Skip to main content
Erschienen in: International Journal of Diabetes in Developing Countries 3/2018

20.06.2017 | Original Article

Bacillus-produced surfactin for intranasal delivery of insulin in diabetic mice

verfasst von: Qin Yu, Shihong Dong, Dan Yang, Xiaoying Xing, Xiuyun Zhao, Gaofu Qi

Erschienen in: International Journal of Diabetes in Developing Countries | Ausgabe 3/2018

Einloggen, um Zugang zu erhalten

Abstract

Previous studies have shown that Bacillus-produced surfactin (SFN) can be used for oral delivery of insulin (INS). To improve the bioavailability of INS, we determined the effects of SFN on intranasal delivery of INS in diabetic mice. Combinations of SFN and INS at different doses were used for intranasal administration of diabetic mice. The plasma levels of glucose and INS were determined at various time intervals after intranasal administration, and then, the hypoglycemic effects and relative bioavailability of INS were calculated. Glucose tolerance test was performed to determine the effects of intranasal delivery of INS plus SFN on the control of glucose levels. Diabetic mice were also intranasally administered with the INS and SFN combo for 7 days to determine the short-term stability of this formulation for controlling blood glucose levels. A combination of 20 IU/kg INS and 1.6 mg/kg SFN achieved the best hypoglycemic effects for intranasal administration, with a maximal hypoglycemic rate of 29.59% and a maximal blood INS concentration of 45.47 μIU/ml 2 h after administration. As a result, a relatively increased bioavailability of 8.55% was achieved. Glucose tolerance test showed that intranasal delivery of INS plus SFN could effectively control the blood glucose levels after the influx of glucose. Furthermore, intranasal INS plus SFN could be used for controlling blood glucose daily for a short term. Histological evaluation showed no changes in the morphology of the nasal mucosa after exposure to SFN plus INS. SFN is potentially useful for intranasal delivery of INS to control blood glucose levels.
Literatur
1.
Zurück zum Zitat Duan X, Mao S. New strategies to improve the intranasal absorption of insulin. Drug Discov Today. 2010;15:416–27.CrossRefPubMed Duan X, Mao S. New strategies to improve the intranasal absorption of insulin. Drug Discov Today. 2010;15:416–27.CrossRefPubMed
2.
Zurück zum Zitat Benedict C, Brede S, Schiöth HB, Lehnert H, Schultes B, Born J, et al. Intranasal insulin enhances postprandial thermogenesis and lowers postprandial serum insulin levels in healthy men. Diabetes. 2011;60:114–8.CrossRefPubMed Benedict C, Brede S, Schiöth HB, Lehnert H, Schultes B, Born J, et al. Intranasal insulin enhances postprandial thermogenesis and lowers postprandial serum insulin levels in healthy men. Diabetes. 2011;60:114–8.CrossRefPubMed
3.
Zurück zum Zitat Dash S, Xiao C, Morgantini C, Koulajian K, Lewis GF. Intranasal insulin suppresses endogenous glucose production in humans compared with placebo in the presence of similar venous insulin concentrations. Diabetes. 2015;64:766–74.CrossRefPubMed Dash S, Xiao C, Morgantini C, Koulajian K, Lewis GF. Intranasal insulin suppresses endogenous glucose production in humans compared with placebo in the presence of similar venous insulin concentrations. Diabetes. 2015;64:766–74.CrossRefPubMed
4.
Zurück zum Zitat De la Mont SM. Intranasal insulin therapy for cognitive impairment and neurodegeneration: current state of the art. Expert Opin Drug Deliv. 2013;10:1699–709.CrossRef De la Mont SM. Intranasal insulin therapy for cognitive impairment and neurodegeneration: current state of the art. Expert Opin Drug Deliv. 2013;10:1699–709.CrossRef
5.
Zurück zum Zitat Patton JS, Platz RM. Routes of delivery: case studies. Adv Drug Dely Rev. 1992;8:179.CrossRef Patton JS, Platz RM. Routes of delivery: case studies. Adv Drug Dely Rev. 1992;8:179.CrossRef
6.
Zurück zum Zitat Wang Y, Zhang X, Cheng C, Li C. Mucoadhesive and enzymatic inhibitory nanoparticles for transnasal insulin delivery. Nanomedicine. 2014;9:451–64.CrossRefPubMed Wang Y, Zhang X, Cheng C, Li C. Mucoadhesive and enzymatic inhibitory nanoparticles for transnasal insulin delivery. Nanomedicine. 2014;9:451–64.CrossRefPubMed
7.
Zurück zum Zitat Carrillo C, Teruel JA, Aranda FJ, Ortiz A. Molecular mechanism of membrane permeabilization by the peptide antibiotic surfactin. Biochim Biophys Acta. 2003;1611:91–7.CrossRefPubMed Carrillo C, Teruel JA, Aranda FJ, Ortiz A. Molecular mechanism of membrane permeabilization by the peptide antibiotic surfactin. Biochim Biophys Acta. 2003;1611:91–7.CrossRefPubMed
8.
Zurück zum Zitat Maget-Dana R, Ptak M. Interactions of surfactin with membrane models. Biophys J. 1995;68(5):1937–43. Maget-Dana R, Ptak M. Interactions of surfactin with membrane models. Biophys J. 1995;68(5):1937–43.
9.
Zurück zum Zitat Zou A, Liu J, Garamus VM, Zheng K, Willumeit R, Mu B. Interaction between the natural lipopeptide (Glu1, Asp5) Surfactin-C15 and hemoglobin in aqueous solution. Biomacromolecules. 2010;11:593–9.CrossRefPubMed Zou A, Liu J, Garamus VM, Zheng K, Willumeit R, Mu B. Interaction between the natural lipopeptide (Glu1, Asp5) Surfactin-C15 and hemoglobin in aqueous solution. Biomacromolecules. 2010;11:593–9.CrossRefPubMed
10.
Zurück zum Zitat Cameotra S, Makkar R. Recent applications of biosurfactants as biological and immunological molecules. Curr Opin Microbiol. 2004;7(3):262–6. Cameotra S, Makkar R. Recent applications of biosurfactants as biological and immunological molecules. Curr Opin Microbiol. 2004;7(3):262–6.
11.
Zurück zum Zitat Hwang YH, Kim MS, Song IB, Park BK, Lim JH, Park SC, et al. Subacute (28 day) toxicity of surfactin C, a lipopeptide produced by Bacillus, in rats. J Health Sci. 2009;55:351–5.CrossRef Hwang YH, Kim MS, Song IB, Park BK, Lim JH, Park SC, et al. Subacute (28 day) toxicity of surfactin C, a lipopeptide produced by Bacillus, in rats. J Health Sci. 2009;55:351–5.CrossRef
12.
Zurück zum Zitat Zhang L, Gao Z, Zhao X, Qi G. A natural lipopeptide of surfactin for oral delivery of insulin. Drug Deliv. 2016;23:2084–93.CrossRefPubMed Zhang L, Gao Z, Zhao X, Qi G. A natural lipopeptide of surfactin for oral delivery of insulin. Drug Deliv. 2016;23:2084–93.CrossRefPubMed
13.
Zurück zum Zitat Qi G, Zhu F, Du P, Yang X, Qiu D, Yu Z, et al. Lipopeptide induces apoptosis in fungal cells by a mitochondria-dependent pathway. Peptides. 2010;31:1978–86.CrossRefPubMed Qi G, Zhu F, Du P, Yang X, Qiu D, Yu Z, et al. Lipopeptide induces apoptosis in fungal cells by a mitochondria-dependent pathway. Peptides. 2010;31:1978–86.CrossRefPubMed
14.
Zurück zum Zitat Makhlof A, Tozuka Y, Takeuchi H. Design and evaluation of novel pH-sensitive chitosan nanoparticles for oral insulin delivery. Eur J Pharm Sci. 2011;42:445–51.CrossRefPubMed Makhlof A, Tozuka Y, Takeuchi H. Design and evaluation of novel pH-sensitive chitosan nanoparticles for oral insulin delivery. Eur J Pharm Sci. 2011;42:445–51.CrossRefPubMed
15.
Zurück zum Zitat Rekha MR, Sharma CP. Synthesis and evaluation of lauryl succinyl chitosan particles towards oral insulin delivery and absorption. J Control Release. 2009;135:144–51.CrossRefPubMed Rekha MR, Sharma CP. Synthesis and evaluation of lauryl succinyl chitosan particles towards oral insulin delivery and absorption. J Control Release. 2009;135:144–51.CrossRefPubMed
16.
Zurück zum Zitat Sajeesh S, Bouchemal K, Marsaud V, Vauthier C, Sharma CP. Cyclodextrin complexes insulin encapsulated hydrogel microparticles: an oral delivery system for insulin. J Control Release. 2010;147:377–84.CrossRefPubMed Sajeesh S, Bouchemal K, Marsaud V, Vauthier C, Sharma CP. Cyclodextrin complexes insulin encapsulated hydrogel microparticles: an oral delivery system for insulin. J Control Release. 2010;147:377–84.CrossRefPubMed
17.
Zurück zum Zitat Sonaje K, Lin YH, Juang JH, Wey SP, Chen CT, Sung HW. In vivo evaluation of safety and efficacy of self-assembled nanoparticles for oral insulin delivery. Biomaterials. 2009;30:2329–39.CrossRefPubMed Sonaje K, Lin YH, Juang JH, Wey SP, Chen CT, Sung HW. In vivo evaluation of safety and efficacy of self-assembled nanoparticles for oral insulin delivery. Biomaterials. 2009;30:2329–39.CrossRefPubMed
18.
Zurück zum Zitat Carino GP, Jacob JS, Mathiowitz E. Nanosphere-based oral insulin delivery. J Control Release. 2000;65:261–9.CrossRefPubMed Carino GP, Jacob JS, Mathiowitz E. Nanosphere-based oral insulin delivery. J Control Release. 2000;65:261–9.CrossRefPubMed
19.
Zurück zum Zitat Damgé C, Maincent P, Ubrich N. Oral delivery of insulin associated with polymeric nanoparticles in diabetic rats. J Control Release. 2007;117:163–70.CrossRefPubMed Damgé C, Maincent P, Ubrich N. Oral delivery of insulin associated with polymeric nanoparticles in diabetic rats. J Control Release. 2007;117:163–70.CrossRefPubMed
20.
Zurück zum Zitat Furtado S, Abramson D, Burrill R, Olivier G, Gourd C, Bubbers E, et al. Oral delivery of insulin-loaded poly (fumaric-co-sebacic) anhydride microspheres. Int J Pharm. 2008;347:149–55.CrossRefPubMed Furtado S, Abramson D, Burrill R, Olivier G, Gourd C, Bubbers E, et al. Oral delivery of insulin-loaded poly (fumaric-co-sebacic) anhydride microspheres. Int J Pharm. 2008;347:149–55.CrossRefPubMed
21.
Zurück zum Zitat Kim SK, Lee S, Jin S, Moon HT, Jeon OC, Lee DT, et al. Diabetes correction in pancreatectomized canines by the orally absorbable insulin-deoxycholate complex. Mol Pharm. 2010;7:708–17.CrossRefPubMed Kim SK, Lee S, Jin S, Moon HT, Jeon OC, Lee DT, et al. Diabetes correction in pancreatectomized canines by the orally absorbable insulin-deoxycholate complex. Mol Pharm. 2010;7:708–17.CrossRefPubMed
22.
Zurück zum Zitat Daniel C, Weigmann B, Bronson R, Von Boehmer H. Prevention of type 1 diabetes in mice by tolerogenic vaccination with a strong agonist insulin mime tope. J Exp med. 2011;208:1501–10.CrossRefPubMedPubMedCentral Daniel C, Weigmann B, Bronson R, Von Boehmer H. Prevention of type 1 diabetes in mice by tolerogenic vaccination with a strong agonist insulin mime tope. J Exp med. 2011;208:1501–10.CrossRefPubMedPubMedCentral
23.
Zurück zum Zitat Sintov AC, Levy HV, Botner S. Systemic delivery of insulin via the nasal route using a new microemulsion system: in vitro and in vivo studies. J Control Release. 2010;148:168–76.CrossRefPubMed Sintov AC, Levy HV, Botner S. Systemic delivery of insulin via the nasal route using a new microemulsion system: in vitro and in vivo studies. J Control Release. 2010;148:168–76.CrossRefPubMed
24.
Zurück zum Zitat Rima BS, Manhar D, David MM, Viral NS. Insulin delivery methods: past, present and future. Int J Pharm Investig. 2016;6:1–9.CrossRef Rima BS, Manhar D, David MM, Viral NS. Insulin delivery methods: past, present and future. Int J Pharm Investig. 2016;6:1–9.CrossRef
26.
Zurück zum Zitat Zhang Y, Jiang XG, Yao J. Nasal absorption enhancement of insulin by sodium deoxycholate in combination with cyclodextrins. Acta Pharmacol Sin. 2001;22:1051–6.PubMed Zhang Y, Jiang XG, Yao J. Nasal absorption enhancement of insulin by sodium deoxycholate in combination with cyclodextrins. Acta Pharmacol Sin. 2001;22:1051–6.PubMed
27.
Zurück zum Zitat Gordon GS, Moses AC, Silver RD, Flier JS, Carey MC. Nasal absorption of insulin: enhancement by hydrophobic bile salts. Proc Natl Acad Sci U S A. 1985;82:7419–23.CrossRefPubMedPubMedCentral Gordon GS, Moses AC, Silver RD, Flier JS, Carey MC. Nasal absorption of insulin: enhancement by hydrophobic bile salts. Proc Natl Acad Sci U S A. 1985;82:7419–23.CrossRefPubMedPubMedCentral
28.
Zurück zum Zitat Shao Z, Li Y, Chermak T, Mitra A. Cyclodextrins as mucosal absorption promoters of insulin. II. Effects of β-cyclodextrin derivatives on α-chymotryptic degradation and enteral absorption of insulin in rats. Pharm Res. 1994;11:1174–9.CrossRefPubMed Shao Z, Li Y, Chermak T, Mitra A. Cyclodextrins as mucosal absorption promoters of insulin. II. Effects of β-cyclodextrin derivatives on α-chymotryptic degradation and enteral absorption of insulin in rats. Pharm Res. 1994;11:1174–9.CrossRefPubMed
29.
Zurück zum Zitat Leary AC, Dowling M, Cussen K, O’Brien J, Stote RM. Pharmacokinetics and pharmacodynamics of intranasal insulin spray (NasulinTM) administered to healthy male volunteers: influence of the nasal cycle. J Diabetes Sci Technol. 2008;2:1054–60.CrossRefPubMedPubMedCentral Leary AC, Dowling M, Cussen K, O’Brien J, Stote RM. Pharmacokinetics and pharmacodynamics of intranasal insulin spray (NasulinTM) administered to healthy male volunteers: influence of the nasal cycle. J Diabetes Sci Technol. 2008;2:1054–60.CrossRefPubMedPubMedCentral
30.
Zurück zum Zitat Gao Z, Zhao X, Lee S, Li J, Liao H, Zhou X, et al. WH1fungin a surfactin cyclic lipopeptide is a novel oral immunoadjuvant. Vaccine. 2013;31:2796–803.CrossRefPubMed Gao Z, Zhao X, Lee S, Li J, Liao H, Zhou X, et al. WH1fungin a surfactin cyclic lipopeptide is a novel oral immunoadjuvant. Vaccine. 2013;31:2796–803.CrossRefPubMed
31.
Zurück zum Zitat Kim J, Park S, Kang HM, Ahn CW, Kwon HC, Song JH, et al. Human insulin secreted from insulinogenic xenograft restores normoglycemia in type 1 diabetic mice without immunosuppression. Cell Transplant. 2012;21:2131–47.CrossRefPubMed Kim J, Park S, Kang HM, Ahn CW, Kwon HC, Song JH, et al. Human insulin secreted from insulinogenic xenograft restores normoglycemia in type 1 diabetic mice without immunosuppression. Cell Transplant. 2012;21:2131–47.CrossRefPubMed
Metadaten
Titel
Bacillus-produced surfactin for intranasal delivery of insulin in diabetic mice
verfasst von
Qin Yu
Shihong Dong
Dan Yang
Xiaoying Xing
Xiuyun Zhao
Gaofu Qi
Publikationsdatum
20.06.2017
Verlag
Springer India
Erschienen in
International Journal of Diabetes in Developing Countries / Ausgabe 3/2018
Print ISSN: 0973-3930
Elektronische ISSN: 1998-3832
DOI
https://doi.org/10.1007/s13410-017-0564-3

Weitere Artikel der Ausgabe 3/2018

International Journal of Diabetes in Developing Countries 3/2018 Zur Ausgabe