Skip to main content
Erschienen in: European Journal of Nuclear Medicine and Molecular Imaging 13/2019

06.07.2019 | Review Article

Artificial intelligence, machine (deep) learning and radio(geno)mics: definitions and nuclear medicine imaging applications

verfasst von: Dimitris Visvikis, Catherine Cheze Le Rest, Vincent Jaouen, Mathieu Hatt

Erschienen in: European Journal of Nuclear Medicine and Molecular Imaging | Ausgabe 13/2019

Einloggen, um Zugang zu erhalten

Abstract

Techniques from the field of artificial intelligence, and more specifically machine (deep) learning methods, have been core components of most recent developments in the field of medical imaging. They are already being exploited or are being considered to tackle most tasks, including image reconstruction, processing (denoising, segmentation), analysis and predictive modelling. In this review we introduce and define these key concepts and discuss how the techniques from this field can be applied to nuclear medicine imaging applications with a particular focus on radio(geno)mics.
Literatur
1.
Zurück zum Zitat Beyer T, Townsend DW, Brun T, Kinahan PE, Charron M, Roddy R, et al. A combined PET/CT scanner for clinical oncology. J Nucl Med. 2000;41:1369–79.PubMed Beyer T, Townsend DW, Brun T, Kinahan PE, Charron M, Roddy R, et al. A combined PET/CT scanner for clinical oncology. J Nucl Med. 2000;41:1369–79.PubMed
2.
Zurück zum Zitat Lecoq P. Pushing the limits in time-of-flight PET imaging. IEEE Trans Radiat Plasma Med Sci. 2017;1(6):473–85. Lecoq P. Pushing the limits in time-of-flight PET imaging. IEEE Trans Radiat Plasma Med Sci. 2017;1(6):473–85.
3.
Zurück zum Zitat Berg E, Cherry SR. Innovations in instrumentation for positron emission tomography. Semin Nucl Med. 2018;48:311–31.PubMedPubMedCentral Berg E, Cherry SR. Innovations in instrumentation for positron emission tomography. Semin Nucl Med. 2018;48:311–31.PubMedPubMedCentral
5.
Zurück zum Zitat Hatt M, Tixier F, Visvikis D, Cheze Le Rest C. Radiomics in PET/CT: more than meets the eye? J Nucl Med. 2017;58:365–6.PubMed Hatt M, Tixier F, Visvikis D, Cheze Le Rest C. Radiomics in PET/CT: more than meets the eye? J Nucl Med. 2017;58:365–6.PubMed
6.
Zurück zum Zitat Moor J. The Dartmouth College Artificial Intelligence Conference: the next fifty years. Al Mag. 2006;27:87–91. Moor J. The Dartmouth College Artificial Intelligence Conference: the next fifty years. Al Mag. 2006;27:87–91.
7.
Zurück zum Zitat Kaplan A, Haenlein M. Siri, Siri, in my hand: Who’s the fairest in the land? On the interpretations, illustrations, and implications of artificial intelligence. Bus Horiz. 2019;62:15–25. Kaplan A, Haenlein M. Siri, Siri, in my hand: Who’s the fairest in the land? On the interpretations, illustrations, and implications of artificial intelligence. Bus Horiz. 2019;62:15–25.
9.
Zurück zum Zitat Silver D, Huang A, Maddison CJ, Guez A, Sifre L, van den Driessche G, et al. Mastering the game of go with deep neural networks and tree search. Nature. 2016;529:484–9.PubMed Silver D, Huang A, Maddison CJ, Guez A, Sifre L, van den Driessche G, et al. Mastering the game of go with deep neural networks and tree search. Nature. 2016;529:484–9.PubMed
10.
Zurück zum Zitat Hosny A, Parmar C, Quackenbush J, Schwartz LH, Aerts HJWL. Artificial intelligence in radiology. Nat Rev Cancer. 2018;18:500–10.PubMedPubMedCentral Hosny A, Parmar C, Quackenbush J, Schwartz LH, Aerts HJWL. Artificial intelligence in radiology. Nat Rev Cancer. 2018;18:500–10.PubMedPubMedCentral
12.
Zurück zum Zitat Duda RO, Hart PE, Stork DG. Pattern classification. New York: Wiley; 2012. Duda RO, Hart PE, Stork DG. Pattern classification. New York: Wiley; 2012.
13.
Zurück zum Zitat Mohri M, Rostamizadeh A, Talwalkar A. Foundations of machine learning. Cambridge, MA: MIT Press; 2012. Mohri M, Rostamizadeh A, Talwalkar A. Foundations of machine learning. Cambridge, MA: MIT Press; 2012.
14.
Zurück zum Zitat Guyon I, Elisseeff A. An introduction to variable and feature selection. J Mach Learn Res. 2003;3:1157–82. Guyon I, Elisseeff A. An introduction to variable and feature selection. J Mach Learn Res. 2003;3:1157–82.
15.
Zurück zum Zitat Phuong TM, Lin Z, Altman RB. Choosing SNPs using feature selection. Proceedings of the 2005 IEEE Computational Systems Bioinformatics Conference. 2005; p. 301–9. Phuong TM, Lin Z, Altman RB. Choosing SNPs using feature selection. Proceedings of the 2005 IEEE Computational Systems Bioinformatics Conference. 2005; p. 301–9.
16.
Zurück zum Zitat Parmar C, Grossmann P, Bussink J, Lambin P, Aerts HJWL. Machine learning methods for quantitative radiomic biomarkers. Sci Rep. 2015;5:13087.PubMedPubMedCentral Parmar C, Grossmann P, Bussink J, Lambin P, Aerts HJWL. Machine learning methods for quantitative radiomic biomarkers. Sci Rep. 2015;5:13087.PubMedPubMedCentral
17.
Zurück zum Zitat LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521:436–44.PubMed LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521:436–44.PubMed
18.
Zurück zum Zitat Schmidhuber J. Deep learning in neural networks: an overview. Neural Netw. 2015;61:85–117.PubMed Schmidhuber J. Deep learning in neural networks: an overview. Neural Netw. 2015;61:85–117.PubMed
19.
Zurück zum Zitat Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convolutional neural networks. In: Proceedings of the 25th International Conference on Neural Information Processing Systems, vol. 1; 2012. p. 1097–105. Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convolutional neural networks. In: Proceedings of the 25th International Conference on Neural Information Processing Systems, vol. 1; 2012. p. 1097–105.
20.
Zurück zum Zitat Cireşan DC, Giusti A, Gambardella LM, Schmidhuber J. Mitosis detection in breast cancer histology images with deep neural networks. In: Mori K, Sakuma I, Sato Y, Barillot C, Navab N, editors. Medical Image Computing and Computer-Assisted Intervention – MICCAI 2013. Berlin: Springer; 2013. p. 411–8. Cireşan DC, Giusti A, Gambardella LM, Schmidhuber J. Mitosis detection in breast cancer histology images with deep neural networks. In: Mori K, Sakuma I, Sato Y, Barillot C, Navab N, editors. Medical Image Computing and Computer-Assisted Intervention – MICCAI 2013. Berlin: Springer; 2013. p. 411–8.
21.
Zurück zum Zitat Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, et al. ImageNet Large Scale Visual Recognition Challenge. Int J Comput Vis. 2015;115:211–52. Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, et al. ImageNet Large Scale Visual Recognition Challenge. Int J Comput Vis. 2015;115:211–52.
22.
Zurück zum Zitat Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, et al. A survey on deep learning in medical image analysis. Med Image Anal. 2017;42:60–88.PubMed Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, et al. A survey on deep learning in medical image analysis. Med Image Anal. 2017;42:60–88.PubMed
23.
Zurück zum Zitat Napel S, Mu W, Jardim-Perassi BV, Aerts HJWL, Gillies RJ. Quantitative imaging of cancer in the postgenomic era: radio(geno)mics, deep learning, and habitats. Cancer. 2018;124:4633–49.PubMed Napel S, Mu W, Jardim-Perassi BV, Aerts HJWL, Gillies RJ. Quantitative imaging of cancer in the postgenomic era: radio(geno)mics, deep learning, and habitats. Cancer. 2018;124:4633–49.PubMed
24.
Zurück zum Zitat Dahl GE, Sainath TN, Hinton GE. Improving deep neural networks for LVCSR using rectified linear units and dropout. In: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing. 2013. p. 8609–13. Dahl GE, Sainath TN, Hinton GE. Improving deep neural networks for LVCSR using rectified linear units and dropout. In: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing. 2013. p. 8609–13.
25.
Zurück zum Zitat Razavian AS, Azizpour H, Sullivan J, Carlsson S. CNN features off-the-shelf: an astounding baseline for recognition. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition Workshops: CVPRW 2014. Washington, DC, USA: IEEE Computer Society; 2014. p. 512–519. https://doi.org/10.1109/CVPRW.2014.131. Razavian AS, Azizpour H, Sullivan J, Carlsson S. CNN features off-the-shelf: an astounding baseline for recognition. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition Workshops: CVPRW 2014. Washington, DC, USA: IEEE Computer Society; 2014. p. 512–519. https://​doi.​org/​10.​1109/​CVPRW.​2014.​131.
26.
Zurück zum Zitat Pan SJ, Yang Q. A survey on transfer learning. IEEE Trans Knowl Data Eng. 2010;22:1345–59. Pan SJ, Yang Q. A survey on transfer learning. IEEE Trans Knowl Data Eng. 2010;22:1345–59.
27.
Zurück zum Zitat Shin H-C, Roth HR, Gao M, Lu L, Xu Z, Nogues I, et al. Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Trans Med Imaging. 2016;35:1285–98.PubMed Shin H-C, Roth HR, Gao M, Lu L, Xu Z, Nogues I, et al. Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Trans Med Imaging. 2016;35:1285–98.PubMed
28.
Zurück zum Zitat Le Pogam A, Hanzouli H, Hatt M, Cheze Le Rest C, Visvikis D. Denoising of PET images by combining wavelets and curvelets for improved preservation of resolution and quantitation. Med Image Anal. 2013;17:877–91.PubMed Le Pogam A, Hanzouli H, Hatt M, Cheze Le Rest C, Visvikis D. Denoising of PET images by combining wavelets and curvelets for improved preservation of resolution and quantitation. Med Image Anal. 2013;17:877–91.PubMed
29.
Zurück zum Zitat Gong K, Guan J, Liu C, Qi J. PET image denoising using a deep neural network through fine tuning. IEEE Trans Radiat Plasma Med Sci. 2019;3(2):153–61.PubMed Gong K, Guan J, Liu C, Qi J. PET image denoising using a deep neural network through fine tuning. IEEE Trans Radiat Plasma Med Sci. 2019;3(2):153–61.PubMed
30.
Zurück zum Zitat Le Pogam A, Hatt M, Descourt P, Boussion N, Tsoumpas C, Turkheimer FE, et al. Evaluation of a 3D local multiresolution algorithm for the correction of partial volume effects in positron emission tomography. Med Phys. 2011;38:4920–3.PubMed Le Pogam A, Hatt M, Descourt P, Boussion N, Tsoumpas C, Turkheimer FE, et al. Evaluation of a 3D local multiresolution algorithm for the correction of partial volume effects in positron emission tomography. Med Phys. 2011;38:4920–3.PubMed
31.
Zurück zum Zitat Blanc-Durand P, Van Der Gucht A, Schaefer N, Itti E, Prior JO. Automatic lesion detection and segmentation of 18F-FET PET in gliomas: a full 3D U-net convolutional neural network study. PLoS One. 2018;13:e0195798.PubMedPubMedCentral Blanc-Durand P, Van Der Gucht A, Schaefer N, Itti E, Prior JO. Automatic lesion detection and segmentation of 18F-FET PET in gliomas: a full 3D U-net convolutional neural network study. PLoS One. 2018;13:e0195798.PubMedPubMedCentral
32.
Zurück zum Zitat Hatt M, Laurent B, Ouahabi A, Fayad H, Tan S, Li L, et al. The first MICCAI challenge on PET tumor segmentation. Med Image Anal. 2018;44:177–95.PubMed Hatt M, Laurent B, Ouahabi A, Fayad H, Tan S, Li L, et al. The first MICCAI challenge on PET tumor segmentation. Med Image Anal. 2018;44:177–95.PubMed
33.
Zurück zum Zitat Hatt M, Lee JA, Schmidtlein CR, Naqa IE, Caldwell C, De Bernardi E, et al. Classification and evaluation strategies of auto-segmentation approaches for PET: report of AAPM task group no. 211. Med Phys. 2017;44:e1–42.PubMed Hatt M, Lee JA, Schmidtlein CR, Naqa IE, Caldwell C, De Bernardi E, et al. Classification and evaluation strategies of auto-segmentation approaches for PET: report of AAPM task group no. 211. Med Phys. 2017;44:e1–42.PubMed
34.
Zurück zum Zitat Zhao X, Li L, Lu W, Tan S. Tumor co-segmentation in PET/CT using multi-modality fully convolutional neural network. Phys Med Biol. 2018;64:015011.PubMedPubMedCentral Zhao X, Li L, Lu W, Tan S. Tumor co-segmentation in PET/CT using multi-modality fully convolutional neural network. Phys Med Biol. 2018;64:015011.PubMedPubMedCentral
35.
Zurück zum Zitat Gillies RJ, Anderson AR, Gatenby RA, Morse DL. The biology underlying molecular imaging in oncology: from genome to anatome and back again. Clin Radiol. 2010;65:517–21.PubMedPubMedCentral Gillies RJ, Anderson AR, Gatenby RA, Morse DL. The biology underlying molecular imaging in oncology: from genome to anatome and back again. Clin Radiol. 2010;65:517–21.PubMedPubMedCentral
36.
Zurück zum Zitat Lambin P, Rios-Velazquez E, Leijenaar R, Carvalho S, van Stiphout RG, Granton P, et al. Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer. 2012;48:441–6.PubMedPubMedCentral Lambin P, Rios-Velazquez E, Leijenaar R, Carvalho S, van Stiphout RG, Granton P, et al. Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer. 2012;48:441–6.PubMedPubMedCentral
37.
Zurück zum Zitat Bai HX, Lee AM, Yang L, Zhang P, Davatzikos C, Maris JM, et al. Imaging genomics in cancer research: limitations and promises. Br J Radiol. 2016;89:20151030.PubMedPubMedCentral Bai HX, Lee AM, Yang L, Zhang P, Davatzikos C, Maris JM, et al. Imaging genomics in cancer research: limitations and promises. Br J Radiol. 2016;89:20151030.PubMedPubMedCentral
38.
Zurück zum Zitat Rutman AM, Kuo MD. Radiogenomics: creating a link between molecular diagnostics and diagnostic imaging. Eur J Radiol. 2009;70:232–41.PubMed Rutman AM, Kuo MD. Radiogenomics: creating a link between molecular diagnostics and diagnostic imaging. Eur J Radiol. 2009;70:232–41.PubMed
39.
Zurück zum Zitat Segal E, Sirlin CB, Ooi C, Adler AS, Gollub J, Chen X, et al. Decoding global gene expression programs in liver cancer by noninvasive imaging. Nat Biotechnol. 2007;25:675–80.PubMed Segal E, Sirlin CB, Ooi C, Adler AS, Gollub J, Chen X, et al. Decoding global gene expression programs in liver cancer by noninvasive imaging. Nat Biotechnol. 2007;25:675–80.PubMed
40.
Zurück zum Zitat Aerts HJWL, Velazquez ER, Leijenaar RTH, Parmar C, Grossmann P, Cavalho S, et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun. 2014;5:4006.PubMed Aerts HJWL, Velazquez ER, Leijenaar RTH, Parmar C, Grossmann P, Cavalho S, et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun. 2014;5:4006.PubMed
41.
Zurück zum Zitat Hatt M, Parmar C, Qi J, Naqa IE. Machine (deep) learning methods for image processing and radiomics. IEEE Trans Radiat Plasma Med Sci. 2019;3(2):104–8. Hatt M, Parmar C, Qi J, Naqa IE. Machine (deep) learning methods for image processing and radiomics. IEEE Trans Radiat Plasma Med Sci. 2019;3(2):104–8.
42.
Zurück zum Zitat Hong X, Zan Y, Weng F, Tao W, Peng Q, Huang Q. Enhancing the image quality via transferred deep residual learning of coarse PET sinograms. IEEE Trans Med Imaging. 2018;37:2322–32.PubMed Hong X, Zan Y, Weng F, Tao W, Peng Q, Huang Q. Enhancing the image quality via transferred deep residual learning of coarse PET sinograms. IEEE Trans Med Imaging. 2018;37:2322–32.PubMed
43.
Zurück zum Zitat Berg E, Cherry SR. Using convolutional neural networks to estimate time-of-flight from PET detector waveforms. Phys Med Biol. 2018;63:02LT01.PubMedPubMedCentral Berg E, Cherry SR. Using convolutional neural networks to estimate time-of-flight from PET detector waveforms. Phys Med Biol. 2018;63:02LT01.PubMedPubMedCentral
44.
Zurück zum Zitat Gong K, Guan J, Kim K, Zhang X, Yang J, Seo Y, et al. Iterative PET image reconstruction using convolutional neural network representation. IEEE Trans Med Imaging. 2018;38:675–85.PubMedCentral Gong K, Guan J, Kim K, Zhang X, Yang J, Seo Y, et al. Iterative PET image reconstruction using convolutional neural network representation. IEEE Trans Med Imaging. 2018;38:675–85.PubMedCentral
45.
Zurück zum Zitat Kim K, Wu D, Gong K, Dutta J, Kim JH, Son YD, et al. Penalized PET reconstruction using deep learning prior and local linear fitting. IEEE Trans Med Imaging. 2018;37:1478–87.PubMedPubMedCentral Kim K, Wu D, Gong K, Dutta J, Kim JH, Son YD, et al. Penalized PET reconstruction using deep learning prior and local linear fitting. IEEE Trans Med Imaging. 2018;37:1478–87.PubMedPubMedCentral
46.
Zurück zum Zitat Nie D, Cao X, Gao Y, Wang L, Shen D. Estimating CT image from MRI data using 3D fully convolutional networks. In: Deep Learning and Data Labeling for Medical Applications – First International Workshop, LABELS 2016, and Second International Workshop, DLMIA 2016, held in conjunction with MICCAI 2016, Athens, Greece, 21 October 2016; 2016. p. 170–8. Nie D, Cao X, Gao Y, Wang L, Shen D. Estimating CT image from MRI data using 3D fully convolutional networks. In: Deep Learning and Data Labeling for Medical Applications – First International Workshop, LABELS 2016, and Second International Workshop, DLMIA 2016, held in conjunction with MICCAI 2016, Athens, Greece, 21 October 2016; 2016. p. 170–8.
47.
Zurück zum Zitat Torrado-Carvajal A, Vera-Olmos J, Izquierdo-Garcia D, Catalano OA, Morales MA, Margolin J, et al. Dixon-VIBE deep learning (DIVIDE) pseudo-CT synthesis for pelvis PET/MR attenuation correction. J Nucl Med. 2019;60(3):429–35.PubMedPubMedCentral Torrado-Carvajal A, Vera-Olmos J, Izquierdo-Garcia D, Catalano OA, Morales MA, Margolin J, et al. Dixon-VIBE deep learning (DIVIDE) pseudo-CT synthesis for pelvis PET/MR attenuation correction. J Nucl Med. 2019;60(3):429–35.PubMedPubMedCentral
49.
Zurück zum Zitat Liu F, Jang H, Kijowski R, Bradshaw T, McMillan AB. Deep learning MR imaging-based attenuation correction for PET/MR imaging. Radiology. 2018;286(2):676–84.PubMed Liu F, Jang H, Kijowski R, Bradshaw T, McMillan AB. Deep learning MR imaging-based attenuation correction for PET/MR imaging. Radiology. 2018;286(2):676–84.PubMed
50.
Zurück zum Zitat Leynes AP, Yang J, Wiesinger F, Kaushik SS, Shanbhag DD, Seo Y, et al. Zero-echo-time and Dixon deep pseudo-CT (ZeDD CT): direct generation of pseudo-CT images for pelvic PET/MRI attenuation correction using deep convolutional neural networks with multiparametric MRI. J Nucl Med. 2018;59:852–8.PubMedPubMedCentral Leynes AP, Yang J, Wiesinger F, Kaushik SS, Shanbhag DD, Seo Y, et al. Zero-echo-time and Dixon deep pseudo-CT (ZeDD CT): direct generation of pseudo-CT images for pelvic PET/MRI attenuation correction using deep convolutional neural networks with multiparametric MRI. J Nucl Med. 2018;59:852–8.PubMedPubMedCentral
51.
Zurück zum Zitat Hwang D, Kim KY, Kang SK, Seo S, Paeng JC, Lee DS, et al. Improving the accuracy of simultaneously reconstructed activity and attenuation maps using deep learning. J Nucl Med. 2018;59:1624–9.PubMed Hwang D, Kim KY, Kang SK, Seo S, Paeng JC, Lee DS, et al. Improving the accuracy of simultaneously reconstructed activity and attenuation maps using deep learning. J Nucl Med. 2018;59:1624–9.PubMed
53.
Zurück zum Zitat Perk T, Bradshaw T, Chen S, Im H-J, Cho S, Perlman S, et al. Automated classification of benign and malignant lesions in 18F-NaF PET/CT images using machine learning. Phys Med Biol. 2018;63:225019.PubMed Perk T, Bradshaw T, Chen S, Im H-J, Cho S, Perlman S, et al. Automated classification of benign and malignant lesions in 18F-NaF PET/CT images using machine learning. Phys Med Biol. 2018;63:225019.PubMed
54.
Zurück zum Zitat Zhong Z, Kim Y, Plichta K, Allen BG, Zhou L, Buatti J, et al. Simultaneous cosegmentation of tumors in PET-CT images using deep fully convolutional networks. Med Phys. 2018;46(2):619–33. Zhong Z, Kim Y, Plichta K, Allen BG, Zhou L, Buatti J, et al. Simultaneous cosegmentation of tumors in PET-CT images using deep fully convolutional networks. Med Phys. 2018;46(2):619–33.
55.
Zurück zum Zitat Guo Z, Li X, Huang H, Guo N, Li Q. Deep learning-based image segmentation on multi-modal medical imaging. IEEE Trans Radiat Plasma Med Sci. 2019;3(2):162–9.PubMedPubMedCentral Guo Z, Li X, Huang H, Guo N, Li Q. Deep learning-based image segmentation on multi-modal medical imaging. IEEE Trans Radiat Plasma Med Sci. 2019;3(2):162–9.PubMedPubMedCentral
56.
Zurück zum Zitat Schwyzer M, Ferraro DA, Muehlematter UJ, Curioni-Fontecedro A, Huellner MW, von Schulthess GK, et al. Automated detection of lung cancer at ultralow dose PET/CT by deep neural networks – initial results. Lung Cancer. 2018;126:170–3.PubMed Schwyzer M, Ferraro DA, Muehlematter UJ, Curioni-Fontecedro A, Huellner MW, von Schulthess GK, et al. Automated detection of lung cancer at ultralow dose PET/CT by deep neural networks – initial results. Lung Cancer. 2018;126:170–3.PubMed
57.
Zurück zum Zitat Leger S, Zwanenburg A, Pilz K, Lohaus F, Linge A, Zöphel K, et al. A comparative study of machine learning methods for time-to-event survival data for radiomics risk modelling. Sci Rep. 2017;7:13206.PubMedPubMedCentral Leger S, Zwanenburg A, Pilz K, Lohaus F, Linge A, Zöphel K, et al. A comparative study of machine learning methods for time-to-event survival data for radiomics risk modelling. Sci Rep. 2017;7:13206.PubMedPubMedCentral
58.
Zurück zum Zitat Deist TM, Dankers FJWM, Valdes G, Wijsman R, Hsu I-C, Oberije C, et al. Machine learning algorithms for outcome prediction in (chemo)radiotherapy: an empirical comparison of classifiers. Med Phys. 2018;45:3449–59.PubMed Deist TM, Dankers FJWM, Valdes G, Wijsman R, Hsu I-C, Oberije C, et al. Machine learning algorithms for outcome prediction in (chemo)radiotherapy: an empirical comparison of classifiers. Med Phys. 2018;45:3449–59.PubMed
59.
Zurück zum Zitat Upadhaya T, Vallières M, Chatterjee A, Lucia F, Bonaffini PA, Masson I, et al. Comparison of radiomics models built through machine learning in a multicentric context with independent testing: identical data, similar algorithms, different methodologies. IEEE Trans Radiat Plasma Med Sci. 2018;3(2):192–200. Upadhaya T, Vallières M, Chatterjee A, Lucia F, Bonaffini PA, Masson I, et al. Comparison of radiomics models built through machine learning in a multicentric context with independent testing: identical data, similar algorithms, different methodologies. IEEE Trans Radiat Plasma Med Sci. 2018;3(2):192–200.
60.
Zurück zum Zitat Wu J, Lian C, Ruan S, Mazur TR, Mutic S, Anastasio MA, et al. Treatment outcome prediction for cancer patients based on radiomics and belief function theory. IEEE Trans Radiat Plasma Med Sci. 2019;3(2):216–24.PubMed Wu J, Lian C, Ruan S, Mazur TR, Mutic S, Anastasio MA, et al. Treatment outcome prediction for cancer patients based on radiomics and belief function theory. IEEE Trans Radiat Plasma Med Sci. 2019;3(2):216–24.PubMed
61.
Zurück zum Zitat Klyuzhin IS, Fu JF, Shenkov N, Rahmim A, Sossi V. Use of generative disease models for analysis and selection of radiomic features in PET. IEEE Trans Radiat Plasma Med Sci. 2019;3(2):178–91. Klyuzhin IS, Fu JF, Shenkov N, Rahmim A, Sossi V. Use of generative disease models for analysis and selection of radiomic features in PET. IEEE Trans Radiat Plasma Med Sci. 2019;3(2):178–91.
62.
Zurück zum Zitat Chatterjee A, Vallières M, Dohan A, Levesque IR, Ueno Y, Bist V, et al. An empirical approach for avoiding false discoveries when applying high-dimensional radiomics to small datasets. IEEE Trans Radiat Plasma Med Sci. 2019;3(2):201–9. Chatterjee A, Vallières M, Dohan A, Levesque IR, Ueno Y, Bist V, et al. An empirical approach for avoiding false discoveries when applying high-dimensional radiomics to small datasets. IEEE Trans Radiat Plasma Med Sci. 2019;3(2):201–9.
63.
Zurück zum Zitat Chatterjee A, Vallières M, Dohan A, Levesque IR, Ueno Y, Saif S, et al. Creating robust predictive radiomic models for data from independent institutions using normalization. IEEE Trans Radiat Plasma Med Sci. 2019;3(2):210–5. Chatterjee A, Vallières M, Dohan A, Levesque IR, Ueno Y, Saif S, et al. Creating robust predictive radiomic models for data from independent institutions using normalization. IEEE Trans Radiat Plasma Med Sci. 2019;3(2):210–5.
64.
Zurück zum Zitat Hosny A, Parmar C, Coroller TP, Grossmann P, Zeleznik R, Kumar A, et al. Deep learning for lung cancer prognostication: a retrospective multi-cohort radiomics study. PLoS Med. 2018;15:e1002711.PubMedPubMedCentral Hosny A, Parmar C, Coroller TP, Grossmann P, Zeleznik R, Kumar A, et al. Deep learning for lung cancer prognostication: a retrospective multi-cohort radiomics study. PLoS Med. 2018;15:e1002711.PubMedPubMedCentral
66.
Zurück zum Zitat Truhn D, Schrading S, Haarburger C, Schneider H, Merhof D, Kuhl C. Radiomic versus convolutional neural networks analysis for classification of contrast-enhancing lesions at multiparametric breast MRI. Radiology. 2019;290:290–7.PubMed Truhn D, Schrading S, Haarburger C, Schneider H, Merhof D, Kuhl C. Radiomic versus convolutional neural networks analysis for classification of contrast-enhancing lesions at multiparametric breast MRI. Radiology. 2019;290:290–7.PubMed
67.
Zurück zum Zitat Bibault J-E, Giraud P, Housset M, Durdux C, Taieb J, Berger A, et al. Deep learning and radiomics predict complete response after neo-adjuvant chemoradiation for locally advanced rectal cancer. Sci Rep. 2018;8:12611.PubMedPubMedCentral Bibault J-E, Giraud P, Housset M, Durdux C, Taieb J, Berger A, et al. Deep learning and radiomics predict complete response after neo-adjuvant chemoradiation for locally advanced rectal cancer. Sci Rep. 2018;8:12611.PubMedPubMedCentral
68.
Zurück zum Zitat Li Z, Wang Y, Yu J, Guo Y, Cao W. Deep learning based radiomics (DLR) and its usage in noninvasive IDH1 prediction for low grade glioma. Sci Rep. 2017;7:5467.PubMedPubMedCentral Li Z, Wang Y, Yu J, Guo Y, Cao W. Deep learning based radiomics (DLR) and its usage in noninvasive IDH1 prediction for low grade glioma. Sci Rep. 2017;7:5467.PubMedPubMedCentral
69.
Zurück zum Zitat Cha KH, Hadjiiski L, Chan H-P, Weizer AZ, Alva A, Cohan RH, et al. Bladder cancer treatment response assessment in CT using radiomics with deep-learning. Sci Rep. 2017;7:8738.PubMedPubMedCentral Cha KH, Hadjiiski L, Chan H-P, Weizer AZ, Alva A, Cohan RH, et al. Bladder cancer treatment response assessment in CT using radiomics with deep-learning. Sci Rep. 2017;7:8738.PubMedPubMedCentral
70.
Zurück zum Zitat Ha R, Chang P, Mutasa S, Karcich J, Goodman S, Blum E, et al. Convolutional neural network using a breast MRI tumor dataset can predict oncotype Dx recurrence score. J Magn Reson Imaging. 2019;49:518–24.PubMed Ha R, Chang P, Mutasa S, Karcich J, Goodman S, Blum E, et al. Convolutional neural network using a breast MRI tumor dataset can predict oncotype Dx recurrence score. J Magn Reson Imaging. 2019;49:518–24.PubMed
71.
Zurück zum Zitat Ypsilantis P-P, Siddique M, Sohn H-M, Davies A, Cook G, Goh V, et al. Predicting response to neoadjuvant chemotherapy with PET imaging using convolutional neural networks. PLoS One. 2015;10:e0137036.PubMedPubMedCentral Ypsilantis P-P, Siddique M, Sohn H-M, Davies A, Cook G, Goh V, et al. Predicting response to neoadjuvant chemotherapy with PET imaging using convolutional neural networks. PLoS One. 2015;10:e0137036.PubMedPubMedCentral
72.
Zurück zum Zitat Amyar A, Ruan S, Gardin I, Chatelain C, Decazes P, Modzelewski R. 3D RPET-NET: development of a 3D PET imaging convolutional neural network for radiomics analysis and outcome prediction. IEEE Trans Radiat Plasma Med Sci. 2019;3(2):225–31. Amyar A, Ruan S, Gardin I, Chatelain C, Decazes P, Modzelewski R. 3D RPET-NET: development of a 3D PET imaging convolutional neural network for radiomics analysis and outcome prediction. IEEE Trans Radiat Plasma Med Sci. 2019;3(2):225–31.
73.
Zurück zum Zitat Ding Y, Sohn JH, Kawczynski MG, Trivedi H, Harnish R, Jenkins NW, et al. A deep learning model to predict a diagnosis of Alzheimer disease by using 18F-FDG PET of the brain. Radiology. 2019;290:456–64.PubMed Ding Y, Sohn JH, Kawczynski MG, Trivedi H, Harnish R, Jenkins NW, et al. A deep learning model to predict a diagnosis of Alzheimer disease by using 18F-FDG PET of the brain. Radiology. 2019;290:456–64.PubMed
74.
Zurück zum Zitat Mabrouk R, Chikhaoui B, Bentabet L. Machine learning based classification using clinical and DaTSCAN SPECT imaging features: a study on Parkinson’s disease and SWEDD. IEEE Trans Radiat Plasma Med Sci. 2019;3(2):170–7. Mabrouk R, Chikhaoui B, Bentabet L. Machine learning based classification using clinical and DaTSCAN SPECT imaging features: a study on Parkinson’s disease and SWEDD. IEEE Trans Radiat Plasma Med Sci. 2019;3(2):170–7.
75.
Zurück zum Zitat Wong KCL, Syeda-Mahmood T, Moradi M. Building medical image classifiers with very limited data using segmentation networks. Med Image Anal. 2018;49:105–16.PubMed Wong KCL, Syeda-Mahmood T, Moradi M. Building medical image classifiers with very limited data using segmentation networks. Med Image Anal. 2018;49:105–16.PubMed
77.
Zurück zum Zitat Ford R, Price W. Privacy and accountability in black-box medicine. Mich Telecommun Technol Law Rev. 2016;23:1–43. Ford R, Price W. Privacy and accountability in black-box medicine. Mich Telecommun Technol Law Rev. 2016;23:1–43.
78.
Zurück zum Zitat Vallières M, Zwanenburg A, Badic B, Cheze-Le Rest C, Visvikis D, Hatt M. Responsible radiomics research for faster clinical translation. J Nucl Med. 2018;59(2):189–93.PubMedPubMedCentral Vallières M, Zwanenburg A, Badic B, Cheze-Le Rest C, Visvikis D, Hatt M. Responsible radiomics research for faster clinical translation. J Nucl Med. 2018;59(2):189–93.PubMedPubMedCentral
80.
Zurück zum Zitat Hatt M, Vallières M, Visvikis D, Zwanenburg A. IBSI: an international community radiomics standardization initiative. J Nucl Med. 2018;59:287. Hatt M, Vallières M, Visvikis D, Zwanenburg A. IBSI: an international community radiomics standardization initiative. J Nucl Med. 2018;59:287.
81.
Zurück zum Zitat Lucia F, Visvikis D, Desseroit M-C, Miranda O, Malhaire J-P, Robin P, et al. External validation of a combined PET and MRI radiomics model for prediction of distance recurrence and locoregional control in locally advanced cervical cancer patients treated with chemoradiotherapy. Eur J Nucl Med Mol Imaging. 2019;46(4):864–77.PubMed Lucia F, Visvikis D, Desseroit M-C, Miranda O, Malhaire J-P, Robin P, et al. External validation of a combined PET and MRI radiomics model for prediction of distance recurrence and locoregional control in locally advanced cervical cancer patients treated with chemoradiotherapy. Eur J Nucl Med Mol Imaging. 2019;46(4):864–77.PubMed
Metadaten
Titel
Artificial intelligence, machine (deep) learning and radio(geno)mics: definitions and nuclear medicine imaging applications
verfasst von
Dimitris Visvikis
Catherine Cheze Le Rest
Vincent Jaouen
Mathieu Hatt
Publikationsdatum
06.07.2019
Verlag
Springer Berlin Heidelberg
Erschienen in
European Journal of Nuclear Medicine and Molecular Imaging / Ausgabe 13/2019
Print ISSN: 1619-7070
Elektronische ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-019-04373-w

Weitere Artikel der Ausgabe 13/2019

European Journal of Nuclear Medicine and Molecular Imaging 13/2019 Zur Ausgabe