Skip to main content
Erschienen in: Gut Pathogens 1/2020

Open Access 01.12.2020 | Research

Associations between polymorphisms in IL-10 gene and the risk of viral hepatitis: a meta-analysis

verfasst von: Yuanyuan Zhang, Lisha Chen, Huixin Chen

Erschienen in: Gut Pathogens | Ausgabe 1/2020

Abstract

Background

The relationships between polymorphisms in interleukin-10 (IL-10) gene and the risk of viral hepatitis remain inconclusive. Therefore, the authors conducted so far the very first meta-analysis to robustly assess the relationships between polymorphisms in IL-10 gene and the risk of viral hepatitis by integrating the results of previous works.

Methods

Medline, Embase, Wanfang, VIP and CNKI were searched throughly for eligible studies, and 76 genetic association studies were finally included in this meta-analysis.

Results

We noticed that rs1800871 (− 819 C/T), rs1800872 (− 592 C/A) and rs1800896 (− 1082 G/A) polymorphisms were all significantly associated with the risk of viral hepatitis in Asians, whereas only rs1800896 (− 1082 G/A) polymorphism was significantly associated with the risk of viral hepatitis in Caucasians. In further analyses by disease subtypes, we noticed that the three investigated polymorphisms were all significantly associated with the risk of both HBV and HCV.

Conclusions

This meta-analysis demonstrates that rs1800871 (− 819 C/T), rs1800872 (− 592 C/A) and rs1800896 (− 1082 G/A) polymorphisms may influence the risk of viral hepatitis in Asians, while only rs1800896 (− 1082 G/A) polymorphism may influence the risk of viral hepatitis in Caucasians. In further analyses by disease subtypes, we noticed that the three investigated polymorphisms may influence the risk of both HBV and HCV.
Hinweise

Supplementary information

Supplementary information accompanies this paper at https://​doi.​org/​10.​1186/​s13099-020-00372-7.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
HBV
Hepatitis B virus
HCV
Hepatitis C virus
IL-10
Interleukin-10
HWE
Hardy–Weinberg equilibrium
NOS
Newcastle–Ottawa scale
OR
Odds ratios
CI
Confidence intervals

Background

Viral hepatitis refers to a type of infectious disorder that is caused by hepatitis viruses which include HAV, HBV, HCV, HDV and HEV [1, 2]. In addition to acute liver injury, these hepatitis viruses may also lead to life-threatening conditions such as liver cirrhosis or hepatocellular carcinoma (HCC) [3, 4]. The clinical course of viral hepatitis is resulted from a complex interaction between pathogen, host and environmental factors, some patients may be asymptomatic the whole life, but some patients may eventually develop liver cirrhosis or even HCC [5, 6]. Therefore, there is no doubt that individual anti-viral immunity is vital for the onset and development of viral hepatitis.
Interleukin-10 (IL-10) serves as one of the most important anti-inflammatory and immunosuppressive factor, and it plays a crucial role in regulating anti-viral immune responses [79]. Considering the immune-regulatory effects of IL-10, over the last decade, investigators all over the world have repeatedly attempted to explore the relationships between polymorphisms in IL-10 gene and the risk of viral hepatitis, yet the relationships between these polymorphisms and the risk of viral hepatitis are still inconclusive. So a meta-analysis was conducted to robustly analyze the relationships between polymorphisms in IL-10 gene and the risk of viral hepatitis by integrating the results of previous works.

Methods

The PRISMA guideline was strictly followed by the authors when designing and implementing this study [10].

Literature search and inclusion criteria

Medline, Embase, Wanfang, VIP and CNKI were throughly searched by the authors with the below terms: (Interleukin-10 OR IL-10 OR Interleukin 10 OR IL 10) AND (Polymorphism OR Polymorphic OR Variation OR Variant OR Mutant OR Mutation OR SNP OR Genotypic OR Genotype OR Allelic OR Allele) AND (Viral hepatitis OR Chronic hepatitis OR Acute hepatitis OR Hepatitis A OR Hepatitis B OR Hepatitis C OR Hepatitis D OR Hepatitis E OR HAV OR HBV OR HCV OR HDV OR HEV). Moreover, we also manually screened the reference lists of retrieved publications to make up for the potential incompleteness of electronic literature searching.
Selection criteria of this meta-analysis were listed below: (1) Studies of case–control or cohort design; (2) Give genotypic or allelic frequencies of IL-10 polymorphisms in cases with viral hepatitis and population-based controls; (3) The full manuscript with required genotypic or allelic frequencies of IL-10 polymorphisms is retrievable or buyable. Articles would be excluded if one of the following three criteria is satisfied: (1) Studies without complete data about genotypic or allelic frequencies of IL-10 polymorphisms in cases with viral hepatitis and population-based controls; (2) Narrative or systematic reviews, meta-analysis or comments; (3) Case series of subjects with viral hepatitis only. If duplicate publications were retrieved from literature search, we would only include the most complete one for integrated analyses.

Data extraction and quality assessment

The authors extracted the following data items from eligible studies: (1) Last name of the leading author; (2) Publication year; (3) Country and ethnicity of study population; (4) The number of cases with viral hepatitis and population-based controls; (5) Genotypic frequencies of IL-10 polymorphisms in cases with viral hepatitis and population-based controls. Hardy–Weinberg equilibrium was then tested by using genotypic frequencies of IL-10 polymorphisms, and the threshold of derivation from HWE was set at 0.05. The quality of eligible publications was assessed by the Newcastle–Ottawa scale (NOS) [11], and those with scores of 7–9 were considered to be publications of good quality. Two authors extracted data and assessed quality of eligible publications in parallel. A thorough discussion until a consensus is reached would be endorsed in case of any discrepancy between two authors.

Statistical analyses

All statistical analyses in this meta-analysis were performed by using the Cochrane Review Manager software. Relationships between IL-10 gene polymorphisms and the risk of viral hepatitis were explored by using odds ratio and its 95% confidence interval. The statistically significant p value was set at 0.05. The authors used I2 statistics to evaluate heterogeneities among included studies. The authors would use DerSimonian–Laird method, which is also known as the random effect model, to integrate the results of eligible studies if I2 is larger than 50%. Otherwise, the authors would use Mantel–Haenszel method, which is also known as the fixed effect model, to integrate the results of eligible studies. Meanwhile, the authors also conduct subgroup analyses by ethnic groups and disease subtypes. Stabilities of integrated results were tested by deleting one eligible study each time, and then integrating the results of the rest of eligible studies. Publication biases were evaluated by assessing symmetry of funnel plots.

Results

Characteristics of included studies

Three hundred and seventy-four literatures were retrieved by the authors by using our searching strategy. One hundred and thirty-nine literatures were then selected to screen for eligibility after omitting unrelated and repeated items. Six reviews and 48 case series were further excluded, and another nine literatures without all necessary genotypic or allelic data were further excluded by the authors. Totally 76 studies met the inclusion criteria, and were finally enrolled for integrated analyses (Fig. 1). Data extracted from eligible studies were summarized in Table 1 (Additional file 1).
Table 1
The characteristics of included studies
First author, year
Country
Ethnicity
Type of disease
Sample size
Case/control
Genotypes (wtwt/wtmt/mtmt)
p-value for HWE
NOS score
Cases
Controls
rs1800871 − 819 C/T
 Abbas 2009
Egypt
Mixed
HCV
99/62
44/43/12
30/27/5
0.752
7
 Afzal 2011
Pakistan
Mixed
HCV
89/99
16/66/7
15/81/3
< 0.001
7
 Barrett 2003
Ireland
Caucasian
HCV
92/66
49/38/5
40/22/2
0.621
7
 Basturk 2008
Turkey
Caucasian
HBV
50/60
33/15/2
29/22/9
0.175
7
 Chen 2007
China
Asian
HCV
72/180
36/32/4
94/73/13
0.819
7
 Cheong 2006
Taiwan
Asian
HBV
261/72
133/110/18
35/30/7
0.877
7
 Chuang 2009
Taiwan
Asian
HCV
97/46
47/38/12
25/19/2
0.491
7
 Constantini 2002
UK
Caucasian
HCV
546/354
NA
NA
NA
7
 Cunha 2018
Brazil
Mixed
HCV
132/98
59/54/19
46/41/11
0.685
7
 Khan 2014
India
Mixed
HCV
150/150
48/79/23
57/75/18
0.375
8
 Komatsu 2014
Japan
Asian
HBV
52/57
24/18/10
25/22/10
0.198
7
 Kusumoto 2006
Japan
Asian
HCV
346/114
156/160/30
59/46/9
0.994
7
 Li 2006
China
Asian
HBV
122/63
55/52/15
34/21/8
0.118
8
 Li 2015
China
Asian
HCV
379/364
176/167/36
178/158/28
0.383
8
 Maurya 2018
India
Mixed
Viral hepatitis
80/60
45/29/6
48/10/2
0.138
7
 Miyazoe 2002
Japan
Asian
HBV
213/52
153/56/4
38/13/1
0.927
7
 Moudi 2016
Iran
Mixed
HBV
221/200
40/163/18
30/162/8
<0.001
8
 Peng 2016
China
Asian
HBV
173/181
74/77/22
86/78/17
0.910
8
 Pereira 2008
Brazil
Mixed
HCV
128/94
50/60/18
36/48/10
0.305
8
 Persico 2006
Italy
Caucasian
HCV
120/110
60/54/6
53/51/6
0.159
8
 Qiu 2011
China
Asian
HBV
381/359
170/158/53
181/143/35
0.389
7
 Ribeiro 2007
Brazil
Mixed
HBV
30/41
17/12/1
20/16/3
0.935
7
 Sepahi 2014
Iran
Mixed
HCV
66/61
32/29/5
20/35/6
0.099
7
 Sodsai 2013
Thailand
Asian
HBV
131/142
47/74/10
67/59/16
0.584
8
 Sofian 2013
Iran
Mixed
HBV
64/31
26/27/11
16/11/4
0.358
7
 Srivastava 2014
India
Mixed
HBV
232/76
111/75/46
29/38/9
0.517
7
 Talaat 2014
Egypt
Mixed
HBV
115/119
69/40/6
62/52/5
0.143
7
 Tang 2012
China
Asian
HCV
607/885
259/286/62
407/382/96
0.653
8
 Tang 2015
China
Asian
HBV
207/56
114/59/34
25/17/14
0.006
7
 Vidigal 2002
USA
Mixed
HCV
78/36
53/16/9
20/13/3
0.672
7
 Wang 2012
China
Asian
HBV
123/525
40/66/17
205/251/69
0.567
7
 Xie 2008
China
Asian
HBV
186/151
78/93/15
73/68/10
0.266
7
 Yan 2009
China
Asian
HBV
712/414
334/291/87
231/150/33
0.219
8
 Yee 2001
USA
Mixed
HCV
49/50
24/19/6
36/14/0
0.250
7
 Zein 2004
USA
Mixed
HCV
58/80
36/17/5
49/25/6
0.279
7
 Zhang 2006
China
Asian
HBV
231/135
103/103/25
56/67/12
0.199
8
 Zhu 2015
China
Asian
HCV
143/36
56/66/21
18/14/4
0.616
7
rs1800872 − 592 C/A
 Abbas 2009
Egypt
Mixed
HCV
99/62
44/43/12
30/27/5
0.752
7
 Afzal 2011
Pakistan
Mixed
HCV
89/99
16/66/7
15/81/3
<0.001
7
 Ahmadabadi 2012
Iran
Mixed
HBV
57/100
31/24/2
42/55/3
0.003
8
 Barkhash 2017
Russia
Caucasian
HCV
143/203
80/52/11
121/78/4
0.032
7
 Barrett 2003
Ireland
Caucasian
HCV
92/66
49/38/5
40/22/2
0.621
7
 Basturk 2008
Turkey
Caucasian
HBV
50/60
33/15/2
29/22/9
0.175
7
 Cao 2016
China
Asian
HBV
241/254
88/104/49
100/112/42
0.267
7
 Chen 2007
China
Asian
HCV
72/180
36/32/4
93/74/13
0.741
7
 Chen 2010
China
Asian
HBV
304/361
150/124/30
173/145/43
0.144
7
 Cheong 2006
Taiwan
Asian
HBV
261/72
133/110/18
35/30/7
0.877
7
 Chuang 2009
Taiwan
Asian
HCV
143/134
73/56/14
65/59/10
0.495
7
 Constantini 2002
UK
Caucasian
HCV
546/354
NA
NA
NA
7
 Falleti 2007
Italy
Caucasian
HCV
50/96
29/17/4
61/31/4
0.980
7
 Gao 2009
China
Asian
HBV
69/74
31/29/9
34/31/9
0.641
7
 Gao 2009
China
Asian
HCV
55/74
29/20/6
34/31/9
0.641
7
 Gao 2016
China
Asian
HBV
180/85
46/108/26
26/31/18
0.029
8
 Jiang 2010
China
Asian
HBV
169/119
75/74/20
51/56/12
0.553
7
 Jiang 2013
China
Asian
HBV
250/134
60/130/60
40/62/32
0.409
7
 Jiang 2017
China
Asian
HBV
136/289
68/54/14
144/115/30
0.328
8
 Karatayli 2014
Turkey
Caucasian
HBV
116/53
63/41/12
29/20/4
0.831
7
 Khalil 2017
Egypt
Mixed
HCV
100/120
56/34/10
52/60/8
0.089
7
 Komatsu 2014
Japan
Asian
HBV
52/57
23/14/15
26/21/10
0.131
7
 Kusumoto 2006
Japan
Asian
HCV
346/114
156/160/30
59/46/9
0.994
7
 Li 2003
China
Asian
HBV
95/76
24/58/13
20/43/13
0.218
7
 Li 2006
China
Asian
HBV
122/63
55/52/15
34/21/8
0.119
8
 Li 2015
China
Asian
HCV
379/364
176/167/36
177/159/28
0.345
8
 Mangia 2004
Italy
Caucasian
HCV
270/136
156/90/24
81/55/9
0.003
7
 Maurya 2018
India
Mixed
Viral hepatitis
80/60
26/46/8
36/22/2
0.534
7
 Miyazoe 2002
Japan
Asian
HBV
213/52
95/91/27
26/20/6
0.483
7
 Moudi 2016
Iran
Mixed
HBV
221/200
36/168/17
31/157/12
<0.001
8
 Oleksyk 2005
USA
Mixed
HCV
856/398
NA
NA
NA
7
 Peng 2006
China
Asian
HBV
340/100
178/130/32
56/36/8
0.519
7
 Peng 2016
China
Asian
HBV
173/182
57/81/35
79/81/22
0.860
8
 Pereira 2008
Brazil
Mixed
HCV
128/94
50/60/18
36/48/10
0.305
8
 Persico 2006
Italy
Caucasian
HCV
120/110
60/54/6
53/51/6
0.159
8
 Qiu 2011
China
Asian
HBV
721/359
354/282/85
181/143/35
0.389
7
 Ramos 2012
Brazil
Mixed
HCV
161/17
58/60/43
8/5/4
0.120
7
 Ren 2017
China
Asian
HBV
250/134
60/130/60
40/62/32
0.409
7
 Ribeiro 2007
Brazil
Mixed
HBV
30/41
17/12/1
20/16/3
0.935
7
 Sepahi 2014
Iran
Mixed
HCV
66/61
32/29/5
20/35/6
0.099
7
 Shaker 2012
Egypt
Mixed
HCV
100/80
35/33/32
36/32/12
0.280
7
 Sheneef 2017
Egypt
Mixed
HCV
100/50
58/23/19
25/15/10
0.016
7
 Silva 2015
Brazil
Mixed
HCV
245/230
106/110/29
103/97/30
0.347
8
 Sodsai 2013
Thailand
Asian
HBV
131/142
47/74/10
67/59/16
0.584
8
 Sofian 2013
Iran
Mixed
HBV
86/31
31/42/13
16/11/4
0.358
7
 Srivastava 2014
India
Mixed
HBV
202/106
71/102/29
32/42/32
0.033
7
 Tang 2012
China
Asian
HCV
623/905
273/289/61
429/370/106
0.058
8
 Tseng 2006
Taiwan
Asian
HBV
344/184
169/148/27
90/75/19
0.567
7
 Vidigal 2002
USA
Mixed
HCV
78/36
53/16/9
23/10/3
0.239
7
 Wang 2008
China
Asian
HBV
335/165
132/169/34
80/64/21
0.156
7
 Wang 2012
China
Asian
HBV
123/525
43/63/17
206/250/69
0.615
7
 Wu 2010
China
Asian
HBV
175/153
82/67/26
54/77/22
0.515
7
 Xiang 2014
China
Asian
HBV
160/124
56/70/34
60/48/16
0.203
7
 Xie 2008
China
Asian
HBV
186/151
78/93/15
73/68/10
0.266
7
 Yan 2009
China
Asian
HBV
712/414
334/291/87
231/150/33
0.219
8
 Yee 2001
USA
Mixed
HCV
49/50
24/19/6
36/14/0
0.250
7
 Zein 2004
USA
Mixed
HCV
52/80
37/12/3
52/22/6
0.111
7
 Zhang 2006
China
Asian
HBV
396/135
189/168/39
56/67/12
0.199
8
 Zhu 2015
China
Asian
HCV
179/705
74/80/25
268/348/89
0.142
7
rs1800896 − 1082 G/A
 Abbas 2009
Egypt
Mixed
HCV
99/62
41/41/17
23/30/9
0.877
7
 Afzal 2011
Pakistan
Mixed
HCV
89/99
15/67/7
4/92/3
<0.001
7
 Barrett 2003
Ireland
Caucasian
HCV
92/66
20/47/25
20/36/10
0.344
7
 Basturk 2008
Turkey
Caucasian
HBV
50/60
17/22/11
38/16/6
0.049
7
 Bouzgarrou 2009
Tunisia
Mixed
HCV
100/103
38/43/19
42/49/12
0.687
7
 Cao 2016
China
Asian
HBV
241/254
88/112/41
116/111/27
0.954
7
 Chen 2007
China
Asian
HCV
72/180
70/2/0
176/4/0
0.880
7
 Chen 2010
China
Asian
HBV
304/361
264/37/3
319/40/2
0.544
7
 Cheong 2006
Taiwan
Asian
HBV
261/204
225/35/1
173/29/2
0.531
7
 Chuang 2009
Taiwan
Asian
HCV
143/133
132/11/0
124/9/0
0.686
7
 Conde 2013
Brazil
Mixed
HBV
53/97
27/20/6
47/41/9
0.989
7
 Constantini 2002
UK
Caucasian
HCV
546/354
NA
NA
NA
7
 Cunha 2018
Brazil
Mixed
HCV
132/98
56/54/22
44/38/16
0.124
7
 Dogra 2011
India
Mixed
HCV
70/70
38/22/10
42/25/3
0.764
7
 Falleti 2007
Italy
Caucasian
HCV
50/96
17/25/8
28/43/25
0.312
7
 Gao 2009
China
Asian
HBV
69/74
42/27/0
57/16/1
0.918
7
 Gao 2009
China
Asian
HCV
55/74
32/21/2
57/16/1
0.918
7
 Gao 2016
China
Asian
HBV
190/81
177/12/1
63/18/0
0.261
8
 Gao 2017
China
Asian
HBV + HCV
179/74
109/68/2
57/16/1
0.918
7
 Helal 2014
Egypt
Mixed
HCV
50/50
22/19/9
18/24/8
1.000
7
 Jiang 2013
China
Asian
HBV
250/134
189/58/3
102/26/6
0.019
7
 Karatayli 2014
Turkey
Caucasian
HBV
161/51
48/86/27
24/25/2
0.144
7
 Khan 2014
India
Mixed
HCV
150/150
64/67/19
85/55/10
0.785
8
 Knapp 2003
UK
Caucasian
HCV
577/94
183/250/144
27/54/13
0.090
7
 Kusumoto 2006
Japan
Asian
HCV
346/114
316/30/0
103/11/0
0.588
7
 Li 2006
China
Asian
HBV
62/63
48/14/0
52/11/0
0.448
8
 Li 2015
China
Asian
HCV
379/364
323/54/2
310/51/3
0.577
8
 Lio 2003
Italy
Caucasian
HCV
60/135
27/15/18
34/86/15
<0.0001
7
 Liu 2010
China
Asian
HBV
513/187
416/88/9
160/24/3
0.075
7
 Mangia 2004
Italy
Caucasian
HCV
270/145
120/110/40
56/66/23
0.631
7
 Maurya 2018
India
Mixed
Vral hepatitis
80/60
65/13/2
46/12/2
0.297
7
 Minton 2005
UK
Caucasian
HBV
284/54
77/123/84
18/25/11
0.669
7
 Miyazoe 2002
Japan
Asian
HBV
213/52
201/10/2
48/4/0
0.773
7
 Moudi 2016
Iran
Mixed
HBV
221/200
72/118/31
100/84/16
0.778
8
 Oleksyk 2005
USA
Mixed
HCV
856/398
NA
NA
NA
7
 Pár 2014
India
Mixed
HCV
672/92
214/333/125
48/32/12
0.087
8
 Pasha 2013
Egypt
Mixed
HCV
440/220
396/44/0
193/27/0
0.332
8
 Peng 2006
China
Asian
HBV
340/100
314/23/3
95/5/0
0.798
7
 Peng 2016
China
Asian
HBV
173/182
83/74/16
96/74/12
0.653
8
 Pereira 2008
Brazil
Mixed
HCV
128/94
56/55/17
38/43/13
0.881
8
 Persico 2006
Italy
Caucasian
HCV
120/110
43/51/26
36/56/18
0.628
8
 Ren 2017
China
Asian
HBV
250/134
189/58/3
102/26/6
0.019
7
 Ribeiro 2007
HBV
Mixed
HBV
30/41
12/16/2
16/20/5
0.743
7
 Sepahi 2014
Iran
Mixed
HCV
50/50
20/15/15
39/6/5
<0.001
7
 Sheneef 2017
Egypt
Mixed
HCV
100/50
26/43/31
10/35/5
0.003
7
 Silva 2015
Brazil
Mixed
HCV
245/230
106/110/29
119/83/28
0.029
8
 Sodsai 2013
Thailand
Asian
HBV
130/142
116/13/1
125/17/0
0.448
8
 Sofian 2013
Iran
Mixed
HBV
66/31
32/27/7
13/15/3
0.655
7
 Srivastava 2014
India
Mixed
HBV
232/76
96/73/63
32/43/1
0.002
7
 Talaat 2014
Egypt
Mixed
HBV
115/119
32/53/30
43/61/15
0.352
7
 Tang 2012
China
Asian
HCV
626/914
552/74/0
791/123/0
0.029
8
 Truelove 2008
USA
Mixed
HBV
45/76
15/24/6
38/32/6
0.837
7
 Vidigal 2002
USA
Mixed
HCV
78/36
29/22/27
16/14/6
0.346
7
 Wu 2010
China
Asian
HBV
175/153
148/27/0
122/30/1
0.561
7
 Xie 2008
China
Asian
HBV
186/151
164/22/0
128/22/1
0.959
7
 Yan 2009
China
Asian
HBV
732/414
644/68/0
389/25/0
0.526
8
 Yao 2015
China
Asian
HBV
318/318
125/141/52
152/135/31
0.898
7
 Zein 2004
USA
Mixed
HCV
52/80
17/18/17
28/32/20
0.087
7
 Zhang 2006
China
Asian
HBV
396/135
335/61/0
119/16/0
0.464
8
 Zhu 2005
China
Asian
HBV
167/123
115/45/7
81/37/5
0.766
7
HBV hepatitis B virus infection, HCV hepatitis C virus infection, wt wild type, mt mutant type, HWE Hardy–Weinberg equilibrium, NOS Newcastle–ottawa scale, NA not available

Integrated analyses for rs1800871 polymorphism and the risk of viral hepatitis

Thirty-seven eligible literatures assess the relationship between rs1800871 polymorphism and the risk of viral hepatitis. The integrated analyses demonstrated that rs1800871 polymorphism was significantly associated with the risk of viral hepatitis in overall population (dominant comparison: OR = 0.89, p = 0.002; recessive comparison: OR = 1.21, p = 0.004; allele comparison: OR = 0.90, p = 0.0004) and Asians (dominant comparison: OR = 0.84, p = 0.0001; over-dominant comparison: OR = 1.14, p = 0.005; allele comparison: OR = 0.88, p = 0.0002), but not in Caucasians. Further analyses by disease subtypes revealed similar positive results for rs1800871 polymorphism in both HBV and HCV subgroups (see Table 2).
Table 2
Meta-analyses results of IL-10 gene polymorphisms and viral hepatitis
Variables
Sample size
Dominant comparison
Recessive comparison
Over-dominant comparison
Allele comparison
p value
OR (95% CI)
I2 statistic (%)
p value
OR (95% CI)
I2 statistic (%)
p value
OR (95% CI)
I2 statistic (%)
p value
OR (95% CI)
I2 statistic (%)
rs1800871 − 819 C/T
 Overall
6835/5679
0.002
0.89 (0.82–0.96)
28
0.004
1.21 (1.06–1.38)
0
0.17
1.06 (0.98–1.14)
24
0.0004
0.90 (0.85–0.95)
27
 Asian
4436/3832
0.0001
0.84 (0.76–0.92)
0
0.09
1.14 (0.98–1.33)
0
0.005
1.14 (1.04–1.25)
0
0.0002
0.88 (0.82–0.94)
0
 Caucasian
808/590
0.63
1.13 (0.67–1.91)
51
0.37
0.71 (0.33–1.51)
39
0.93
1.02 (0.71–1.46)
0
0.48
1.19 (0.73–1.93)
62
 HBV
3504/2734
0.05
0.90 (0.80–1.00)
38
0.03
1.21 (1.02–1.45)
9
0.51
1.04 (0.93–1.16)
36
0.02
0.91 (0.84-0.98)
37
 HCV
3251/2885
0.05
0.89 (0.80–1.00)
0
0.07
1.20 (0.99–1.45)
0
0.36
1.05 (0.94–1.18)
0
0.03
0.91 (0.83–0.99)
0
rs1800872 − 592 C/A
 Overall
12121/9873
0.003
0.91 (0.86-0.97)
25
0.06
1.09 (1.00–1.20)
13
0.07
1.06 (0.99–1.12)
30
0.003
0.93 (0.89–0.98)
34
 Asian
7935/6880
0.0009
0.89 (0.83–0.95)
9
0.20
1.07 (0.96–1.19)
0
0.007
1.10 (1.03–1.18)
29
0.004
0.93 (0.88–0.98)
8
 Caucasian
1387/1078
0.70
0.96 (0.78–1.18)
0
0.15
1.36 (0.89–2.08)
34
0.39
0.91 (0.74–1.13)
0
0.19
0.89 (0.76–1.06)
41
 HBV
6900/4995
0.008
0.90 (0.83–0.97)
26
0.43
1.05 (0.93–1.18)
19
0.02
1.10 (1.02–1.19)
31
0.04
0.94 (0.89–1.00)
39
 HCV
5141/4818
0.35
0.96 (0.87–1.05)
1
0.05
1.17 (1.00–1.37)
1
0.64
0.98 (0.89–1.08)
12
0.08
0.94 (0.87–1.01)
14
rs1800896 − 1082 G/A
 Overall
13133/8862
0.02
0.87 (0.78–0.98)
57
<0.0001
1.60 (1.41–1.82)
26
0.56
0.96 (0.85–1.09)
60
<0.0001
0.83 (0.76–0.90)
55
 Asian
6452/4797
0.02
0.88 (0.79–0.98)
49
0.48
1.12 (0.82–1.53)
0
0.11
1.09 (0.98–1.22)
40
0.19
0.90 (0.77–1.05)
54
 Caucasian
2210/1165
0.65
0.92 (0.64–1.32)
69
0.009
1.67 (1.14–2.46)
54
0.22
0.80 (0.55–1.15)
72
0.03
0.78 (0.62–0.98)
64
 HBV
6227/4067
0.01
0.82 (0.70-0.96)
51
< 0.0001
1.73 (1.42–2.10)
27
0.61
1.04 (0.89–1.21)
51
0.002
0.81 (0.71–0.93)
57
 HCV
6647/4661
0.52
0.94 (0.79–1.13)
60
< 0.0001
1.52 (1.29–1.80)
33
0.14
0.87 (0.71–1.05)
66
0.008
0.85 (0.75–0.96)
51
The values in italic represent there is statistically significant differences between cases and controls
HBV Hepatitis B virus infection, HCV Hepatitis C virus infection, OR Odds ratio, CI Confidence interval, NA Not available

Integrated analyses for rs1800872 polymorphism and the risk of viral hepatitis

Fifty-eight eligible literatures assessed the relationship between rs1800872 polymorphism and the risk of viral hepatitis. The integrated analyses demonstrated that rs1800872 polymorphism was significantly associated with the risk of viral hepatitis in overall population (dominant comparison: OR = 0.91, p = 0.003; allele comparison: OR = 0.93, p = 0.003) and Asians (dominant comparison: OR = 0.89, p = 0.0009; over-dominant comparison: OR = 1.10, p = 0.007; allele comparison: OR = 0.93, p = 0.004), but not in Caucasians. Further analyses by disease subtypes revealed similar positive results for rs1800871 polymorphism in both HBV and HCV subgroups (see Table 2).

Integrated analyses for rs1800896 polymorphism and the risk of viral hepatitis

Fifty-nine eligible literatures assessed the relationship between rs1800896 polymorphism and the risk of viral hepatitis. The integrated analyses demonstrated that rs1800896 polymorphism was significantly associated with the risk of viral hepatitis in overall population (dominant comparison: OR = 0.87, p = 0.02; recessive comparison: OR = 1.60, p < 0.0001; allele comparison: OR = 0.83, p < 0.0001), Asians (dominant comparison: OR = 0.88, p = 0.02) and Caucasians (recessive comparison: OR = 1.67, p = 0.009; allele comparison: OR = 0.78, p = 0.03). Further analyses by disease subtypes revealed similar positive results for rs1800871 polymorphism in both HBV and HCV subgroups (see Table 2).

Sensitivity analyses

The authors examined stabilities of integrated analyses results by deleting studies that violated HWE, and then integrating the results of the rest of studies. The trends of associations were not significantly altered in sensitivity analyses, which indicated that from statistical perspective, our integrated analyses results were reliable and stable.

Publication biases

The authors examined potential publication biases in this meta-analysis by assessing symmetry of funnel plots. Funnel plots were found to be overall symmetrical, which indicated that our integrated analyses results were not likely to be severely deteriorated by publication biases.

Discussion

This meta-analysis, for the first time, robustly assessed associations between polymorphisms in IL-10 gene and the risk of viral hepatitis. The integrated analyses results demonstrated that rs1800871 (− 819 C/T), rs1800872 (− 592 C/A) and rs1800896 (− 1082 G/A) polymorphisms were all significantly associated with the risk of viral hepatitis in Asians, whereas only rs1800896 (− 1082 G/A) polymorphism was significantly associated with the risk of viral hepatitis in Caucasians. In further analyses by disease subtypes, we noticed that the three investigated polymorphisms were all significantly associated with the risk of both HBV and HCV.
The following three points should be considered when interpreting our integrated findings. First, based on the findings of previous observational studies, it is believed that the three investigated IL-10 polymorphisms may alter mRNA expression level of IL-10 gene, impact anti-viral immune responses, and then influence the risk of viral hepatitis [12, 13]. Nevertheless, it should be noted that future experimental studies are still required to reveal the exact molecular mechanisms underlying the observed positive findings of this meta-analysis. Second, we wish to study all polymorphic loci of IL-10 gene. However, our comprehensive literature searching did not reveal sufficient eligible literatures to warrant integrated analyses for other polymorphic loci of IL-10 gene, so we only assessed associations with the risk of viral hepatitis for the three most commonly investigated polymorphisms of IL-10 gene in this meta-analysis. Third, although we aimed to investigate all subtypes of viral hepatitis in this meta-analysis, it is worth noting that the majority of eligible studies were about HBV or HCV. So future studies should continue to explore associations between polymorphisms in IL-10 gene and the risk of other subtypes of viral hepatitis.
The three major limitations of our integrated analyses were listed below. Firstly, our integrated analyses results were only derived from unadjusted pooling of previous works. Without access to raw data of eligible studies, we can only estimate associations based on re-calculations of raw genotypic frequencies, but we have to admit that lack of further adjustment for baseline characteristics may certainly impact reliability of our findings [14]. Secondly, environmental factors may also affect relationships between polymorphisms in IL-10 gene and the risk of viral hepatitis. However, most of the authors only paid attention to genetic associations in their publications, so it is impossible for us to explore genetic-environmental interactions in a meta-analysis based on these previous publications [15]. Thirdly, we did not enroll grey literatures for integrated analyses because these literatures are always incomplete and it is impossible for us to extract all required data items from these literatures or assess their quality through the NOS scale. Nevertheless, considering that we did not include grey literatures for integrated analyses, despite that funnel plots were found to be overall symmetrical, it should be acknowledged that publication biases still may affect the robustness of our integrated analyses results [16].

Conclusion

In conclusion, this meta-analysis demonstrates that rs1800871 (− 819 C/T), rs1800872 (− 592 C/A) and rs1800896 (− 1082 G/A) polymorphisms may influence the risk of viral hepatitis in Asians, while only rs1800896 (− 1082 G/A) polymorphism may influence the risk of viral hepatitis in Caucasians. In further analyses by disease subtypes, we noticed that the three investigated polymorphisms may influence the risk of both HBV and HCV. However, future studies should continue to investigate associations between polymorphisms in IL-10 gene and the risk of other subtypes of viral hepatitis.

Supplementary information

Supplementary information accompanies this paper at https://​doi.​org/​10.​1186/​s13099-020-00372-7.

Acknowledgements

None.
Not applicable.
Not applicable.

Competing interests

The authors declare that they have no competing interests.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Lanini S, Pisapia R, Capobianchi MR, Ippolito G. Global epidemiology of viral hepatitis and national needs for complete control. Expert Rev Anti Infect Ther. 2018;16:625–39.CrossRef Lanini S, Pisapia R, Capobianchi MR, Ippolito G. Global epidemiology of viral hepatitis and national needs for complete control. Expert Rev Anti Infect Ther. 2018;16:625–39.CrossRef
2.
Zurück zum Zitat Asrani SK, Devarbhavi H, Eaton J, Kamath PS. Burden of liver diseases in the world. J Hepatol. 2019;70:151–71.CrossRef Asrani SK, Devarbhavi H, Eaton J, Kamath PS. Burden of liver diseases in the world. J Hepatol. 2019;70:151–71.CrossRef
3.
Zurück zum Zitat Jefferies M, Rauff B, Rashid H, Lam T, Rafiq S. Update on global epidemiology of viral hepatitis and preventive strategies. World J Clin Cases. 2018;6:589–99.CrossRef Jefferies M, Rauff B, Rashid H, Lam T, Rafiq S. Update on global epidemiology of viral hepatitis and preventive strategies. World J Clin Cases. 2018;6:589–99.CrossRef
4.
Zurück zum Zitat Pardee M. Diagnosis and management of hepatitis B and C. Nurs Clin North Am. 2019;54:277–84.CrossRef Pardee M. Diagnosis and management of hepatitis B and C. Nurs Clin North Am. 2019;54:277–84.CrossRef
5.
Zurück zum Zitat Chang ML, Liaw YF. Hepatitis B flares in chronic hepatitis B: pathogenesis, natural course, and management. J Hepatol. 2014;61:1407–17.CrossRef Chang ML, Liaw YF. Hepatitis B flares in chronic hepatitis B: pathogenesis, natural course, and management. J Hepatol. 2014;61:1407–17.CrossRef
6.
Zurück zum Zitat Matsuura K, Tanaka Y. Host genetic variants influencing the clinical course of hepatitis C virus infection. J Med Virol. 2016;88:185–95.CrossRef Matsuura K, Tanaka Y. Host genetic variants influencing the clinical course of hepatitis C virus infection. J Med Virol. 2016;88:185–95.CrossRef
7.
Zurück zum Zitat Saraiva M, O’Garra A. The regulation of IL-10 production by immune cells. Nat Rev Immunol. 2010;10:170–81.CrossRef Saraiva M, O’Garra A. The regulation of IL-10 production by immune cells. Nat Rev Immunol. 2010;10:170–81.CrossRef
8.
Zurück zum Zitat Sanjabi S, Zenewicz LA, Kamanaka M, Flavell RA. Anti-inflammatory and pro-inflammatory roles of TGF-beta, IL-10, and IL-22 in immunity and autoimmunity. Curr Opin Pharmacol. 2009;9:447–53.CrossRef Sanjabi S, Zenewicz LA, Kamanaka M, Flavell RA. Anti-inflammatory and pro-inflammatory roles of TGF-beta, IL-10, and IL-22 in immunity and autoimmunity. Curr Opin Pharmacol. 2009;9:447–53.CrossRef
9.
Zurück zum Zitat Rojas JM, Avia M, Martín V, Sevilla N. IL-10: a multifunctional cytokine in viral infections. J Immunol Res. 2017;2017:6104054.CrossRef Rojas JM, Avia M, Martín V, Sevilla N. IL-10: a multifunctional cytokine in viral infections. J Immunol Res. 2017;2017:6104054.CrossRef
10.
Zurück zum Zitat Moher D, Liberati A, Tetzlaff J, Altman DG, PRISMA group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med. 2009;151:264–9.CrossRef Moher D, Liberati A, Tetzlaff J, Altman DG, PRISMA group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med. 2009;151:264–9.CrossRef
11.
Zurück zum Zitat Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol. 2010;25:603–5.CrossRef Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol. 2010;25:603–5.CrossRef
12.
Zurück zum Zitat Turner DM, Williams DM, Sankaran D, Lazarus M, Sinnott PJ, Hutchinson IV. An investigation of polymorphism in the interleukin-10 gene promoter. Eur J Immunogenet. 1997;24:1–8.CrossRef Turner DM, Williams DM, Sankaran D, Lazarus M, Sinnott PJ, Hutchinson IV. An investigation of polymorphism in the interleukin-10 gene promoter. Eur J Immunogenet. 1997;24:1–8.CrossRef
13.
Zurück zum Zitat de Oliveira JG, Rossi AF, Nizato DM, Cadamuro AC, Jorge YC, Valsechi MC, Venâncio LP, Rahal P, Pavarino ÉC, Goloni-Bertollo EM, Silva AE. Influence of functional polymorphisms in TNF-α, IL-8, and IL-10 cytokine genes on mRNA expression levels and risk of gastric cancer. Tumour Biol. 2015;36:9159–70.CrossRef de Oliveira JG, Rossi AF, Nizato DM, Cadamuro AC, Jorge YC, Valsechi MC, Venâncio LP, Rahal P, Pavarino ÉC, Goloni-Bertollo EM, Silva AE. Influence of functional polymorphisms in TNF-α, IL-8, and IL-10 cytokine genes on mRNA expression levels and risk of gastric cancer. Tumour Biol. 2015;36:9159–70.CrossRef
14.
Zurück zum Zitat Loeffler J, Ok M, Morton OC, Mezger M, Einsele H. Genetic polymorphisms in the cytokine and chemokine system: their possible importance in allogeneic stem cell transplantation. Curr Top Microbiol Immunol. 2010;341:83–96.PubMed Loeffler J, Ok M, Morton OC, Mezger M, Einsele H. Genetic polymorphisms in the cytokine and chemokine system: their possible importance in allogeneic stem cell transplantation. Curr Top Microbiol Immunol. 2010;341:83–96.PubMed
15.
Zurück zum Zitat Opdal SH. IL-10 gene polymorphisms in infectious disease and SIDS. FEMS Immunol Med Microbiol. 2004;42:48–52.CrossRef Opdal SH. IL-10 gene polymorphisms in infectious disease and SIDS. FEMS Immunol Med Microbiol. 2004;42:48–52.CrossRef
16.
Zurück zum Zitat Sezgin E, An P, Winkler CA. Host genetics of cytomegalovirus pathogenesis. Front Genet. 2019;10:616.CrossRef Sezgin E, An P, Winkler CA. Host genetics of cytomegalovirus pathogenesis. Front Genet. 2019;10:616.CrossRef
Metadaten
Titel
Associations between polymorphisms in IL-10 gene and the risk of viral hepatitis: a meta-analysis
verfasst von
Yuanyuan Zhang
Lisha Chen
Huixin Chen
Publikationsdatum
01.12.2020
Verlag
BioMed Central
Erschienen in
Gut Pathogens / Ausgabe 1/2020
Elektronische ISSN: 1757-4749
DOI
https://doi.org/10.1186/s13099-020-00372-7

Weitere Artikel der Ausgabe 1/2020

Gut Pathogens 1/2020 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Notfall-TEP der Hüfte ist auch bei 90-Jährigen machbar

26.04.2024 Hüft-TEP Nachrichten

Ob bei einer Notfalloperation nach Schenkelhalsfraktur eine Hemiarthroplastik oder eine totale Endoprothese (TEP) eingebaut wird, sollte nicht allein vom Alter der Patientinnen und Patienten abhängen. Auch über 90-Jährige können von der TEP profitieren.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Bei schweren Reaktionen auf Insektenstiche empfiehlt sich eine spezifische Immuntherapie

Insektenstiche sind bei Erwachsenen die häufigsten Auslöser einer Anaphylaxie. Einen wirksamen Schutz vor schweren anaphylaktischen Reaktionen bietet die allergenspezifische Immuntherapie. Jedoch kommt sie noch viel zu selten zum Einsatz.

Therapiestart mit Blutdrucksenkern erhöht Frakturrisiko

25.04.2024 Hypertonie Nachrichten

Beginnen ältere Männer im Pflegeheim eine Antihypertensiva-Therapie, dann ist die Frakturrate in den folgenden 30 Tagen mehr als verdoppelt. Besonders häufig stürzen Demenzkranke und Männer, die erstmals Blutdrucksenker nehmen. Dafür spricht eine Analyse unter US-Veteranen.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.