2016) Radiogenomics of glioblastoma: machine learning-based classification of molecular characteristics by using multiparametric and multiregional MR imaging features. Radiology 281:907–918CrossRefPubMed
33.
Zurück zum Zitat Bae S, Choi YS, Ahn SS et al (2018) Radiomic MRI phenotyping of glioblastoma: improving survival prediction. Radiology 289:797–806CrossRefPubMed Bae S, Choi YS, Ahn SS et al (2018) Radiomic MRI phenotyping of glioblastoma: improving survival prediction. Radiology 289:797–806CrossRefPubMed
34.
Zurück zum Zitat Zarinabad N, Wilson M, Gill SK et al (2017) Multiclass imbalance learning: improving classification of pediatric brain tumors from magnetic resonance spectroscopy. Magn Reson Med 77:2114–2124CrossRefPubMed Zarinabad N, Wilson M, Gill SK et al (2017) Multiclass imbalance learning: improving classification of pediatric brain tumors from magnetic resonance spectroscopy. Magn Reson Med 77:2114–2124CrossRefPubMed
35.
Zurück zum Zitat Hirsch FW, Sattler B, Sorge I et al (2013) PET/MR in children. Initial clinical experience in paediatric oncology using an integrated PET/MR scanner. Pediatr Radiol 43:860–875CrossRefPubMedPubMedCentral Hirsch FW, Sattler B, Sorge I et al (2013) PET/MR in children. Initial clinical experience in paediatric oncology using an integrated PET/MR scanner. Pediatr Radiol 43:860–875CrossRefPubMedPubMedCentral
36.
Zurück zum Zitat Schafer JF, Gatidis S, Schmidt H et al (2014) Simultaneous whole-body PET/MR imaging in comparison to PET/CT in pediatric oncology: initial results. Radiology 273:220–231CrossRefPubMed Schafer JF, Gatidis S, Schmidt H et al (2014) Simultaneous whole-body PET/MR imaging in comparison to PET/CT in pediatric oncology: initial results. Radiology 273:220–231CrossRefPubMed
37.
Zurück zum Zitat Daldrup-Link H, Voss S, Donig J (2014) ACR Committee on pediatric imaging research. Pediatr Radiol 44:1193–1194CrossRef Daldrup-Link H, Voss S, Donig J (2014) ACR Committee on pediatric imaging research. Pediatr Radiol 44:1193–1194CrossRef
38.
Zurück zum Zitat Graham MM, Badawi RD, Wahl RL (2011) Variations in PET/CT methodology for oncologic imaging at U.S. academic medical centers: an imaging response assessment team survey. J Nucl Med 52:311–317CrossRefPubMed Graham MM, Badawi RD, Wahl RL (2011) Variations in PET/CT methodology for oncologic imaging at U.S. academic medical centers: an imaging response assessment team survey. J Nucl Med 52:311–317CrossRefPubMed
39.
Zurück zum Zitat Men K, Zhang T, Chen X et al (2018) Fully automatic and robust segmentation of the clinical target volume for radiotherapy of breast cancer using big data and deep learning. Phys Med 50:13–19CrossRefPubMed Men K, Zhang T, Chen X et al (2018) Fully automatic and robust segmentation of the clinical target volume for radiotherapy of breast cancer using big data and deep learning. Phys Med 50:13–19CrossRefPubMed
40.
Zurück zum Zitat Glass JO, Reddick WE (1998) Hybrid artificial neural network segmentation and classification of dynamic contrast-enhanced MR imaging (DEMRI) of osteosarcoma. Magn Reson Imaging 16:1075–1083CrossRefPubMed Glass JO, Reddick WE (1998) Hybrid artificial neural network segmentation and classification of dynamic contrast-enhanced MR imaging (DEMRI) of osteosarcoma. Magn Reson Imaging 16:1075–1083CrossRefPubMed
41.
Zurück zum Zitat Kleis M, Daldrup-Link H, Matthay K et al (2009) Diagnostic value of PET/CT for the staging and restaging of pediatric tumors. Eur J Nucl Med Mol Imaging 36:23–36CrossRefPubMed Kleis M, Daldrup-Link H, Matthay K et al (2009) Diagnostic value of PET/CT for the staging and restaging of pediatric tumors. Eur J Nucl Med Mol Imaging 36:23–36CrossRefPubMed
43.
Zurück zum Zitat Cairns J, Ung CY, da Rocha EL et al (2016) A network-based phenotype mapping approach to identify genes that modulate drug response phenotypes. Sci Rep 6:37003CrossRefPubMedPubMedCentral Cairns J, Ung CY, da Rocha EL et al (2016) A network-based phenotype mapping approach to identify genes that modulate drug response phenotypes. Sci Rep 6:37003CrossRefPubMedPubMedCentral
45.
Zurück zum Zitat Cha YJ, Jang WI, Kim MS et al (2018) Prediction of response to stereotactic radiosurgery for brain metastases using convolutional neural networks. Anticancer Res 38:5437–5445CrossRefPubMed Cha YJ, Jang WI, Kim MS et al (2018) Prediction of response to stereotactic radiosurgery for brain metastases using convolutional neural networks. Anticancer Res 38:5437–5445CrossRefPubMed
46.
Zurück zum Zitat Ibragimov B, Toesca D, Chang D et al (2018) Development of deep neural network for individualized hepatobiliary toxicity prediction after liver SBRT. Med Phys 45:4763–4774CrossRefPubMed Ibragimov B, Toesca D, Chang D et al (2018) Development of deep neural network for individualized hepatobiliary toxicity prediction after liver SBRT. Med Phys 45:4763–4774CrossRefPubMed
47.
49.
Zurück zum Zitat Matsuzaki T, Oda M, Kitasaka T et al (2015) Automated anatomical labeling of abdominal arteries and hepatic portal system extracted from abdominal CT volumes. Med Image Anal 20:152–161CrossRefPubMed Matsuzaki T, Oda M, Kitasaka T et al (2015) Automated anatomical labeling of abdominal arteries and hepatic portal system extracted from abdominal CT volumes. Med Image Anal 20:152–161CrossRefPubMed
50.
51.
Zurück zum Zitat Ratner AJ, Ehrenberg HR, Hussain Z et al (2017) Learning to compose domain-specific transformations for data augmentation. Adv Neural Inf Process Syst 30:3239–3249PubMedPubMedCentral Ratner AJ, Ehrenberg HR, Hussain Z et al (2017) Learning to compose domain-specific transformations for data augmentation. Adv Neural Inf Process Syst 30:3239–3249PubMedPubMedCentral
52.
Zurück zum Zitat Havaei M, Davy A, Warde-Farley D et al (2017) Brain tumor segmentation with deep neural networks. Med Image Anal 35:18–31CrossRefPubMed Havaei M, Davy A, Warde-Farley D et al (2017) Brain tumor segmentation with deep neural networks. Med Image Anal 35:18–31CrossRefPubMed
53.
Zurück zum Zitat Havaei M, Larochelle H, Poulin P et al (2016) Within-brain classification for brain tumor segmentation. Int J Comput Assist Radiol Surg 11:777–788CrossRefPubMed Havaei M, Larochelle H, Poulin P et al (2016) Within-brain classification for brain tumor segmentation. Int J Comput Assist Radiol Surg 11:777–788CrossRefPubMed
54.
Zurück zum Zitat Beecy AN, Chang Q, Anchouche K et al (2018) A novel deep learning approach for automated diagnosis of acute ischemic infarction on computed tomography. JACC Cardiovasc Imaging 11:1723–1725CrossRefPubMed Beecy AN, Chang Q, Anchouche K et al (2018) A novel deep learning approach for automated diagnosis of acute ischemic infarction on computed tomography. JACC Cardiovasc Imaging 11:1723–1725CrossRefPubMed
Metadaten
Titel
Artificial intelligence applications for pediatric oncology imaging
verfasst von
Heike Daldrup-Link
Publikationsdatum
01.10.2019
Verlag
Springer Berlin Heidelberg
Erschienen in
Pediatric Radiology / Ausgabe 11/2019
Print ISSN: 0301-0449
Elektronische ISSN: 1432-1998
DOI
https://doi.org/10.1007/s00247-019-04360-1

Weitere Artikel der Ausgabe 11/2019

Pediatric Radiology 11/2019 Zur Ausgabe

Pediatric oncologic imaging

Rare malignant liver tumors in children

Pediatric oncologic imaging

Introduction

Pediatric oncologic imaging

Ovarian neoplasms of childhood

Darf man die Behandlung eines Neonazis ablehnen?

08.05.2024 Gesellschaft Nachrichten

In einer Leseranfrage in der Zeitschrift Journal of the American Academy of Dermatology möchte ein anonymer Dermatologe bzw. eine anonyme Dermatologin wissen, ob er oder sie einen Patienten behandeln muss, der eine rassistische Tätowierung trägt.

Ein Drittel der jungen Ärztinnen und Ärzte erwägt abzuwandern

07.05.2024 Klinik aktuell Nachrichten

Extreme Arbeitsverdichtung und kaum Supervision: Dr. Andrea Martini, Sprecherin des Bündnisses Junge Ärztinnen und Ärzte (BJÄ) über den Frust des ärztlichen Nachwuchses und die Vorteile des Rucksack-Modells.

Endlich: Zi zeigt, mit welchen PVS Praxen zufrieden sind

IT für Ärzte Nachrichten

Darauf haben viele Praxen gewartet: Das Zi hat eine Liste von Praxisverwaltungssystemen veröffentlicht, die von Nutzern positiv bewertet werden. Eine gute Grundlage für wechselwillige Ärztinnen und Psychotherapeuten.

Akuter Schwindel: Wann lohnt sich eine MRT?

28.04.2024 Schwindel Nachrichten

Akuter Schwindel stellt oft eine diagnostische Herausforderung dar. Wie nützlich dabei eine MRT ist, hat eine Studie aus Finnland untersucht. Immerhin einer von sechs Patienten wurde mit akutem ischämischem Schlaganfall diagnostiziert.

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.