Skip to main content
Erschienen in: Medical Oncology 6/2020

01.06.2020 | Review Article

Artificial Intelligence in radiotherapy: state of the art and future directions

verfasst von: Giulio Francolini, Isacco Desideri, Giulia Stocchi, Viola Salvestrini, Lucia Pia Ciccone, Pietro Garlatti, Mauro Loi, Lorenzo Livi

Erschienen in: Medical Oncology | Ausgabe 6/2020

Einloggen, um Zugang zu erhalten

Abstract

Recent advances in computing capability allowed the development of sophisticated predictive models to assess complex relationships within observational data, described as Artificial Intelligence. Medicine is one of the several fields of application and Radiation oncology could benefit from these approaches, particularly in patients’ medical records, imaging, baseline pathology, planning or instrumental data. Artificial Intelligence systems could simplify many steps of the complex workflow of radiotherapy such as segmentation, planning or delivery. However, Artificial Intelligence could be considered as a “black box” in which human operator may only understand input and output predictions and its application to the clinical practice remains a challenge. The low transparency of the overall system is questionable from manifold points of view (ethical included). Given the complexity of this issue, we collected the basic definitions to help the clinician to understand current literature, and overviewed experiences regarding implementation of AI within radiotherapy clinical workflow, aiming to describe this field from the clinician perspective.
Literatur
1.
Zurück zum Zitat El Naqa I, et al. Artificial Intelligence: reshaping the practice of radiological sciences in the 21st century. Br J Radiol. 2020;93:1106.CrossRef El Naqa I, et al. Artificial Intelligence: reshaping the practice of radiological sciences in the 21st century. Br J Radiol. 2020;93:1106.CrossRef
2.
3.
Zurück zum Zitat Sharp G, et al. Vision 20/20: perspectives on automated image segmentation for radiotherapy. Med Phys. 2014;5:050902.CrossRef Sharp G, et al. Vision 20/20: perspectives on automated image segmentation for radiotherapy. Med Phys. 2014;5:050902.CrossRef
4.
Zurück zum Zitat Eldesoky AR, et al. Internal and external validation of an ESTRO delineation guideline: dependent automated segmentation tool for loco-regional radiation therapy of early breast cancer. Radiother Oncol. 2016;3:424–30.CrossRef Eldesoky AR, et al. Internal and external validation of an ESTRO delineation guideline: dependent automated segmentation tool for loco-regional radiation therapy of early breast cancer. Radiother Oncol. 2016;3:424–30.CrossRef
5.
Zurück zum Zitat Nguyen A et al. Deep neural networks are easily fooled: high confidence predictions for unrecognizable images. In: Proc. IEEE Conf. Comput. Vis. Pattern Recognit; 2015; pp. 427–436. Nguyen A et al. Deep neural networks are easily fooled: high confidence predictions for unrecognizable images. In: Proc. IEEE Conf. Comput. Vis. Pattern Recognit; 2015; pp. 427–436.
6.
Zurück zum Zitat Charron O, et al. Automatic detection and segmentation of brain metastases on multimodal MR images with a deep convolutional neural network. Comput Biol Med. 2018;95:43–544.PubMedCrossRef Charron O, et al. Automatic detection and segmentation of brain metastases on multimodal MR images with a deep convolutional neural network. Comput Biol Med. 2018;95:43–544.PubMedCrossRef
7.
Zurück zum Zitat Shickel B, et al. Deep EHR: a survey of recent advances in deep learning techniques for electronic health record (EHR) analysis. IEEE J Biomed Health Inform. 2018;22(5):1589–604.PubMedCrossRef Shickel B, et al. Deep EHR: a survey of recent advances in deep learning techniques for electronic health record (EHR) analysis. IEEE J Biomed Health Inform. 2018;22(5):1589–604.PubMedCrossRef
8.
Zurück zum Zitat Boden MA. Artificial intelligence and natural man. New York: Basic Books; 1977. Boden MA. Artificial intelligence and natural man. New York: Basic Books; 1977.
9.
Zurück zum Zitat Tsay D, Patterson C. From machine learning to artificial intelligence applications in cardiac care. Circulation. 2018;138:2569–75.PubMedCrossRef Tsay D, Patterson C. From machine learning to artificial intelligence applications in cardiac care. Circulation. 2018;138:2569–75.PubMedCrossRef
11.
Zurück zum Zitat Mitchell TM. Machine learning. New York: McGraw-Hill; 1997. Mitchell TM. Machine learning. New York: McGraw-Hill; 1997.
12.
Zurück zum Zitat Speight, et al. Evaluation of atlas based auto-segmentation for head and neck target volume delineation in adaptive/replan IMRT. J Phys Conf Ser. 2014;489:012060.CrossRef Speight, et al. Evaluation of atlas based auto-segmentation for head and neck target volume delineation in adaptive/replan IMRT. J Phys Conf Ser. 2014;489:012060.CrossRef
13.
Zurück zum Zitat Men K, et al. Deep deconvolutional neural network for target segmentation of nasopharyngeal cancer in planning computed tomography images. Front Oncol. 2017;7:315.PubMedPubMedCentralCrossRef Men K, et al. Deep deconvolutional neural network for target segmentation of nasopharyngeal cancer in planning computed tomography images. Front Oncol. 2017;7:315.PubMedPubMedCentralCrossRef
14.
Zurück zum Zitat Cardenas CE, et al. Deep learning algorithm for auto-delineation of high-risk oropharyngeal clinical target volumes with built-in dice similarity coefficient parameter optimization function. Int J Radiat Oncol Biol Phys. 2018;101:468–78.PubMedCrossRefPubMedCentral Cardenas CE, et al. Deep learning algorithm for auto-delineation of high-risk oropharyngeal clinical target volumes with built-in dice similarity coefficient parameter optimization function. Int J Radiat Oncol Biol Phys. 2018;101:468–78.PubMedCrossRefPubMedCentral
15.
Zurück zum Zitat McCarroll RE, et al. Retrospective validation and clinical implementation of automated contouring of organs at risk in the head and neck: a step toward automated radiation treatment planning for low- and middle-income countries. J Glob Oncol. 2018;4:1–11.PubMed McCarroll RE, et al. Retrospective validation and clinical implementation of automated contouring of organs at risk in the head and neck: a step toward automated radiation treatment planning for low- and middle-income countries. J Glob Oncol. 2018;4:1–11.PubMed
16.
Zurück zum Zitat Nikolov S et al. Deep learning to achieve clinically applicable segmentation of head and neck anatomy for radiotherapy. ArXiv, 2018; arXiv:1809.04430. Nikolov S et al. Deep learning to achieve clinically applicable segmentation of head and neck anatomy for radiotherapy. ArXiv, 2018; arXiv:1809.04430.
18.
Zurück zum Zitat Tong N, et al. Fully automatic multi-organ segmentation for head and neck cancer radiotherapy using shape representation model constrained fully convolutional neural networks. Med Phy. 2018;45(10):4558–677.CrossRef Tong N, et al. Fully automatic multi-organ segmentation for head and neck cancer radiotherapy using shape representation model constrained fully convolutional neural networks. Med Phy. 2018;45(10):4558–677.CrossRef
19.
Zurück zum Zitat Van Rooij W, et al. Deep learning-based delineation of head and neck organs at risk: geometric and dosimetric evaluation. Int J Radiat Oncol Biol Phys. 2019;104(3):677–84.PubMedCrossRef Van Rooij W, et al. Deep learning-based delineation of head and neck organs at risk: geometric and dosimetric evaluation. Int J Radiat Oncol Biol Phys. 2019;104(3):677–84.PubMedCrossRef
20.
Zurück zum Zitat Van Dijk LV, et al. Improving automatic delineation for head and neck organs at risk by Deep Learning Contouring. Radiother Oncol. 2020;142:115–23.PubMedCrossRef Van Dijk LV, et al. Improving automatic delineation for head and neck organs at risk by Deep Learning Contouring. Radiother Oncol. 2020;142:115–23.PubMedCrossRef
21.
Zurück zum Zitat Martin S, et al. A multiphase validation of atlas-based automatic and semiautomatic segmentation strategies for prostate MRI. Int J Radiat Oncol Biol Phys. 2013;85:95–100.PubMedCrossRef Martin S, et al. A multiphase validation of atlas-based automatic and semiautomatic segmentation strategies for prostate MRI. Int J Radiat Oncol Biol Phys. 2013;85:95–100.PubMedCrossRef
22.
Zurück zum Zitat Macomber MW, et al. Autosegmentation of prostate anatomy for radiation treatment planning using deep decision forests of radiomic features. Phys Med Biol. 2018;63(23):235002.PubMedCrossRef Macomber MW, et al. Autosegmentation of prostate anatomy for radiation treatment planning using deep decision forests of radiomic features. Phys Med Biol. 2018;63(23):235002.PubMedCrossRef
23.
Zurück zum Zitat Lustberg T, et al. Clinical evaluation of atlas and deep learning based automatic contouring for lung cancer. Radiother Oncol. 2018;126:312–7.PubMedCrossRef Lustberg T, et al. Clinical evaluation of atlas and deep learning based automatic contouring for lung cancer. Radiother Oncol. 2018;126:312–7.PubMedCrossRef
24.
Zurück zum Zitat Men K, et al. Automatic segmentation of the clinical target volume and organs at risk in the planning CT for rectal cancer using deep dilated convolutional neural networks. Med Phys. 2017;44(12):6377–89.PubMedCrossRef Men K, et al. Automatic segmentation of the clinical target volume and organs at risk in the planning CT for rectal cancer using deep dilated convolutional neural networks. Med Phys. 2017;44(12):6377–89.PubMedCrossRef
25.
Zurück zum Zitat Liu Y, et al. A deep convolutional neural network-based automatic delineation strategy for multiple brain metastases stereotactic radiosurgery. PLoS ONE. 2017;12(10):e0185844.PubMedPubMedCentralCrossRef Liu Y, et al. A deep convolutional neural network-based automatic delineation strategy for multiple brain metastases stereotactic radiosurgery. PLoS ONE. 2017;12(10):e0185844.PubMedPubMedCentralCrossRef
26.
Zurück zum Zitat Men K, et al. Fully automatic and robust segmentation of the clinical target volume for radiotherapy of breast cancer using big data and deep learning. Phys Med. 2018;50:13–9.PubMedCrossRef Men K, et al. Fully automatic and robust segmentation of the clinical target volume for radiotherapy of breast cancer using big data and deep learning. Phys Med. 2018;50:13–9.PubMedCrossRef
27.
Zurück zum Zitat Menze BH, et al. The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans Med Imaging. 2015;34:1993–2024.PubMedCrossRef Menze BH, et al. The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans Med Imaging. 2015;34:1993–2024.PubMedCrossRef
28.
Zurück zum Zitat Fan J, et al. Automatic treatment planning based on three-dimensional dose distribution predicted from deep learning technique. Med Phys. 2019;1:370–81.CrossRef Fan J, et al. Automatic treatment planning based on three-dimensional dose distribution predicted from deep learning technique. Med Phys. 2019;1:370–81.CrossRef
29.
Zurück zum Zitat Chen X, et al. A feasibility study on an automated method to generate patient-specific dose distributions for radiotherapy using deep learning. Med Phys. 2019;1:56–64.CrossRef Chen X, et al. A feasibility study on an automated method to generate patient-specific dose distributions for radiotherapy using deep learning. Med Phys. 2019;1:56–64.CrossRef
30.
31.
Zurück zum Zitat Ma M, et al. Dosimetric features-driven machine learning model for DVH prediction in VMAT treatment planning. Med Phys. 2019;2:857–67. Ma M, et al. Dosimetric features-driven machine learning model for DVH prediction in VMAT treatment planning. Med Phys. 2019;2:857–67.
32.
Zurück zum Zitat Barragán-Montero AM, et al. Three-dimensional dose prediction for lung IMRT patients with deep neural networks: robust learning from heterogeneous beam configurations. Med Phys. 2019;46(8):3679–91.PubMed Barragán-Montero AM, et al. Three-dimensional dose prediction for lung IMRT patients with deep neural networks: robust learning from heterogeneous beam configurations. Med Phys. 2019;46(8):3679–91.PubMed
33.
Zurück zum Zitat Bai X, et al. Approach and assessment of automated stereotactic radiotherapy planning for early stage non-small-cell lung cancer. Biomed Eng Online. 2019;18(1):101.PubMedPubMedCentralCrossRef Bai X, et al. Approach and assessment of automated stereotactic radiotherapy planning for early stage non-small-cell lung cancer. Biomed Eng Online. 2019;18(1):101.PubMedPubMedCentralCrossRef
34.
Zurück zum Zitat Carlson JN, et al. A machine learning approach to the accurate prediction of multi-leaf collimator positional errors. Phys Med Biol. 2016;61(6):2514–31.PubMedCrossRef Carlson JN, et al. A machine learning approach to the accurate prediction of multi-leaf collimator positional errors. Phys Med Biol. 2016;61(6):2514–31.PubMedCrossRef
35.
Zurück zum Zitat Liu Z, et al. A deep learning method for prediction of three-dimensional dose distribution of helical tomotherapy. Med Phys. 2019;46(5):1972–83.PubMedCrossRef Liu Z, et al. A deep learning method for prediction of three-dimensional dose distribution of helical tomotherapy. Med Phys. 2019;46(5):1972–83.PubMedCrossRef
38.
39.
Zurück zum Zitat Malone C, et al. Using a neural network to predict deviations in mean heart dose during the treatment of left-sided deep inspiration breath hold patients. Phys Med. 2019;65:137–42.PubMedCrossRef Malone C, et al. Using a neural network to predict deviations in mean heart dose during the treatment of left-sided deep inspiration breath hold patients. Phys Med. 2019;65:137–42.PubMedCrossRef
43.
Zurück zum Zitat Bibault JE, Giraud P, Housset M, Durdux C, Taieb J, Berger A, Coriat R, Chaussade S, Dousset B, Nordlinger B, Burgun A. Deep learning and radiomics predict complete response after neo-adjuvant chemoradiation for locally advanced rectal cancer. Sci Rep. 2018;8(1):12611.PubMedPubMedCentralCrossRef Bibault JE, Giraud P, Housset M, Durdux C, Taieb J, Berger A, Coriat R, Chaussade S, Dousset B, Nordlinger B, Burgun A. Deep learning and radiomics predict complete response after neo-adjuvant chemoradiation for locally advanced rectal cancer. Sci Rep. 2018;8(1):12611.PubMedPubMedCentralCrossRef
44.
Zurück zum Zitat Gabryś HS, et al. Design and selection of machine learning methods using radiomics and dosiomics for normal tissue complication probability modeling of xerostomia. Front Oncol. 2018;8:35.PubMedPubMedCentralCrossRef Gabryś HS, et al. Design and selection of machine learning methods using radiomics and dosiomics for normal tissue complication probability modeling of xerostomia. Front Oncol. 2018;8:35.PubMedPubMedCentralCrossRef
45.
Zurück zum Zitat Jiang W, et al. Machine learning methods uncover radiomorphologic dose patterns in salivary glands that predict xerostomia in patients with head and neck cancer. Adv Radiat Oncol. 2018;4:401–12.PubMedPubMedCentralCrossRef Jiang W, et al. Machine learning methods uncover radiomorphologic dose patterns in salivary glands that predict xerostomia in patients with head and neck cancer. Adv Radiat Oncol. 2018;4:401–12.PubMedPubMedCentralCrossRef
46.
Zurück zum Zitat Men K, et al. A deep learning model for predicting xerostomia due to radiation therapy for head and neck squamous cell carcinoma in the RTOG 0522 clinical trial. Int J Radiat Oncol Biol Phys. 2019;2:440–7.CrossRef Men K, et al. A deep learning model for predicting xerostomia due to radiation therapy for head and neck squamous cell carcinoma in the RTOG 0522 clinical trial. Int J Radiat Oncol Biol Phys. 2019;2:440–7.CrossRef
47.
Zurück zum Zitat Lee S, et al. Machine learning on a genome-wide association study to predict late genitourinary toxicity after prostate radiation therapy. Int J Radiat Oncol Biol Phys. 2018;101:128–35.PubMedPubMedCentralCrossRef Lee S, et al. Machine learning on a genome-wide association study to predict late genitourinary toxicity after prostate radiation therapy. Int J Radiat Oncol Biol Phys. 2018;101:128–35.PubMedPubMedCentralCrossRef
48.
Zurück zum Zitat Tian Z, et al. A machine-learning-based prediction model of fistula formation after interstitial brachytherapy for locally advanced gynecological malignancies. Brachytherapy. 2019;4:530–8.CrossRef Tian Z, et al. A machine-learning-based prediction model of fistula formation after interstitial brachytherapy for locally advanced gynecological malignancies. Brachytherapy. 2019;4:530–8.CrossRef
49.
Zurück zum Zitat Tseng HH, Luo Y, Cui S, Chien JT, Ten Haken RK, Naqa IE. Deep reinforcement learning for automated radiation adaptation in lung cancer. Med Phys. 2017;44(12):6690–705.PubMedCrossRef Tseng HH, Luo Y, Cui S, Chien JT, Ten Haken RK, Naqa IE. Deep reinforcement learning for automated radiation adaptation in lung cancer. Med Phys. 2017;44(12):6690–705.PubMedCrossRef
51.
Zurück zum Zitat Price WN. Regulating black-box medicine. Mich L Rev. 2017;116(1):421–74. Price WN. Regulating black-box medicine. Mich L Rev. 2017;116(1):421–74.
Metadaten
Titel
Artificial Intelligence in radiotherapy: state of the art and future directions
verfasst von
Giulio Francolini
Isacco Desideri
Giulia Stocchi
Viola Salvestrini
Lucia Pia Ciccone
Pietro Garlatti
Mauro Loi
Lorenzo Livi
Publikationsdatum
01.06.2020
Verlag
Springer US
Erschienen in
Medical Oncology / Ausgabe 6/2020
Print ISSN: 1357-0560
Elektronische ISSN: 1559-131X
DOI
https://doi.org/10.1007/s12032-020-01374-w

Weitere Artikel der Ausgabe 6/2020

Medical Oncology 6/2020 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.