Skip to main content
Erschienen in: Journal of Medical Systems 3/2015

01.03.2015 | Systems-Level Quality Improvement

Automatic Lung Segmentation Using Control Feedback System: Morphology and Texture Paradigm

verfasst von: Norliza M. Noor, Joel C. M. Than, Omar M. Rijal, Rosminah M. Kassim, Ashari Yunus, Amir A. Zeki, Michele Anzidei, Luca Saba, Jasjit S. Suri

Erschienen in: Journal of Medical Systems | Ausgabe 3/2015

Einloggen, um Zugang zu erhalten

Abstract

Interstitial Lung Disease (ILD) encompasses a wide array of diseases that share some common radiologic characteristics. When diagnosing such diseases, radiologists can be affected by heavy workload and fatigue thus decreasing diagnostic accuracy. Automatic segmentation is the first step in implementing a Computer Aided Diagnosis (CAD) that will help radiologists to improve diagnostic accuracy thereby reducing manual interpretation. Automatic segmentation proposed uses an initial thresholding and morphology based segmentation coupled with feedback that detects large deviations with a corrective segmentation. This feedback is analogous to a control system which allows detection of abnormal or severe lung disease and provides a feedback to an online segmentation improving the overall performance of the system. This feedback system encompasses a texture paradigm. In this study we studied 48 males and 48 female patients consisting of 15 normal and 81 abnormal patients. A senior radiologist chose the five levels needed for ILD diagnosis. The results of segmentation were displayed by showing the comparison of the automated and ground truth boundaries (courtesy of ImgTracer™ 1.0, AtheroPoint™ LLC, Roseville, CA, USA). The left lung’s performance of segmentation was 96.52 % for Jaccard Index and 98.21 % for Dice Similarity, 0.61 mm for Polyline Distance Metric (PDM), −1.15 % for Relative Area Error and 4.09 % Area Overlap Error. The right lung’s performance of segmentation was 97.24 % for Jaccard Index, 98.58 % for Dice Similarity, 0.61 mm for PDM, −0.03 % for Relative Area Error and 3.53 % for Area Overlap Error. The segmentation overall has an overall similarity of 98.4 %. The segmentation proposed is an accurate and fully automated system.
Literatur
1.
Zurück zum Zitat Schwarz, M. I., Matthay, R. A., Sahn, S. A., Stanford, R. E., Marmorstein, B. L., and Scheinhorn, D. J., Interstitial lung disease in polymyositis and dermatomyositis: analysis of six cases and review of the literature. Medicine 55(1):89–104, 1976.CrossRef Schwarz, M. I., Matthay, R. A., Sahn, S. A., Stanford, R. E., Marmorstein, B. L., and Scheinhorn, D. J., Interstitial lung disease in polymyositis and dermatomyositis: analysis of six cases and review of the literature. Medicine 55(1):89–104, 1976.CrossRef
2.
Zurück zum Zitat Peroš-Golubičić, T., and Sharma, O., Clinical atlas of interstitial lung disease. Springer, London, 2006. Peroš-Golubičić, T., and Sharma, O., Clinical atlas of interstitial lung disease. Springer, London, 2006.
3.
Zurück zum Zitat Sharman, P., and Wood-Baker, R., Interstitial lung disease due to fumes from heat-cutting polymer rope. Occup. Med. 63(6):451–453, 2013.CrossRef Sharman, P., and Wood-Baker, R., Interstitial lung disease due to fumes from heat-cutting polymer rope. Occup. Med. 63(6):451–453, 2013.CrossRef
4.
Zurück zum Zitat O’Dwyer, D. N., Armstrong, M. E., Cooke, G., Dodd, J. D., Veale, D. J., and Donnelly, S. C., Rheumatoid Arthritis (RA) associated interstitial lung disease (ILD). Eur. J. Intern Med. 24(7):597–603, 2013.CrossRef O’Dwyer, D. N., Armstrong, M. E., Cooke, G., Dodd, J. D., Veale, D. J., and Donnelly, S. C., Rheumatoid Arthritis (RA) associated interstitial lung disease (ILD). Eur. J. Intern Med. 24(7):597–603, 2013.CrossRef
5.
Zurück zum Zitat Washko, G. R., Hunninghake, G. M., Fernandez, I. E., Nishino, M., Okajima, Y., Yamashiro, T., et al., Lung volumes and emphysema in smokers with interstitial lung abnormalities. N. Engl. J. Med. 364(10):897–906, 2011.CrossRef Washko, G. R., Hunninghake, G. M., Fernandez, I. E., Nishino, M., Okajima, Y., Yamashiro, T., et al., Lung volumes and emphysema in smokers with interstitial lung abnormalities. N. Engl. J. Med. 364(10):897–906, 2011.CrossRef
6.
Zurück zum Zitat Henne, E., Anderson, J. C., Lowe, N., and Kesten, S., Comparison of human lung tissue mass measurements from ex vivo lungs and high resolution CT software analysis. BMC Pulm. Med. 12(1):18, 2012.CrossRef Henne, E., Anderson, J. C., Lowe, N., and Kesten, S., Comparison of human lung tissue mass measurements from ex vivo lungs and high resolution CT software analysis. BMC Pulm. Med. 12(1):18, 2012.CrossRef
7.
Zurück zum Zitat Krupinski, E. A., Berbaum, K. S., Does reader visual fatigue impact interpretation accuracy? Proc. SPIE. Med. Imaging. 7627, 76270M-1-6, 2010. Krupinski, E. A., Berbaum, K. S., Does reader visual fatigue impact interpretation accuracy? Proc. SPIE. Med. Imaging. 7627, 76270M-1-6, 2010.
8.
Zurück zum Zitat Jiang, Y., Nishikawa, R. M., Schmidt, R. A., Metz, C. E., Giger, M. L., and Doi, K., Improving breast cancer diagnosis with computer-aided diagnosis. Acad. Radiol. 6(1):22–33, 1999.CrossRef Jiang, Y., Nishikawa, R. M., Schmidt, R. A., Metz, C. E., Giger, M. L., and Doi, K., Improving breast cancer diagnosis with computer-aided diagnosis. Acad. Radiol. 6(1):22–33, 1999.CrossRef
10.
Zurück zum Zitat Kobayashi, T., Xu, X. W., MacMahon, H., Metz, C. E., and Doi, K., Effect of a computer-aided diagnosis scheme on radiologists’ performance in detection of lung nodules on radiographs. Radiology 199(3):843–848, 1996.CrossRef Kobayashi, T., Xu, X. W., MacMahon, H., Metz, C. E., and Doi, K., Effect of a computer-aided diagnosis scheme on radiologists’ performance in detection of lung nodules on radiographs. Radiology 199(3):843–848, 1996.CrossRef
11.
Zurück zum Zitat Nagaraj, S., Rao, G. N., and Koteswararao, K., The role of pattern recognition in computer-aided diagnosis and computer-aided detection in medical imaging: A clinical validation. Int. J. Comput. Appl. 8(5):18–22, 2010. Nagaraj, S., Rao, G. N., and Koteswararao, K., The role of pattern recognition in computer-aided diagnosis and computer-aided detection in medical imaging: A clinical validation. Int. J. Comput. Appl. 8(5):18–22, 2010.
12.
Zurück zum Zitat van Rikxoort, E. M., de Hoop, B., Viergever, M. A., Prokop, M., and van Ginneken, B., Automatic lung segmentation from thoracic computed tomography scans using a hybrid approach with error detection. Med. Phys. 36(7):2934–2947, 2009. doi:10.1118/1.3147146.CrossRef van Rikxoort, E. M., de Hoop, B., Viergever, M. A., Prokop, M., and van Ginneken, B., Automatic lung segmentation from thoracic computed tomography scans using a hybrid approach with error detection. Med. Phys. 36(7):2934–2947, 2009. doi:10.​1118/​1.​3147146.CrossRef
15.
Zurück zum Zitat El-Baz, A., Suri, J. S., (Eds) Lung Imaging and Computer Aided Diagnosis: CRC Press, Boca Raton, 2011. El-Baz, A., Suri, J. S., (Eds) Lung Imaging and Computer Aided Diagnosis: CRC Press, Boca Raton, 2011.
16.
Zurück zum Zitat Nandy, K., Interactive segmentation and tracking in optical microscopic images. Cytom. Part A 81(5):357–359, 2012.CrossRefMathSciNet Nandy, K., Interactive segmentation and tracking in optical microscopic images. Cytom. Part A 81(5):357–359, 2012.CrossRefMathSciNet
17.
Zurück zum Zitat Otsu, N., A threshold selection method from gray-level histograms. Automatica 11:23–27, 1975. Otsu, N., A threshold selection method from gray-level histograms. Automatica 11:23–27, 1975.
18.
Zurück zum Zitat Churg, A., Thurlbeck’s Pathology of the Lung. Thieme, New York, 2005. Churg, A., Thurlbeck’s Pathology of the Lung. Thieme, New York, 2005.
19.
Zurück zum Zitat Li, L.-N., Ouyang, J.-H., Chen, H.-L., and Liu, D.-Y., A computer aided diagnosis system for thyroid disease using extreme learning machine. J. Med. Syst. 36(5):3327–3337, 2012. doi:10.1007/s10916-012-9825-3.CrossRef Li, L.-N., Ouyang, J.-H., Chen, H.-L., and Liu, D.-Y., A computer aided diagnosis system for thyroid disease using extreme learning machine. J. Med. Syst. 36(5):3327–3337, 2012. doi:10.​1007/​s10916-012-9825-3.CrossRef
20.
Zurück zum Zitat Sheikhtaheri, A., Sadoughi, F., and Hashemi, D. Z., Developing and using expert systems and neural networks in medicine: A review on benefits and challenges. J. Med. Syst. 38(9):1–6, 2014. doi:10.1007/s10916-014-0110-5.CrossRef Sheikhtaheri, A., Sadoughi, F., and Hashemi, D. Z., Developing and using expert systems and neural networks in medicine: A review on benefits and challenges. J. Med. Syst. 38(9):1–6, 2014. doi:10.​1007/​s10916-014-0110-5.CrossRef
21.
22.
Zurück zum Zitat Hu, S., Hoffman, E. A., and Reinhardt, J. M., Automatic lung segmentation for accurate quantitation of volumetric X-ray CT images. IEEE Trans. Med. Imaging 20(6):490–498, 2001. doi:10.1109/42.929615.CrossRef Hu, S., Hoffman, E. A., and Reinhardt, J. M., Automatic lung segmentation for accurate quantitation of volumetric X-ray CT images. IEEE Trans. Med. Imaging 20(6):490–498, 2001. doi:10.​1109/​42.​929615.CrossRef
23.
Zurück zum Zitat Itai, Y., Kim, H., Ishikawa, S., Yamamoto, A., and Nakamura, K., A segmentation method of lung areas by using snakes. Int. J. Innov. Comput. Inf. Control 3(2):277–284, 2007. Itai, Y., Kim, H., Ishikawa, S., Yamamoto, A., and Nakamura, K., A segmentation method of lung areas by using snakes. Int. J. Innov. Comput. Inf. Control 3(2):277–284, 2007.
24.
Zurück zum Zitat Boykov, Y., Jolly, M. P., Interactive organ segmentation using graph cuts. In Medical Image Computing and Computer-Assisted Intervention--MICCAI2000, 276–286, 2000. Boykov, Y., Jolly, M. P., Interactive organ segmentation using graph cuts. In Medical Image Computing and Computer-Assisted Intervention--MICCAI2000, 276–286, 2000.
25.
Zurück zum Zitat Osareh, A., and Shadgar, B., A segmentation method of lung cavities using region aided geometric snakes. J. Med. Syst. 34(4):419–433, 2010.CrossRef Osareh, A., and Shadgar, B., A segmentation method of lung cavities using region aided geometric snakes. J. Med. Syst. 34(4):419–433, 2010.CrossRef
26.
Zurück zum Zitat Korfiatis, P., Kalogeropoulou, C., Karahaliou, A., Kazantzi, A., Skiadopoulos, S., and Costaridou, L., Texture classification-based segmentation of lung affected by interstitial pneumonia in high-resolution CT. Med. Phys. 35(12):5290–5302, 2008.CrossRef Korfiatis, P., Kalogeropoulou, C., Karahaliou, A., Kazantzi, A., Skiadopoulos, S., and Costaridou, L., Texture classification-based segmentation of lung affected by interstitial pneumonia in high-resolution CT. Med. Phys. 35(12):5290–5302, 2008.CrossRef
27.
Zurück zum Zitat van Rikxoort, E. M., de Hoop, B., van de Vorst, S., Prokop, M., and van Ginneken, B., Automatic segmentation of pulmonary segments from volumetric chest CT scans. IEEE Trans. Med. Imaging 28(4):621–630, 2009. doi:10.1109/TMI.2008.2008968.CrossRef van Rikxoort, E. M., de Hoop, B., van de Vorst, S., Prokop, M., and van Ginneken, B., Automatic segmentation of pulmonary segments from volumetric chest CT scans. IEEE Trans. Med. Imaging 28(4):621–630, 2009. doi:10.​1109/​TMI.​2008.​2008968.CrossRef
29.
Zurück zum Zitat Zhou, X., Hayashi, T., Hara, T., Fujita, H., Yokoyama, R., Kiryu, T., and Hoshi, H., Automatic segmentation and recognition of anatomical lung structures from high-resolution chest CT images. Comput. Med. Imaging Graph. 30(5):299–313, 2006. doi:10.1016/j.compmedimag.2006.06.002.CrossRef Zhou, X., Hayashi, T., Hara, T., Fujita, H., Yokoyama, R., Kiryu, T., and Hoshi, H., Automatic segmentation and recognition of anatomical lung structures from high-resolution chest CT images. Comput. Med. Imaging Graph. 30(5):299–313, 2006. doi:10.​1016/​j.​compmedimag.​2006.​06.​002.CrossRef
30.
31.
Zurück zum Zitat Massoptier, L., Misra, A., Sowmya, A., Automatic lung segmentation in HRCT images with diffuse parenchymal lung disease using graph-cut. 24th Inter Conf In Image and Vision Computing New Zealand, 2009. IVCNZ’09. 266–270, 2009. Massoptier, L., Misra, A., Sowmya, A., Automatic lung segmentation in HRCT images with diffuse parenchymal lung disease using graph-cut. 24th Inter Conf In Image and Vision Computing New Zealand, 2009. IVCNZ’09. 266–270, 2009.
32.
Zurück zum Zitat Abbas, Q., Khan, M. T. A., Farooq, A., and Celebi, M. E., Segmentation of lungs in HRCT scan images using particle swarm optimization. Int. J. Innov. Comput. Inf. Control 9(5):2155–2165, 2013. Abbas, Q., Khan, M. T. A., Farooq, A., and Celebi, M. E., Segmentation of lungs in HRCT scan images using particle swarm optimization. Int. J. Innov. Comput. Inf. Control 9(5):2155–2165, 2013.
33.
Zurück zum Zitat Boykov, Y., and Kolmogorov, V., An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Trans. Pattern Anal. Mach. Intell. 26(9):1124–1137, 2004. doi:10.1109/TPAMI.2004.60.CrossRef Boykov, Y., and Kolmogorov, V., An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Trans. Pattern Anal. Mach. Intell. 26(9):1124–1137, 2004. doi:10.​1109/​TPAMI.​2004.​60.CrossRef
Metadaten
Titel
Automatic Lung Segmentation Using Control Feedback System: Morphology and Texture Paradigm
verfasst von
Norliza M. Noor
Joel C. M. Than
Omar M. Rijal
Rosminah M. Kassim
Ashari Yunus
Amir A. Zeki
Michele Anzidei
Luca Saba
Jasjit S. Suri
Publikationsdatum
01.03.2015
Verlag
Springer US
Erschienen in
Journal of Medical Systems / Ausgabe 3/2015
Print ISSN: 0148-5598
Elektronische ISSN: 1573-689X
DOI
https://doi.org/10.1007/s10916-015-0214-6

Weitere Artikel der Ausgabe 3/2015

Journal of Medical Systems 3/2015 Zur Ausgabe