Skip to main content
Erschienen in: Journal of Neuroinflammation 1/2005

Open Access 01.12.2005 | Research

Astrocyte production of the chemokine macrophage inflammatory protein-2 is inhibited by the spice principle curcumin at the level of gene transcription

verfasst von: Michiyo Tomita, Brita J Holman, Christopher P Santoro, Thomas J Santoro

Erschienen in: Journal of Neuroinflammation | Ausgabe 1/2005

download
DOWNLOAD
print
DRUCKEN
insite
SUCHEN

Abstract

Background

In neuropathological processes associated with neutrophilic infiltrates, such as experimental allergic encephalitis and traumatic injury of the brain, the CXC chemokine, macrophage inflammatory protein-2 (MIP-2) is thought to play a pivotal role in the induction and perpetuation of inflammation in the central nervous system (CNS). The origin of MIP-2 in inflammatory disorders of the brain has not been fully defined but astrocytes appear to be a dominant source of this chemokine.
Curcumin is a spice principle in, and constitutes approximately 4 percent of, turmeric. Curcumin's immunomodulating and antioxidant activities suggest that it might be a useful adjunct in the treatment of neurodegenerative illnesses characterized by inflammation. Relatively unexplored, but relevant to its potential therapeutic efficacy in neuroinflammatory syndromes is the effect of curcumin on chemokine production. To examine the possibility that curcumin may influence CNS inflammation by mechanisms distinct from its known anti-oxidant activities, we studied the effect of this spice principle on the synthesis of MIP-2 by astrocytes.

Methods

Primary astrocytes were prepared from neonatal brains of CBA/CaJ mice. The cells were stimulated with lipopolysaccharide in the presence or absence of various amount of curcumin or epigallocatechin gallate. MIP-2 mRNA was analyzed using semi-quantitative PCR and MIP-2 protein production in the culture supernatants was quantified by ELISA. Astrocytes were transfected with a MIP-2 promoter construct, pGL3-MIP-2, and stimulated with lipopolysaccharide in the presence or absence of curcumin.

Results

The induction of MIP-2 gene expression and the production of MIP-2 protein were inhibited by curcumin. Curcumin also inhibited lipopolysaccharide-induced transcription of the MIP-2 promoter reporter gene construct in primary astrocytes. However MIP-2 gene induction by lipopolysaccharide was not inhibited by another anti-oxidant, epigallocatechin gallate.

Conclusion

Our results indicate that curcumin potently inhibits MIP-2 production at the level of gene transcription and offer further support for its potential use in the treatment of inflammatory conditions of the CNS.
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​1742-2094-2-8) contains supplementary material, which is available to authorized users.

Competing interests

The author(s) declare that they have no competing interests.

Authors' contributions

MT participated in experimental design, acquisition of data, supervised all experiments, and carried out isolation of astrocytes, ELISA and transfection assays.
BH isolated and amplified the MIP-2 gene promoter, and generated the MIP-2 promoter construct, pGL3-MIP-2.
CS participated in culture of astrocytes and PCR analysis of MIP-2 gene.
TS conceived of the study, participated in its design, and helped to draft the manuscript.
All authors read and approved the final manuscript.
Abkürzungen
EAE
experimental allergic encephalitis
EGCG
epigallocatechin gallate
LDH
lactate dehydrogenase
LPS
lipopolysaccharide
MIP-2
macrophage inflammatory protein-2
NFκB
nuclear factor kappa B
NO
nitric oxide
PG
prostaglandin
pGL3-MIP-2
a reporter gene construct containing the MIP-2 promoter
PMN
polymorphonuclear leukocyte
TBI
traumatic brain injury
TNFα
tumor necrosis factor alpha.

Background

Curcumin (1,7-Bis 94-hydroxy-3-methoxyphenyl)-1,6 heptadiene-3, 5-di-one) is a spice principle in and constitutes approximately 4% of turmeric and is responsible for curry's characteristic yellow color. As is true of other naturally occurring polyphenolic compounds, such as caffeic acid phenyl ester, rosmaric acid and resveratrol, curcumin possesses antioxidant properties which may reduce the production of free radicals and improve cell viability under conditions of enhanced oxidative stress[1, 2]. Curcumin also has anti-inflammatory properties which include the capacity to inhibit 5- and 8-lipoxygenases and cyclooxygenases[3, 4], is chemopreventive as evidenced by its capacity to abrogate 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced DNA synthesis and tumor promotion in mouse skin[5], antiproliferative as shown by its suppressive effect on the growth of C6 glioma cells[6], and anti-metastatic as suggested by its ability to inhibit angiogenesis in vivo[7].
Curcumin's immunomodulating and antioxidant activities suggest that it might be a useful adjunct in the treatment of neurodegenerative illnesses characterized by inflammation such as Alzheimer's disease[8]. Relatively unexplored, but relevant to its potential therapeutic efficacy in neuroinflammatory syndromes is the effect of curcumin on chemokine production. An active role for chemokines has been demonstrated in the pathogenesis of a variety of central nervous system (CNS) disorders accompanied by inflammation. In neuropathological processes associated with neutrophilic infiltrates, such as experimental allergic encephalitis (EAE) and traumatic injury of the brain, the CXC chemokine, macrophage inflammatory protein-2 (MIP-2) appears to play a pivotal role in the induction and perpetuation of inflammation in the brain[9, 10]. In EAE, for example, elevated levels of MIP-2 mRNA and protein preceded infiltration of the CNS by polymorphonuclear leukocytes (PMNs). Similarly, in traumatic brain injury, the kinetics of MIP-2 expression paralleled the recruitment of neutrophils to the inflammatory site[10] and, in experimental bacterial meningitis, neutralization of MIP-2 with a monoclonal antibody attenuated infiltration of the CNS with PMNs[11]. The origin of MIP-2 in inflammatory CNS disorders has not been fully defined, but in EAE astrocytes, appear to be the dominant source of this chemokine[9] and are likely to contribute significantly to MIP-2 production in other neuropathological states as well.
To explore the possibility that curcumin may influence CNS inflammation by mechanisms distinct from its antioxidant and known anti-inflammatory activities, we examined the effect of this spice principle on the synthesis of MIP-2 by astrocytes. Our results indicate that curcumin potently inhibits MIP-2 production at the level of gene transcription and offer further support for its potential use in the treatment of inflammatory conditions of the CNS.

Methods

Mice

Six to eight-week-old CBA/CaJ mice were purchased from Jackson Laboratories (Bar Harbor, ME) and bred in our animal facility.

Materials

Curcumin, epigallocatechin (EGCG) and E. coli lipopolysaccharide (LPS; O55B1) were purchased from Sigma, (St Louis, MO). Rabbit anti-cow glial fibrillary acidic protein polyclonal antibody was obtained from Dako Corp. (Carpinteria, CA).
Preparation and culture of astrocytes: Astrocytes were prepared from the brains of neonatal (3 to 7-day-old) CBA/CaJ mice by a modification of the method of Pousset et al[12]. Briefly, four brains were combined, homogenized in 0.25% trypsin through a sterile screen (pore size; 100 μM), incubated for 5 min at 37°C and centrifuged at 400 × g. The pellet was suspended in Hank's Buffered Salt Solution (HBSS) and debris was removed by gravity sedimentation on ice for 3 min. The supernatant was collected, centrifuged and the pellet was washed twice with culture medium consisting of DMEM containing 10% heat-inactivated fetal bovine serum (Hyclone, Logan, UT), 1 mM L-glutamate and penicillin/streptomycin (Gibco BRL, Grand Island, NY). The cells were plated on 35 mm dishes and cultured at 37°C in a humidified atmosphere contain 5% C02. After 16 hours, plates were washed to remove non-adherent cells and debris. For experiments in which mRNA or MIP-2 protein were quantified, adherent cells were cultured until they reached confluence. For transfection experiments, adherent cells were cultured until they were nearly confluent. Medium was refreshed in all astrocyte cultures every 2–3 days. The preparations were >98% glial fibrillary acidic protein positive, as measured by flow cytometric analyses using a EPICS XL flow cytometer[13].
Cell viability determination: The effect of curcumin on the viability of astrocytes was assessed by measuring cytosolic lactate dehydrogenase (LDH) leakage into the media as detailed earlier[14]. Briefly, astrocytes were incubated with curcumin (10-4 M to 10-6 M) for up to 48 hours, the supernatants were then harvested and LDH was measured by colorimetric assay using a kit from Sigma diagnostics.
mRNA and protein analyses: Confluent cultures of astrocytes were incubated with LPS (10 ηg to 5 μg/ml) for varying periods of time in the presence or absence of curcumin (10-4 M to10-7 M). After 4 hours of culture, cells were harvested and mRNA was isolated as previously reported[14]. MIP-2 mRNA levels were determined using semi-quantitative polymerase chain amplification (PCR) as described earlier[14] using the primers: 5'-TGCCGGCTCCTCAGTGCT-3' (forward) and 5'-GCCTTGCCTTTGTTCAGTATCTTTTG-3' (backward). In other experiments, the effect of EGCG on induced MIP-2 mRNA production was determined by culturing astrocytes with LPS in the presence or absence of varying doses of the catechin (10-3M to 10-4M). To assess the effect of curcumin on MIP-2 protein production, astrocytes were cultured with LPS in the presence or absence of curcumin (10-5M) for 16 hours. Supernatants were then harvested and MIP-2 levels were determined by enzyme linked immunosorbant assay (ELISA; R&D systems, Minneapolis, MN).
Preparation of the reporter gene, pGL3-MIP-2: A 537 base pair MIP-2 fragment was prepared by amplifying rat genomic (kidney) DNA using the primers: 5'GCCCACCGAGTCTCTGTTTC3' (forward) and 5'GTTGGTGGCCAGCAGGAGGA3' (backward), then digesting with Rsa I/Nco I. The fragment, which corresponded to base pairs -539 to -2, relative to adenine (assigned +1) in the translation initiation codon of the MIP-2 gene (accession number AJ49888), was ligated to a Sma I/Nco I digested, promoterless luciferase reporter vector, pGL3-Basic (Promega, Madison, WI). The direction of the insert was confirmed by restriction endonuclease digestion and its fidelity determined by sequence analyses as previously described[15]. The MIP-2 promoter-reporter gene construct, pGL3-MIP-2 is shown in Figure 1.
Transfection experiments: Astrocytes were transfected cells using a modification of the method of Franzoso et al[16]. Briefly, 1.5 μg of DNA containing either pGL3-MIP2 or pGL3-basic were incubated in HBS solution (137 mM NaCl, 5 mM KCl, 0.88 mM Na2HPO4, 20 mM Hepes) containing 250 mM CaCl2 for 10 minutes at room temperature. The mixtures were added in 2 mL of media to astrocytes that were nearly confluent. After a 16-hour incubation in a humidified atmosphere at 37 C° containing 5% CO2, cells were washed to remove debris and cultured for an additional 24 hours. LPS plus or minus curcumin (10-4M to 10-7M) was then added and transfected cells were further cultured for 24 hours. At the conclusion of culture, cells were harvested, cell lysates were prepared, and lysates were analyzed using a luciferase assay system (Promega, Madison, WI) in accordance with the manufacturer's instructions.

Results and discussion

To determine whether mechanisms apart from its well-documented anti-oxidant activity might provide possible neuroprotection against inflammation-mediated injury, we investigated the effect of curcumin on astrocyte production of the chemokine MIP-2 in response to LPS. In initial experiments, we found that optimal MIP-2 production occurred when confluent astrocyte cultures were stimulated with 5 μg/ml of LPS during a 16-hour culture (data not shown). Culturing such astrocytes with a dose of curcumin (10-5M) that had no effect on viability as measured by LDH release (data not shown), abrogated LPS-stimulated MIP-2 production (Figure 2).
The effect of curcumin on LPS-induced production of MIP-2 mRNA was examined next. Preliminary experiments showed that optimal message for MIP-2 in response to LPS occurred after 4 hours of culture in astrocytes (data not shown). As was true for MIP-2 protein, culture of astrocytes with curcumin (10-5M) markedly inhibited chemokine gene expression in response to LPS (Figure 3).
To determine whether curcumin inhibits MIP-2 gene transcription, a construct was created in which 537 base pairs of the MIP-2 promoter, spanning nucleotides -539 to -2 of the MIP-2 gene (see Methods), were fused to a promoter-less luciferase reporter gene (pGL3-MIP-2, Figure 1). As shown in the representative experiment in Figure 4, curcumin abrogated LPS-stimulated MIP-2 gene expression in transiently transfected astrocytes. In three separate experiments, essentially complete inhibition of LPS-induced MIP-2 gene expression (100%, 92%, 94%) was observed with curcumin in doses of 2 μM.
As a specificity control, the effect of EGCG, a catechin present in green tea with potent anti-oxidant activity, was examined on MIP-2 gene expression in astrocytes. In contrast to curcumin, EGCG in doses as high as 10-3 M had no effect on LPS-stimulated MIP-2 mRNA expression (Figure 5). The results suggest that the inhibitory effect of curcumin on MIP-2 production may not be due to its anti-oxidant properties.
The study presented herein shows for the first time that curcumin is a potent inhibitor of inducible MIP-2 production by astrocytes, which are a major source of this chemokine in the brain[9]. In transient transfection experiments of astrocytes, virtually complete inhibition of MIP-2 inducible gene expression was observed with 2 μM curcumin. Since blood levels of curcumin approximating 2 μM were shown by Yang, et al[17] to block amyloid aggregation in a transgenic model of Alzheimer's disease, we believe that our data may have in vivo relevance.
Transfection experiments in macrophages using a promoter, reporter-gene construct that contains canonical NFκB and NF-IL-6 cis-acting elements demonstrate that inhibition of MIP-2 by curcumin occurs at the level of gene transcription. The importance of either of these elements in the regulation of inducible MIP-2 gene expression in astrocytes remains to be determined. In some systems, inhibition of NFκB per se by curcumin is sufficient to abrogate gene expression. Thus, curcumin and its hydrogenated metabolites were shown to completely suppress transcription of nitric oxide synthase through down regulation of IκBkinase and NFκB activation in macrophages[18]. However, considering the fact that NFκB activation is linked to multiple upstream signaling pathways[19] and that curcumin has been shown to suppress a number of inflammatory signaling cascades[20], inhibition mediated by this spice principle may be quite complex and highly variable, depending on the cell type and the activating stimulus.
Inhibition of chemokine production represents a novel, potential mechanism by which curcumin may confer neuroprotection in CNS disorders characterized or accompanied by leukocytic infiltration. As stated above, MIP-2 is a dominant, driving force in the pathogenesis of many CNS disorders that are associated with infiltration of neutrophils in the brain[9, 10]. Experimentally, recruitment of neutrophils to the CNS is followed by a breeching of the blood-brain barrier that is especially severe after administration of MIP-2[21] and may further contribute to inflammation by causing indiscriminate entry of leukocytes into the brain. The possible contribution of inflammatory infiltrates to neuronal injury is best illustrated by experimental studies in which MIP-2 activity was neutralized. For example, administration of anti-MIP-2 antibody to rats infected with Hemophilus influenza type b abrogated the influx of neutrophils to the meninges, ventricular system, and the periventricular areas of the brain and substantially decreased neuronal damage[11].
In addition to astrocytes, microglial cells and endothelial cells may be potential sources of MIP-2 production in pathological states of the brain. Stimulation of brain microvascular endothelial cells with tumor necrosis factor alpha (TNFα), induces the release of MIP-2 within 4 to 8 hours of in vitro culture[22]. Since TNFα levels in the brain are significantly elevated in traumatic brain injury (TBI), it remains possible that cytokine-mediated release of MIP-2 by endothelial cells, particularly those which comprise the blood brain barrier, may predispose to intracerebral neutrophil accumulation and neuronal injury in TBI. Similarly, in a model of hypoxia/reoxygenation, large increases in MIP-2 mRNA and protein were demonstrated in microglial cells suggesting a possible mechanism to account for PMN accumulation and inflammation in cerebral ischemia.
Apart from its ability to inhibit MIP-2 production, curcumin's pleotropic antiinflammatory and anti-oxidative properties suggest its possible use in diseases of the brain accompanied by inflammation. Thus, LPS stimulation transcriptionally upregulates inducible nitric oxide synthase and cyclooxygenase-2 genes in microglia. This leads to the synthesis of nitric oxide (NO) and prostaglandins (PGs), respectively, and the possible formation of neuron-damaging free radicals, such as peroxynitrite. Curcumin abrogates the production of both NO and PGs in LPS activated microglial cells[20]. In a recently completed Phase I clinical trial, oral curcumin at a daily dose of 3.6 grams was, in general, well-tolerated and decreased inducible PGE2 production in blood samples taken 1 hour after dose on days 1 and 29 of treatment by approximately 60%[23]. Consistent with its possible use in neurodegenerative diseases associated with oxidative stress injury, curcumin has been reported to decrease oxidative damage and amyloid deposition in a transgenic mouse model of Alzheimer's disease[24], and to reverse Aβ-induced cognitive deficits and neuropathology in rats[25].
In summary, the capacity of curcumin to inhibit astrocyte production of MIP-2, together with its broad immunosuppressive activities, strongly support the potential use of this spice principle in the treatment of inflammatory diseases of the CNS.

Acknowledgements

This study was, in part, supported by the North Central Chapter of the Arthritis Foundation.
Open Access This article is published under license to BioMed Central Ltd. This is an Open Access article is distributed under the terms of the Creative Commons Attribution License ( https://​creativecommons.​org/​licenses/​by/​2.​0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Competing interests

The author(s) declare that they have no competing interests.

Authors' contributions

MT participated in experimental design, acquisition of data, supervised all experiments, and carried out isolation of astrocytes, ELISA and transfection assays.
BH isolated and amplified the MIP-2 gene promoter, and generated the MIP-2 promoter construct, pGL3-MIP-2.
CS participated in culture of astrocytes and PCR analysis of MIP-2 gene.
TS conceived of the study, participated in its design, and helped to draft the manuscript.
All authors read and approved the final manuscript.
Literatur
1.
Zurück zum Zitat Sreejayan, Rao MN: Curcuminoids as potent inhibitors of lipid peroxidation. J Pharm Pharmacol. 1994, 46: 1013-1016.CrossRefPubMed Sreejayan, Rao MN: Curcuminoids as potent inhibitors of lipid peroxidation. J Pharm Pharmacol. 1994, 46: 1013-1016.CrossRefPubMed
2.
Zurück zum Zitat Sreejayan, Rao MN: Nitric oxide scavenging by curcuminoids. J Pharm Pharmacol. 1997, 49: 105-107.CrossRefPubMed Sreejayan, Rao MN: Nitric oxide scavenging by curcuminoids. J Pharm Pharmacol. 1997, 49: 105-107.CrossRefPubMed
3.
Zurück zum Zitat Kang BY, Chung SW, Chung W, Im S, Hwang SY, Kim TS: Inhibition of interleukin-12 production in lipopolysaccharide-activated macrophages by curcumin. Eur J Pharmacol. 1999, 384: 191-195. 10.1016/S0014-2999(99)00690-1.CrossRefPubMed Kang BY, Chung SW, Chung W, Im S, Hwang SY, Kim TS: Inhibition of interleukin-12 production in lipopolysaccharide-activated macrophages by curcumin. Eur J Pharmacol. 1999, 384: 191-195. 10.1016/S0014-2999(99)00690-1.CrossRefPubMed
4.
Zurück zum Zitat Kang BY, Song YJ, Kim KM, Choe YK, Hwang SY, Kim TS: Curcumin inhibits Th1 cytokine profile in CD4+ T cells by suppressing interleukin-12 production in macrophages. Br J Pharmacol. 1999, 128: 380-384. 10.1038/sj.bjp.0702803.PubMedCentralCrossRefPubMed Kang BY, Song YJ, Kim KM, Choe YK, Hwang SY, Kim TS: Curcumin inhibits Th1 cytokine profile in CD4+ T cells by suppressing interleukin-12 production in macrophages. Br J Pharmacol. 1999, 128: 380-384. 10.1038/sj.bjp.0702803.PubMedCentralCrossRefPubMed
5.
Zurück zum Zitat Huang MT, Smart RC, Wong CQ, Conney AH: Inhibitory effect of curcumin, chlorogenic acid, caffeic acid, and ferulic acid on tumor promotion in mouse skin by 12-O-tetradecanoylphorbol-13-acetate. Cancer Res. 1988, 48: 5941-5946.PubMed Huang MT, Smart RC, Wong CQ, Conney AH: Inhibitory effect of curcumin, chlorogenic acid, caffeic acid, and ferulic acid on tumor promotion in mouse skin by 12-O-tetradecanoylphorbol-13-acetate. Cancer Res. 1988, 48: 5941-5946.PubMed
6.
Zurück zum Zitat Ambegaokar SS, Wu L, Alamshahi K, Lau J, Jazayeri L, Chan S, Khanna P, Hsieh E, Timiras PS: Curcumin inhibits dose-dependently and time-dependently neuroglial cell proliferation and growth. Neuro Endocrinol Lett. 2003, 24: 469-473.PubMed Ambegaokar SS, Wu L, Alamshahi K, Lau J, Jazayeri L, Chan S, Khanna P, Hsieh E, Timiras PS: Curcumin inhibits dose-dependently and time-dependently neuroglial cell proliferation and growth. Neuro Endocrinol Lett. 2003, 24: 469-473.PubMed
7.
Zurück zum Zitat Arbiser JL, Klauber N, Rohan R, van Leeuwen R, Huang MT, Fisher C, Flynn E, Byers HR: Curcumin is an in vivo inhibitor of angiogenesis. Mol Med. 1998, 4: 376-383.PubMedCentralPubMed Arbiser JL, Klauber N, Rohan R, van Leeuwen R, Huang MT, Fisher C, Flynn E, Byers HR: Curcumin is an in vivo inhibitor of angiogenesis. Mol Med. 1998, 4: 376-383.PubMedCentralPubMed
8.
Zurück zum Zitat Monsonego A, Weiner HL: Immunotherapeutic approaches to Alzheimer's disease. Science. 2003, 302: 834-838. 10.1126/science.1088469.CrossRefPubMed Monsonego A, Weiner HL: Immunotherapeutic approaches to Alzheimer's disease. Science. 2003, 302: 834-838. 10.1126/science.1088469.CrossRefPubMed
9.
Zurück zum Zitat Nygardas PT, Maatta JA, Hinkkanen AE: Chemokine expression by central nervous system resident cells and infiltrating neutrophils during experimental autoimmune encephalomyelitis in the BALB/c mouse. Eur J Immunol. 2000, 30: 1911-1918. 10.1002/1521-4141(200007)30:7<1911::AID-IMMU1911>3.0.CO;2-E.CrossRefPubMed Nygardas PT, Maatta JA, Hinkkanen AE: Chemokine expression by central nervous system resident cells and infiltrating neutrophils during experimental autoimmune encephalomyelitis in the BALB/c mouse. Eur J Immunol. 2000, 30: 1911-1918. 10.1002/1521-4141(200007)30:7<1911::AID-IMMU1911>3.0.CO;2-E.CrossRefPubMed
10.
Zurück zum Zitat Otto VI, Gloor SM, Frentzel S, Gilli U, Ammann E, Hein AE, Folkers G, Trentz O, Kossmann T, Morganti-Kossmann MC: The production of macrophage inflammatory protein-2 induced by soluble intercellular adhesion molecule-1 in mouse astrocytes is mediated by src tyrosine kinases and p42/44 mitogen-activated protein kinase. J Neurochem. 2002, 80: 824-834. 10.1046/j.0022-3042.2001.00748.x.CrossRefPubMed Otto VI, Gloor SM, Frentzel S, Gilli U, Ammann E, Hein AE, Folkers G, Trentz O, Kossmann T, Morganti-Kossmann MC: The production of macrophage inflammatory protein-2 induced by soluble intercellular adhesion molecule-1 in mouse astrocytes is mediated by src tyrosine kinases and p42/44 mitogen-activated protein kinase. J Neurochem. 2002, 80: 824-834. 10.1046/j.0022-3042.2001.00748.x.CrossRefPubMed
11.
Zurück zum Zitat Diab A, Abdalla H, Li HL, Shi FD, Zhu J, Hojberg B, Lindquist L, Wretlind B, Bakhiet M, Link H: Neutralization of macrophage inflammatory protein 2 (MIP-2) and MIP-1alpha attenuates neutrophil recruitment in the central nervous system during experimental bacterial meningitis. Infect Immun. 1999, 67: 2590-2601.PubMedCentralPubMed Diab A, Abdalla H, Li HL, Shi FD, Zhu J, Hojberg B, Lindquist L, Wretlind B, Bakhiet M, Link H: Neutralization of macrophage inflammatory protein 2 (MIP-2) and MIP-1alpha attenuates neutrophil recruitment in the central nervous system during experimental bacterial meningitis. Infect Immun. 1999, 67: 2590-2601.PubMedCentralPubMed
12.
Zurück zum Zitat Pousset F, Cremona S, Dantzer R, Kelley KW, Parnet P: IL-10 and IL-4 regulate type-I and type-II IL-1 receptors expression on IL-1 beta-activated mouse primary astrocytes. J Neurochem. 2001, 79: 726-736. 10.1046/j.1471-4159.2001.00569.x.CrossRefPubMed Pousset F, Cremona S, Dantzer R, Kelley KW, Parnet P: IL-10 and IL-4 regulate type-I and type-II IL-1 receptors expression on IL-1 beta-activated mouse primary astrocytes. J Neurochem. 2001, 79: 726-736. 10.1046/j.1471-4159.2001.00569.x.CrossRefPubMed
13.
Zurück zum Zitat Santoro TJ, Portanova JP, Kotzin BL: The contribution of L3T4+ T cells to lymphoproliferation and autoantibody production in MRL-lpr/lpr mice. J Exp Med. 1988, 167: 1713-1718. 10.1084/jem.167.5.1713.CrossRefPubMed Santoro TJ, Portanova JP, Kotzin BL: The contribution of L3T4+ T cells to lymphoproliferation and autoantibody production in MRL-lpr/lpr mice. J Exp Med. 1988, 167: 1713-1718. 10.1084/jem.167.5.1713.CrossRefPubMed
14.
Zurück zum Zitat Tomita M, Irwin KI, Xie ZJ, Santoro TJ: Tea pigments inhibit the production of type 1 (TH1) and type 2 (TH2) helper T cell cytokines in CD4(+) T cells. Phytother Res. 2002, 16: 36-42. 10.1002/ptr.834.CrossRefPubMed Tomita M, Irwin KI, Xie ZJ, Santoro TJ: Tea pigments inhibit the production of type 1 (TH1) and type 2 (TH2) helper T cell cytokines in CD4(+) T cells. Phytother Res. 2002, 16: 36-42. 10.1002/ptr.834.CrossRefPubMed
15.
Zurück zum Zitat Santoro T, Maguire J, McBride OW, Avraham KB, Copeland NG, Jenkins NA, Kelly K: Chromosomal organization and transcriptional regulation of human GEM and localization of the human and mouse GEM loci encoding an inducible Ras-like protein. Genomics. 1995, 30: 558-564. 10.1006/geno.1995.1277.CrossRefPubMed Santoro T, Maguire J, McBride OW, Avraham KB, Copeland NG, Jenkins NA, Kelly K: Chromosomal organization and transcriptional regulation of human GEM and localization of the human and mouse GEM loci encoding an inducible Ras-like protein. Genomics. 1995, 30: 558-564. 10.1006/geno.1995.1277.CrossRefPubMed
16.
Zurück zum Zitat Franzoso G, Biswas P, Poli G, Carlson LM, Brown KD, Tomita-Yamaguchi M, Fauci AS, Siebenlist UK: A family of serine proteases expressed exclusively in myelo-monocytic cells specifically processes the nuclear factor-kappa B subunit p65 in vitro and may impair human immunodeficiency virus replication in these cells. J Exp Med. 1994, 180: 1445-1456. 10.1084/jem.180.4.1445.CrossRefPubMed Franzoso G, Biswas P, Poli G, Carlson LM, Brown KD, Tomita-Yamaguchi M, Fauci AS, Siebenlist UK: A family of serine proteases expressed exclusively in myelo-monocytic cells specifically processes the nuclear factor-kappa B subunit p65 in vitro and may impair human immunodeficiency virus replication in these cells. J Exp Med. 1994, 180: 1445-1456. 10.1084/jem.180.4.1445.CrossRefPubMed
17.
Zurück zum Zitat Yang F, Lim GP, Begum AN, Ubeda OJ, Simmons MR, Ambegaokar SS, Chen PP, Kayed R, Glabe CG, Frautschy SA, Cole GM: Curcumin Inhibits Formation of Amyloid b Oligomers and Fibrils, Binds Plaques, and Reduces Amyloid in Vivo. J Biol Chem. 2005, 280: 5892-5901. 10.1074/jbc.M404751200.CrossRefPubMed Yang F, Lim GP, Begum AN, Ubeda OJ, Simmons MR, Ambegaokar SS, Chen PP, Kayed R, Glabe CG, Frautschy SA, Cole GM: Curcumin Inhibits Formation of Amyloid b Oligomers and Fibrils, Binds Plaques, and Reduces Amyloid in Vivo. J Biol Chem. 2005, 280: 5892-5901. 10.1074/jbc.M404751200.CrossRefPubMed
18.
Zurück zum Zitat Pan MH, Lin-Shiau SY, Lin JK: Comparative studies on the suppression of nitric oxide synthase by curcumin and its hydrogenated metabolites through down-regulation of IkappaB kinase and NFkappaB activation in macrophages. Biochem Pharmacol. 2000, 60: 1665-1676. 10.1016/S0006-2952(00)00489-5.CrossRefPubMed Pan MH, Lin-Shiau SY, Lin JK: Comparative studies on the suppression of nitric oxide synthase by curcumin and its hydrogenated metabolites through down-regulation of IkappaB kinase and NFkappaB activation in macrophages. Biochem Pharmacol. 2000, 60: 1665-1676. 10.1016/S0006-2952(00)00489-5.CrossRefPubMed
19.
Zurück zum Zitat Das R, Mahabeleshwar GH, Kundu GC: Osteopontin stimulates cell motility and nuclear factor kappaB-mediated secretion of urokinase type plasminogen activator through phosphatidylinositol 3-kinase/Akt signaling pathways in breast cancer cells. J Biol Chem. 2003, 278: 28593-28606. 10.1074/jbc.M303445200.CrossRefPubMed Das R, Mahabeleshwar GH, Kundu GC: Osteopontin stimulates cell motility and nuclear factor kappaB-mediated secretion of urokinase type plasminogen activator through phosphatidylinositol 3-kinase/Akt signaling pathways in breast cancer cells. J Biol Chem. 2003, 278: 28593-28606. 10.1074/jbc.M303445200.CrossRefPubMed
20.
Zurück zum Zitat Kim HY, Park EJ, Joe EH, Jou I: Curcumin suppresses Janus kinase-STAT inflammatory signaling through activation of Src homology 2 domain-containing tyrosine phosphatase 2 in brain microglia. J Immunol. 2003, 171: 6072-6079.CrossRefPubMed Kim HY, Park EJ, Joe EH, Jou I: Curcumin suppresses Janus kinase-STAT inflammatory signaling through activation of Src homology 2 domain-containing tyrosine phosphatase 2 in brain microglia. J Immunol. 2003, 171: 6072-6079.CrossRefPubMed
21.
Zurück zum Zitat Bell MD, Taub DD, Perry VH: Overriding the brain's intrinsic resistance to leukocyte recruitment with intraparenchymal injections of recombinant chemokines. Neuroscience. 1996, 74: 283-292. 10.1016/0306-4522(96)00083-8.CrossRefPubMed Bell MD, Taub DD, Perry VH: Overriding the brain's intrinsic resistance to leukocyte recruitment with intraparenchymal injections of recombinant chemokines. Neuroscience. 1996, 74: 283-292. 10.1016/0306-4522(96)00083-8.CrossRefPubMed
22.
Zurück zum Zitat Otto VI, Heinzel-Pleines UE, Gloor SM, Trentz O, Kossmann T, Morganti-Kossmann MC: sICAM-1 and TNF-alpha induce MIP-2 with distinct kinetics in astrocytes and brain microvascular endothelial cells. J Neurosci Res. 2000, 60: 733-742. 10.1002/1097-4547(20000615)60:6<733::AID-JNR5>3.0.CO;2-X.CrossRefPubMed Otto VI, Heinzel-Pleines UE, Gloor SM, Trentz O, Kossmann T, Morganti-Kossmann MC: sICAM-1 and TNF-alpha induce MIP-2 with distinct kinetics in astrocytes and brain microvascular endothelial cells. J Neurosci Res. 2000, 60: 733-742. 10.1002/1097-4547(20000615)60:6<733::AID-JNR5>3.0.CO;2-X.CrossRefPubMed
23.
Zurück zum Zitat Sharma RA, Euden SA, Platton SL, Cooke DN, Shafayat A, Hewitt HR, Marczylo TH, Morgan B, Hemingway D, Plummer SM, Pirmohamed M, Gescher AJ, Steward WP: Phase I clinical trial of oral curcumin: biomarkers of systemic activity and compliance. Clin Cancer Res. 2004, 10: 6847-6854.CrossRefPubMed Sharma RA, Euden SA, Platton SL, Cooke DN, Shafayat A, Hewitt HR, Marczylo TH, Morgan B, Hemingway D, Plummer SM, Pirmohamed M, Gescher AJ, Steward WP: Phase I clinical trial of oral curcumin: biomarkers of systemic activity and compliance. Clin Cancer Res. 2004, 10: 6847-6854.CrossRefPubMed
24.
Zurück zum Zitat Lim GP, Chu T, Yang F, Beech W, Frautschy SA, Cole GM: The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse. J Neurosci. 2001, 21: 8370-8377.PubMed Lim GP, Chu T, Yang F, Beech W, Frautschy SA, Cole GM: The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse. J Neurosci. 2001, 21: 8370-8377.PubMed
25.
Zurück zum Zitat Frautschy SA, Hu W, Kim P, Miller SA, Chu T, Harris-White ME, Cole GM: Phenolic anti-inflammatory antioxidant reversal of Abeta-induced cognitive deficits and neuropathology. Neurobiol Aging. 2001, 22: 993-1005. 10.1016/S0197-4580(01)00300-1.CrossRefPubMed Frautschy SA, Hu W, Kim P, Miller SA, Chu T, Harris-White ME, Cole GM: Phenolic anti-inflammatory antioxidant reversal of Abeta-induced cognitive deficits and neuropathology. Neurobiol Aging. 2001, 22: 993-1005. 10.1016/S0197-4580(01)00300-1.CrossRefPubMed
Metadaten
Titel
Astrocyte production of the chemokine macrophage inflammatory protein-2 is inhibited by the spice principle curcumin at the level of gene transcription
verfasst von
Michiyo Tomita
Brita J Holman
Christopher P Santoro
Thomas J Santoro
Publikationsdatum
01.12.2005
Verlag
BioMed Central
Erschienen in
Journal of Neuroinflammation / Ausgabe 1/2005
Elektronische ISSN: 1742-2094
DOI
https://doi.org/10.1186/1742-2094-2-8

Weitere Artikel der Ausgabe 1/2005

Journal of Neuroinflammation 1/2005 Zur Ausgabe

Neu in den Fachgebieten Neurologie und Psychiatrie

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Frühe Alzheimertherapie lohnt sich

25.04.2024 AAN-Jahrestagung 2024 Nachrichten

Ist die Tau-Last noch gering, scheint der Vorteil von Lecanemab besonders groß zu sein. Und beginnen Erkrankte verzögert mit der Behandlung, erreichen sie nicht mehr die kognitive Leistung wie bei einem früheren Start. Darauf deuten neue Analysen der Phase-3-Studie Clarity AD.

Viel Bewegung in der Parkinsonforschung

25.04.2024 Parkinson-Krankheit Nachrichten

Neue arznei- und zellbasierte Ansätze, Frühdiagnose mit Bewegungssensoren, Rückenmarkstimulation gegen Gehblockaden – in der Parkinsonforschung tut sich einiges. Auf dem Deutschen Parkinsonkongress ging es auch viel um technische Innovationen.

Demenzkranke durch Antipsychotika vielfach gefährdet

23.04.2024 Demenz Nachrichten

Wenn Demenzkranke aufgrund von Symptomen wie Agitation oder Aggressivität mit Antipsychotika behandelt werden, sind damit offenbar noch mehr Risiken verbunden als bislang angenommen.