Skip to main content
Erschienen in: Clinical and Translational Oncology 5/2022

09.01.2022 | Review Article

Bacterial driver–passenger model in biofilms: a new mechanism in the development of colorectal cancer

verfasst von: J. Xing, Y. Fang, W. Zhang, H. Zhang, D. Tang, D. Wang

Erschienen in: Clinical and Translational Oncology | Ausgabe 5/2022

Einloggen, um Zugang zu erhalten

Abstract

Colorectal cancer (CRC) is a heterogeneous disease of the intestinal epithelium and ranks the third largest diagnosed malignancy in the world. Many studies have shown that the high risk of CRC is believed to be related to the formation of biofilms. To prove causation, it will be significant to decipher which specific bacteria in biofilms initiate and maintain CRC and fully describe their underlying mechanisms. Here we introduce a bacterial driver–passenger model. This model added a novel and compelling angle to the role of microorganisms, putting more emphasis on the transformation of bacterial composition in biofilms which play different roles in the development of CRC. In this model, bacterial drivers can initiate the formation of CRC through genotoxicity, while bacterial passengers maintain the CRC process through metabolites. On the basis of these pathogens, we further turned our attention to strategies that can inhibit and eradicate these pathogenic biofilms, with the aim of finding new ways to hinder colorectal carcinogenesis.
Literatur
1.
Zurück zum Zitat Keum N, Giovannucci E. Global burden of colorectal cancer: emerging trends, risk factors and prevention strategies. Nat Rev Gastroenterol Hepatol. 2019;16(12):713–32.PubMed Keum N, Giovannucci E. Global burden of colorectal cancer: emerging trends, risk factors and prevention strategies. Nat Rev Gastroenterol Hepatol. 2019;16(12):713–32.PubMed
3.
Zurück zum Zitat Dai Z, Zhang J, Wu Q, Chen J, Liu J, Wang L, et al. The role of microbiota in the development of colorectal cancer. Int J Cancer. 2019;145(8):2032–41.PubMedPubMedCentral Dai Z, Zhang J, Wu Q, Chen J, Liu J, Wang L, et al. The role of microbiota in the development of colorectal cancer. Int J Cancer. 2019;145(8):2032–41.PubMedPubMedCentral
4.
Zurück zum Zitat Li S, Konstantinov SR, Smits R, Peppelenbosch MP. Bacterial biofilms in colorectal cancer initiation and progression. Trends Mol Med. 2017;23(1):18–30.PubMed Li S, Konstantinov SR, Smits R, Peppelenbosch MP. Bacterial biofilms in colorectal cancer initiation and progression. Trends Mol Med. 2017;23(1):18–30.PubMed
5.
Zurück zum Zitat Dejea CM, Fathi P, Craig JM, Boleij A, Taddese R, Geis AL, et al. Patients with familial adenomatous polyposis harbor colonic biofilms containing tumorigenic bacteria. Science. 2018;359(6375):592–7.PubMedPubMedCentral Dejea CM, Fathi P, Craig JM, Boleij A, Taddese R, Geis AL, et al. Patients with familial adenomatous polyposis harbor colonic biofilms containing tumorigenic bacteria. Science. 2018;359(6375):592–7.PubMedPubMedCentral
6.
Zurück zum Zitat Tytgat H, Nobrega F, van der Oost J, Vos de Tim WJ. Bowel biofilms: tipping points between a healthy and compromised gut? Trends Microbiol. 2019;27(1):17–25.PubMed Tytgat H, Nobrega F, van der Oost J, Vos de Tim WJ. Bowel biofilms: tipping points between a healthy and compromised gut? Trends Microbiol. 2019;27(1):17–25.PubMed
7.
Zurück zum Zitat Matsuo K, Ota H, Akamatsu T, Sugiyama A, Katsuyama TJG. Histochemistry of the surface mucous gel layer of the human colon. Trends Microbiol. 1997;40(6):782–9. Matsuo K, Ota H, Akamatsu T, Sugiyama A, Katsuyama TJG. Histochemistry of the surface mucous gel layer of the human colon. Trends Microbiol. 1997;40(6):782–9.
8.
Zurück zum Zitat Sicard J, Le Bihan G, Vogeleer P, Jacques M, Harel J. Interactions of intestinal bacteria with components of the intestinal mucus. Front Cell Infect Microbiol. 2017;7:387.PubMedPubMedCentral Sicard J, Le Bihan G, Vogeleer P, Jacques M, Harel J. Interactions of intestinal bacteria with components of the intestinal mucus. Front Cell Infect Microbiol. 2017;7:387.PubMedPubMedCentral
9.
Zurück zum Zitat Lappin-Scott H, Costerton JW. Bacterial biofilms and surface fouling. Biofouling. 1989;1(4):323–42. Lappin-Scott H, Costerton JW. Bacterial biofilms and surface fouling. Biofouling. 1989;1(4):323–42.
10.
Zurück zum Zitat Roy R, Tiwari M, Donelli G, Tiwari V. Strategies for combating bacterial biofilms: a focus on anti-biofilm agents and their mechanisms of action. Virulence. 2018;9(1):522–54.PubMed Roy R, Tiwari M, Donelli G, Tiwari V. Strategies for combating bacterial biofilms: a focus on anti-biofilm agents and their mechanisms of action. Virulence. 2018;9(1):522–54.PubMed
11.
Zurück zum Zitat Stoodley P, Sauer K, Davies D, Costerton JJ. Biofilms as complex differentiated communities. Ann Rev Microbiol. 2002;56:187–209. Stoodley P, Sauer K, Davies D, Costerton JJ. Biofilms as complex differentiated communities. Ann Rev Microbiol. 2002;56:187–209.
12.
Zurück zum Zitat Dalton HM, Goodman AE, Marshall KC. Diversity in surface colonization behavior in marine bacteria. J Ind Microbiol. 1996;17(3):228–34. Dalton HM, Goodman AE, Marshall KC. Diversity in surface colonization behavior in marine bacteria. J Ind Microbiol. 1996;17(3):228–34.
14.
Zurück zum Zitat Heydorn A, Nielsen AT, Hentzer M, Sternberg C, Molin S. Quantification of biofilm structures by the novel computer program COMSTAT. Microbiology. 2000;146:2395–407.PubMed Heydorn A, Nielsen AT, Hentzer M, Sternberg C, Molin S. Quantification of biofilm structures by the novel computer program COMSTAT. Microbiology. 2000;146:2395–407.PubMed
15.
Zurück zum Zitat Tolker-Nielsen T, Brinch UC, Ragas PC, Andersen JB, Jacobsen CS, Molin S. Development and dynamics of Pseudomonas sp. biofilms. J Bacteriol. 2000;182(22):6482–9.PubMedPubMedCentral Tolker-Nielsen T, Brinch UC, Ragas PC, Andersen JB, Jacobsen CS, Molin S. Development and dynamics of Pseudomonas sp. biofilms. J Bacteriol. 2000;182(22):6482–9.PubMedPubMedCentral
16.
Zurück zum Zitat Drewes JL, White JR, Dejea CM, Fathi P, Iyadorai T, Vadivelu J, et al. High-resolution bacterial 16S rRNA gene profile meta-analysis and biofilm status reveal common colorectal cancer consortia. NPJ Biofilms Microb. 2017;3:34. Drewes JL, White JR, Dejea CM, Fathi P, Iyadorai T, Vadivelu J, et al. High-resolution bacterial 16S rRNA gene profile meta-analysis and biofilm status reveal common colorectal cancer consortia. NPJ Biofilms Microb. 2017;3:34.
17.
Zurück zum Zitat Dejea CM, Wick EC, Hechenbleikner EM, White JR, Welch JL, Rossetti BJ, Peterson SN, Snesrud EC, Borisy GG, Lazarev M, Stein E. Microbiota organization is a distinct feature of proximal colorectal cancers. Proc Nat Acad Sci. 2014;111(51):18321–6.PubMedPubMedCentral Dejea CM, Wick EC, Hechenbleikner EM, White JR, Welch JL, Rossetti BJ, Peterson SN, Snesrud EC, Borisy GG, Lazarev M, Stein E. Microbiota organization is a distinct feature of proximal colorectal cancers. Proc Nat Acad Sci. 2014;111(51):18321–6.PubMedPubMedCentral
18.
Zurück zum Zitat Raskov H, Kragh KN, Bjarnsholt T, Alamili M, Gogenur I. Bacterial biofilm formation inside colonic crypts may accelerate colorectal carcinogenesis. Clin Transl Med. 2018;7(1):30.PubMedPubMedCentral Raskov H, Kragh KN, Bjarnsholt T, Alamili M, Gogenur I. Bacterial biofilm formation inside colonic crypts may accelerate colorectal carcinogenesis. Clin Transl Med. 2018;7(1):30.PubMedPubMedCentral
19.
Zurück zum Zitat Soler A, Miller R, Laughlin K, Carp N, Klurfeld D, Mullin J. Increased tight junctional permeability is associated with the development of colon cancer. Carcinogenesis. 1999;20(8):1425–31.PubMed Soler A, Miller R, Laughlin K, Carp N, Klurfeld D, Mullin J. Increased tight junctional permeability is associated with the development of colon cancer. Carcinogenesis. 1999;20(8):1425–31.PubMed
20.
Zurück zum Zitat Overhage J, Campisano A, Bains M, Torfs EC, Rehm BH, Hancock RE. Human host defense peptide LL-37 prevents bacterial biofilm formation. Infect Immun. 2008;76(9):4176–82.PubMedPubMedCentral Overhage J, Campisano A, Bains M, Torfs EC, Rehm BH, Hancock RE. Human host defense peptide LL-37 prevents bacterial biofilm formation. Infect Immun. 2008;76(9):4176–82.PubMedPubMedCentral
21.
Zurück zum Zitat Ciofu O, Mandsberg LF, Wang H, Høiby N. Phenotypes selected during chronic lung infection in cystic fibrosis patients: implications for the treatment of Pseudomonas aeruginosa biofilm infections. FEMS Immunol Med Microbiol. 2012;65(2):215–25.PubMed Ciofu O, Mandsberg LF, Wang H, Høiby N. Phenotypes selected during chronic lung infection in cystic fibrosis patients: implications for the treatment of Pseudomonas aeruginosa biofilm infections. FEMS Immunol Med Microbiol. 2012;65(2):215–25.PubMed
22.
Zurück zum Zitat Anderl JN, Zahller J, Roe F, Stewart PS. Role of nutrient limitation and stationary-phase existence in Klebsiella pneumoniae biofilm resistance to ampicillin and ciprofloxacin. Antimicrob Agents Chemother. 2003;47(4):1251–6.PubMedPubMedCentral Anderl JN, Zahller J, Roe F, Stewart PS. Role of nutrient limitation and stationary-phase existence in Klebsiella pneumoniae biofilm resistance to ampicillin and ciprofloxacin. Antimicrob Agents Chemother. 2003;47(4):1251–6.PubMedPubMedCentral
23.
Zurück zum Zitat Walters MC 3rd, Roe F, Bugnicourt A, Franklin MJ, Stewart PS. Contributions of antibiotic penetration, oxygen limitation, and low metabolic activity to tolerance of Pseudomonas aeruginosa biofilms to ciprofloxacin and tobramycin. Antimicrob Agents Chemother. 2003;47(1):317–23.PubMedPubMedCentral Walters MC 3rd, Roe F, Bugnicourt A, Franklin MJ, Stewart PS. Contributions of antibiotic penetration, oxygen limitation, and low metabolic activity to tolerance of Pseudomonas aeruginosa biofilms to ciprofloxacin and tobramycin. Antimicrob Agents Chemother. 2003;47(1):317–23.PubMedPubMedCentral
24.
Zurück zum Zitat Ma H, Bryers JD. Non-invasive determination of conjugative transfer of plasmids bearing antibiotic-resistance genes in biofilm-bound bacteria: effects of substrate loading and antibiotic selection. Appl Microbiol Biotechnol. 2013;97(1):317–28.PubMed Ma H, Bryers JD. Non-invasive determination of conjugative transfer of plasmids bearing antibiotic-resistance genes in biofilm-bound bacteria: effects of substrate loading and antibiotic selection. Appl Microbiol Biotechnol. 2013;97(1):317–28.PubMed
25.
Zurück zum Zitat Ibrahim NH, Melake NA, Somily AM, Zakaria AS, Baddour MM, Mahmoud AZ. The effect of antifungal combination on transcripts of a subset of drug-resistance genes in clinical isolates of Candida species induced biofilms. Saudi Pharm J. 2015;23(1):55–66.PubMed Ibrahim NH, Melake NA, Somily AM, Zakaria AS, Baddour MM, Mahmoud AZ. The effect of antifungal combination on transcripts of a subset of drug-resistance genes in clinical isolates of Candida species induced biofilms. Saudi Pharm J. 2015;23(1):55–66.PubMed
26.
Zurück zum Zitat Johnson CH, Dejea CM, Edler D, Hoang LT, Santidrian AF, Felding BH, et al. Metabolism links bacterial biofilms and colon carcinogenesis. Cell Metab. 2015;21(6):891–7.PubMedPubMedCentral Johnson CH, Dejea CM, Edler D, Hoang LT, Santidrian AF, Felding BH, et al. Metabolism links bacterial biofilms and colon carcinogenesis. Cell Metab. 2015;21(6):891–7.PubMedPubMedCentral
27.
Zurück zum Zitat Tjalsma H, Boleij A, Marchesi JR, Dutilh BE. A bacterial driver-passenger model for colorectal cancer: beyond the usual suspects. Nat Rev Microbiol. 2012;10(8):575–82.PubMed Tjalsma H, Boleij A, Marchesi JR, Dutilh BE. A bacterial driver-passenger model for colorectal cancer: beyond the usual suspects. Nat Rev Microbiol. 2012;10(8):575–82.PubMed
28.
Zurück zum Zitat Marchesi JR, Dutilh BE, Hall N, Peters WH, Roelofs R, Boleij A, et al. Towards the human colorectal cancer microbiome. PLoS ONE. 2011;6(5):e20447.PubMedPubMedCentral Marchesi JR, Dutilh BE, Hall N, Peters WH, Roelofs R, Boleij A, et al. Towards the human colorectal cancer microbiome. PLoS ONE. 2011;6(5):e20447.PubMedPubMedCentral
29.
Zurück zum Zitat Fearon ER. Molecular genetics of colorectal cancer. Annu Rev Pathol. 2011;6:479–507.PubMed Fearon ER. Molecular genetics of colorectal cancer. Annu Rev Pathol. 2011;6:479–507.PubMed
30.
Zurück zum Zitat Castellarin M, Warren RL, Freeman JD, Dreolini L, Krzywinski M, Strauss J, et al. Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma. Genome Res. 2012;22(2):299–306.PubMedPubMedCentral Castellarin M, Warren RL, Freeman JD, Dreolini L, Krzywinski M, Strauss J, et al. Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma. Genome Res. 2012;22(2):299–306.PubMedPubMedCentral
31.
Zurück zum Zitat Harald zur H. The search for infectious causes of human cancers: where and why. Virology. 2009;392(1):1. Harald zur H. The search for infectious causes of human cancers: where and why. Virology. 2009;392(1):1.
32.
Zurück zum Zitat Boleij A, Tjalsma H. Gut bacteria in health and disease: a survey on the interface between intestinal microbiology and colorectal cancer. Biol Rev Camb Philos Soc. 2012;87(3):701–30.PubMed Boleij A, Tjalsma H. Gut bacteria in health and disease: a survey on the interface between intestinal microbiology and colorectal cancer. Biol Rev Camb Philos Soc. 2012;87(3):701–30.PubMed
33.
Zurück zum Zitat Wu S, Shin J, Zhang G, Cohen M, Franco A, Sears CL. The Bacteroides fragilis toxin binds to a specific intestinal epithelial cell receptor. Infect Immun. 2006;74(9):5382–90.PubMedPubMedCentral Wu S, Shin J, Zhang G, Cohen M, Franco A, Sears CL. The Bacteroides fragilis toxin binds to a specific intestinal epithelial cell receptor. Infect Immun. 2006;74(9):5382–90.PubMedPubMedCentral
34.
Zurück zum Zitat Toprak NU, Yagci A, Gulluoglu BM, Akin ML, Demirkalem P, Celenk T, et al. A possible role of Bacteroides fragilis enterotoxin in the aetiology of colorectal cancer. Clin Microbiol Infect. 2006;12(8):782–6.PubMed Toprak NU, Yagci A, Gulluoglu BM, Akin ML, Demirkalem P, Celenk T, et al. A possible role of Bacteroides fragilis enterotoxin in the aetiology of colorectal cancer. Clin Microbiol Infect. 2006;12(8):782–6.PubMed
35.
Zurück zum Zitat Goodwin AC, Destefano Shields CE, Wu S, Huso DL, Wu X, Murray-Stewart TR, et al. Polyamine catabolism contributes to enterotoxigenic Bacteroides fragilis-induced colon tumorigenesis. Proc Natl Acad Sci USA. 2011;108(37):15354–9.PubMedPubMedCentral Goodwin AC, Destefano Shields CE, Wu S, Huso DL, Wu X, Murray-Stewart TR, et al. Polyamine catabolism contributes to enterotoxigenic Bacteroides fragilis-induced colon tumorigenesis. Proc Natl Acad Sci USA. 2011;108(37):15354–9.PubMedPubMedCentral
36.
Zurück zum Zitat Abais JM, Xia M, Zhang Y, Boini KM, Li PL. Redox regulation of NLRP3 inflammasomes: ROS as trigger or effector? Antioxid Redox Signal. 2015;22(13):1111–29.PubMedPubMedCentral Abais JM, Xia M, Zhang Y, Boini KM, Li PL. Redox regulation of NLRP3 inflammasomes: ROS as trigger or effector? Antioxid Redox Signal. 2015;22(13):1111–29.PubMedPubMedCentral
37.
Zurück zum Zitat Wu S, Rhee KJ, Zhang M, Franco A, Sears CL. Bacteroides fragilis toxin stimulates intestinal epithelial cell shedding and gamma-secretase-dependent E-cadherin cleavage. J Cell Sci. 2007;120(Pt 11):1944–52.PubMed Wu S, Rhee KJ, Zhang M, Franco A, Sears CL. Bacteroides fragilis toxin stimulates intestinal epithelial cell shedding and gamma-secretase-dependent E-cadherin cleavage. J Cell Sci. 2007;120(Pt 11):1944–52.PubMed
38.
Zurück zum Zitat Markowitz SD, Bertagnolli MM. Molecular origins of cancer: molecular basis of colorectal cancer. N Engl J Med. 2009;361(25):2449–60.PubMedPubMedCentral Markowitz SD, Bertagnolli MM. Molecular origins of cancer: molecular basis of colorectal cancer. N Engl J Med. 2009;361(25):2449–60.PubMedPubMedCentral
39.
Zurück zum Zitat Wu S, Morin PJ, Maouyo D, Sears CL. Bacteroides fragilis enterotoxin induces c-Myc expression and cellular proliferation. Gastroenterology. 2003;124(2):392–400.PubMed Wu S, Morin PJ, Maouyo D, Sears CL. Bacteroides fragilis enterotoxin induces c-Myc expression and cellular proliferation. Gastroenterology. 2003;124(2):392–400.PubMed
40.
Zurück zum Zitat Wu S, Rhee KJ, Albesiano E, Rabizadeh S, Wu X, Yen HR, et al. A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses. Nat Med. 2009;15(9):1016–22.PubMedPubMedCentral Wu S, Rhee KJ, Albesiano E, Rabizadeh S, Wu X, Yen HR, et al. A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses. Nat Med. 2009;15(9):1016–22.PubMedPubMedCentral
41.
Zurück zum Zitat Göktuna SI, Shostak K, Chau TL, Heukamp LC, Hennuy B, Duong HQ, et al. The prosurvival IKK-related kinase IKKε integrates LPS and IL17A signaling cascades to promote Wnt-dependent tumor development in the intestine. Can Res. 2016;76(9):2587–99. Göktuna SI, Shostak K, Chau TL, Heukamp LC, Hennuy B, Duong HQ, et al. The prosurvival IKK-related kinase IKKε integrates LPS and IL17A signaling cascades to promote Wnt-dependent tumor development in the intestine. Can Res. 2016;76(9):2587–99.
42.
Zurück zum Zitat Hata K, Andoh A, Shimada M, Fujino S, Bamba S, Araki Y, et al. IL-17 stimulates inflammatory responses via NF-kappaB and MAP kinase pathways in human colonic myofibroblasts. Am J Physiol Gastrointest Liver Physiol. 2002;282(6):G1035–44.PubMed Hata K, Andoh A, Shimada M, Fujino S, Bamba S, Araki Y, et al. IL-17 stimulates inflammatory responses via NF-kappaB and MAP kinase pathways in human colonic myofibroblasts. Am J Physiol Gastrointest Liver Physiol. 2002;282(6):G1035–44.PubMed
43.
Zurück zum Zitat Swidsinski A, Weber J, Loening-Baucke V, Hale L, Lochs H. Spatial organization and composition of the mucosal flora in patients with inflammatory bowel disease. J Clin Microbiol. 2005;43(7):3380–9.PubMedPubMedCentral Swidsinski A, Weber J, Loening-Baucke V, Hale L, Lochs H. Spatial organization and composition of the mucosal flora in patients with inflammatory bowel disease. J Clin Microbiol. 2005;43(7):3380–9.PubMedPubMedCentral
44.
Zurück zum Zitat Ruiz PA, Shkoda A, Kim SC, Sartor RB, Haller D. IL-10 gene-deficient mice lack TGF-beta/Smad-mediated TLR2 degradation and fail to inhibit proinflammatory gene expression in intestinal epithelial cells under conditions of chronic inflammation. Ann N Y Acad Sci. 2006;1072:389–94.PubMed Ruiz PA, Shkoda A, Kim SC, Sartor RB, Haller D. IL-10 gene-deficient mice lack TGF-beta/Smad-mediated TLR2 degradation and fail to inhibit proinflammatory gene expression in intestinal epithelial cells under conditions of chronic inflammation. Ann N Y Acad Sci. 2006;1072:389–94.PubMed
45.
Zurück zum Zitat Szigeti R, Pangas SA, Nagy-Szakal D, Dowd SE, Shulman RJ, Olive AP, et al. SMAD4 haploinsufficiency associates with augmented colonic inflammation in select humans and mice. Ann Clin Lab Sci. 2012;42(4):401–8.PubMedPubMedCentral Szigeti R, Pangas SA, Nagy-Szakal D, Dowd SE, Shulman RJ, Olive AP, et al. SMAD4 haploinsufficiency associates with augmented colonic inflammation in select humans and mice. Ann Clin Lab Sci. 2012;42(4):401–8.PubMedPubMedCentral
46.
Zurück zum Zitat Wang X, Huycke MM. Extracellular superoxide production by Enterococcus faecalis promotes chromosomal instability in mammalian cells. Gastroenterology. 2007;132(2):551–61.PubMed Wang X, Huycke MM. Extracellular superoxide production by Enterococcus faecalis promotes chromosomal instability in mammalian cells. Gastroenterology. 2007;132(2):551–61.PubMed
47.
Zurück zum Zitat McCool KW, Miyamoto S. DNA damage-dependent NF-κB activation: NEMO turns nuclear signaling inside out. Immunol Rev. 2012;246(1):311–26.PubMedPubMedCentral McCool KW, Miyamoto S. DNA damage-dependent NF-κB activation: NEMO turns nuclear signaling inside out. Immunol Rev. 2012;246(1):311–26.PubMedPubMedCentral
48.
Zurück zum Zitat Jallepalli PV, Lengauer C. Chromosome segregation and cancer: cutting through the mystery. Nat Rev Cancer. 2001;1(2):109–17.PubMed Jallepalli PV, Lengauer C. Chromosome segregation and cancer: cutting through the mystery. Nat Rev Cancer. 2001;1(2):109–17.PubMed
49.
Zurück zum Zitat Zhou H, Ivanov VN, Gillespie J, Geard CR, Amundson SA, Brenner DJ, et al. Mechanism of radiation-induced bystander effect: role of the cyclooxygenase-2 signaling pathway. Proc Natl Acad Sci USA. 2005;102(41):14641–6.PubMedPubMedCentral Zhou H, Ivanov VN, Gillespie J, Geard CR, Amundson SA, Brenner DJ, et al. Mechanism of radiation-induced bystander effect: role of the cyclooxygenase-2 signaling pathway. Proc Natl Acad Sci USA. 2005;102(41):14641–6.PubMedPubMedCentral
50.
Zurück zum Zitat Carniol K, Gilmore MS. Signal transduction, quorum-sensing, and extracellular protease activity in Enterococcus faecalis biofilm formation. J Bacteriol. 2004;186(24):8161–3.PubMedPubMedCentral Carniol K, Gilmore MS. Signal transduction, quorum-sensing, and extracellular protease activity in Enterococcus faecalis biofilm formation. J Bacteriol. 2004;186(24):8161–3.PubMedPubMedCentral
51.
Zurück zum Zitat Nougayrède JP, Homburg S, Taieb F, Boury M, Brzuszkiewicz E, Gottschalk G, et al. Escherichia coli induces DNA double-strand breaks in eukaryotic cells. Science (New York, NY). 2006;313(5788):848–51. Nougayrède JP, Homburg S, Taieb F, Boury M, Brzuszkiewicz E, Gottschalk G, et al. Escherichia coli induces DNA double-strand breaks in eukaryotic cells. Science (New York, NY). 2006;313(5788):848–51.
52.
Zurück zum Zitat Allen-Vercoe E, Jobin C. Fusobacterium and Enterobacteriaceae: important players for CRC. Immunol Lett. 2014;162:54–61.PubMedPubMedCentral Allen-Vercoe E, Jobin C. Fusobacterium and Enterobacteriaceae: important players for CRC. Immunol Lett. 2014;162:54–61.PubMedPubMedCentral
53.
Zurück zum Zitat Leung A, Tsoi H, Yu J. Fusobacterium and Escherichia: models of colorectal cancer driven by microbiota and the utility of microbiota in colorectal cancer screening. Expert Rev Gastroenterol Hepatol. 2015;9(5):651–7.PubMed Leung A, Tsoi H, Yu J. Fusobacterium and Escherichia: models of colorectal cancer driven by microbiota and the utility of microbiota in colorectal cancer screening. Expert Rev Gastroenterol Hepatol. 2015;9(5):651–7.PubMed
54.
Zurück zum Zitat Maddocks OD, Scanlon KM, Donnenberg MS. An Escherichia coli effector protein promotes host mutation via depletion of DNA mismatch repair proteins. mBio. 2013;4(3):e00152-e213.PubMedPubMedCentral Maddocks OD, Scanlon KM, Donnenberg MS. An Escherichia coli effector protein promotes host mutation via depletion of DNA mismatch repair proteins. mBio. 2013;4(3):e00152-e213.PubMedPubMedCentral
55.
Zurück zum Zitat Housseau F, Sears CL. Enterotoxigenic Bacteroides fragilis (ETBF)-mediated colitis in Min (Apc+/-) mice: a human commensal-based murine model of colon carcinogenesis. Cell cycle (Georgetown, Tex). 2010;9(1):3–5. Housseau F, Sears CL. Enterotoxigenic Bacteroides fragilis (ETBF)-mediated colitis in Min (Apc+/-) mice: a human commensal-based murine model of colon carcinogenesis. Cell cycle (Georgetown, Tex). 2010;9(1):3–5.
56.
Zurück zum Zitat Shen XJ, Rawls JF, Randall T, Burcal L, Mpande CN, Jenkins N, et al. Molecular characterization of mucosal adherent bacteria and associations with colorectal adenomas. Gut Microb. 2010;1(3):138–47. Shen XJ, Rawls JF, Randall T, Burcal L, Mpande CN, Jenkins N, et al. Molecular characterization of mucosal adherent bacteria and associations with colorectal adenomas. Gut Microb. 2010;1(3):138–47.
57.
Zurück zum Zitat Hirayama A, Kami K, Sugimoto M, Sugawara M, Toki N, Onozuka H, et al. Quantitative metabolome profiling of colon and stomach cancer microenvironment by capillary electrophoresis time-of-flight mass spectrometry. Can Res. 2009;69(11):4918–25. Hirayama A, Kami K, Sugimoto M, Sugawara M, Toki N, Onozuka H, et al. Quantitative metabolome profiling of colon and stomach cancer microenvironment by capillary electrophoresis time-of-flight mass spectrometry. Can Res. 2009;69(11):4918–25.
58.
Zurück zum Zitat Cao H, Luo S, Xu M, Zhang Y, Song S, Wang S, et al. The secondary bile acid, deoxycholate accelerates intestinal adenoma-adenocarcinoma sequence in Apc (min/+) mice through enhancing Wnt signaling. Fam Cancer. 2014;13(4):563–71.PubMed Cao H, Luo S, Xu M, Zhang Y, Song S, Wang S, et al. The secondary bile acid, deoxycholate accelerates intestinal adenoma-adenocarcinoma sequence in Apc (min/+) mice through enhancing Wnt signaling. Fam Cancer. 2014;13(4):563–71.PubMed
59.
Zurück zum Zitat Belcheva A, Irrazabal T, Robertson SJ, Streutker C, Maughan H, Rubino S, et al. Gut microbial metabolism drives transformation of MSH2-deficient colon epithelial cells. Cell. 2014;158(2):288–99.PubMed Belcheva A, Irrazabal T, Robertson SJ, Streutker C, Maughan H, Rubino S, et al. Gut microbial metabolism drives transformation of MSH2-deficient colon epithelial cells. Cell. 2014;158(2):288–99.PubMed
60.
Zurück zum Zitat den Besten G, Lange K, Havinga R, van Dijk TH, Gerding A, van Eunen K, et al. Gut-derived short-chain fatty acids are vividly assimilated into host carbohydrates and lipids. Am J Physiol Gastrointest Liver Physiol. 2013;305(12):G900–10. den Besten G, Lange K, Havinga R, van Dijk TH, Gerding A, van Eunen K, et al. Gut-derived short-chain fatty acids are vividly assimilated into host carbohydrates and lipids. Am J Physiol Gastrointest Liver Physiol. 2013;305(12):G900–10.
61.
Zurück zum Zitat Chang PV, Hao L, Offermanns S, Medzhitov R. The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition. Proc Natl Acad Sci USA. 2014;111(6):2247–52.PubMedPubMedCentral Chang PV, Hao L, Offermanns S, Medzhitov R. The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition. Proc Natl Acad Sci USA. 2014;111(6):2247–52.PubMedPubMedCentral
62.
Zurück zum Zitat Kim CH, Park J, Kim M. Gut microbiota-derived short-chain Fatty acids, T cells, and inflammation. Immun Netw. 2014;14(6):277–88. Kim CH, Park J, Kim M. Gut microbiota-derived short-chain Fatty acids, T cells, and inflammation. Immun Netw. 2014;14(6):277–88.
63.
Zurück zum Zitat Heerdt BG, Houston MA, Augenlicht LH. Potentiation by specific short-chain fatty acids of differentiation and apoptosis in human colonic carcinoma cell lines. Can Res. 1994;54(12):3288–93. Heerdt BG, Houston MA, Augenlicht LH. Potentiation by specific short-chain fatty acids of differentiation and apoptosis in human colonic carcinoma cell lines. Can Res. 1994;54(12):3288–93.
64.
Zurück zum Zitat Biarc J, Nguyen IS, Pini A, Gossé F, Richert S, Thiersé D, et al. Carcinogenic properties of proteins with pro-inflammatory activity from Streptococcus infantarius (formerly S. bovis). Carcinogenesis. 2004;25(8):1477–84.PubMed Biarc J, Nguyen IS, Pini A, Gossé F, Richert S, Thiersé D, et al. Carcinogenic properties of proteins with pro-inflammatory activity from Streptococcus infantarius (formerly S. bovis). Carcinogenesis. 2004;25(8):1477–84.PubMed
65.
Zurück zum Zitat Abdulamir AS, Hafidh RR, Abu BF. The association of Streptococcus bovis/gallolyticus with colorectal tumors: the nature and the underlying mechanisms of its etiological role. J Exp Clin Cancer Res CR. 2011;30(1):11.PubMed Abdulamir AS, Hafidh RR, Abu BF. The association of Streptococcus bovis/gallolyticus with colorectal tumors: the nature and the underlying mechanisms of its etiological role. J Exp Clin Cancer Res CR. 2011;30(1):11.PubMed
66.
Zurück zum Zitat Ohshima H, Bartsch H. Chronic infections and inflammatory processes as cancer risk factors: possible role of nitric oxide in carcinogenesis. Mutat Res. 1994;305(2):253–64.PubMed Ohshima H, Bartsch H. Chronic infections and inflammatory processes as cancer risk factors: possible role of nitric oxide in carcinogenesis. Mutat Res. 1994;305(2):253–64.PubMed
67.
Zurück zum Zitat Abdulamir AS, Hafidh RR, Bakar FA. Molecular detection, quantification, and isolation of Streptococcus gallolyticus bacteria colonizing colorectal tumors: inflammation-driven potential of carcinogenesis via IL-1, COX-2, and IL-8. Mol Cancer. 2010;9:249.PubMedPubMedCentral Abdulamir AS, Hafidh RR, Bakar FA. Molecular detection, quantification, and isolation of Streptococcus gallolyticus bacteria colonizing colorectal tumors: inflammation-driven potential of carcinogenesis via IL-1, COX-2, and IL-8. Mol Cancer. 2010;9:249.PubMedPubMedCentral
68.
Zurück zum Zitat Deng Q, Wang C, Yu K, Wang Y, Yang Q, Zhang J, et al. Streptococcus bovis contributes to the development of colorectal cancer via recruiting CD11b+ TLR-4+ Cells. Med Sci Monit. 2020;26:e921886.PubMedPubMedCentral Deng Q, Wang C, Yu K, Wang Y, Yang Q, Zhang J, et al. Streptococcus bovis contributes to the development of colorectal cancer via recruiting CD11b+ TLR-4+ Cells. Med Sci Monit. 2020;26:e921886.PubMedPubMedCentral
69.
Zurück zum Zitat Boleij A, van Gelder MM, Swinkels DW, Tjalsma H. Clinical Importance of Streptococcus gallolyticus infection among colorectal cancer patients: systematic review and meta-analysis. Clin Infect Dis. 2011;53(9):870–8.PubMed Boleij A, van Gelder MM, Swinkels DW, Tjalsma H. Clinical Importance of Streptococcus gallolyticus infection among colorectal cancer patients: systematic review and meta-analysis. Clin Infect Dis. 2011;53(9):870–8.PubMed
70.
Zurück zum Zitat Hengzhuang W, Wu H, Ciofu O, Song Z, Høiby N. Pharmacokinetics/pharmacodynamics of colistin and imipenem on mucoid and nonmucoid Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother. 2011;55(9):4469–74.PubMedPubMedCentral Hengzhuang W, Wu H, Ciofu O, Song Z, Høiby N. Pharmacokinetics/pharmacodynamics of colistin and imipenem on mucoid and nonmucoid Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother. 2011;55(9):4469–74.PubMedPubMedCentral
71.
Zurück zum Zitat Hengzhuang W, Wu H, Ciofu O, Song Z, Høiby N. In vivo pharmacokinetics/pharmacodynamics of colistin and imipenem in Pseudomonas aeruginosa biofilm infection. Antimicrob Agents Chemother. 2012;56(5):2683–90.PubMedPubMedCentral Hengzhuang W, Wu H, Ciofu O, Song Z, Høiby N. In vivo pharmacokinetics/pharmacodynamics of colistin and imipenem in Pseudomonas aeruginosa biofilm infection. Antimicrob Agents Chemother. 2012;56(5):2683–90.PubMedPubMedCentral
72.
Zurück zum Zitat Hussain A, Alajmi MF, Khan MA, Pervez SA, Ahmed F, Amir S, et al. Biosynthesized Silver Nanoparticle (AgNP) from pandanus odorifer leaf extract exhibits anti-metastasis and anti-biofilm potentials. Front Microbiol. 2019;10:8.PubMedPubMedCentral Hussain A, Alajmi MF, Khan MA, Pervez SA, Ahmed F, Amir S, et al. Biosynthesized Silver Nanoparticle (AgNP) from pandanus odorifer leaf extract exhibits anti-metastasis and anti-biofilm potentials. Front Microbiol. 2019;10:8.PubMedPubMedCentral
73.
Zurück zum Zitat Gopinath K, Kumaraguru S, Bhakyaraj K, Mohan S, Venkatesh KS, Esakkirajan M, et al. Green synthesis of silver, gold and silver/gold bimetallic nanoparticles using the Gloriosa superba leaf extract and their antibacterial and antibiofilm activities. Microb Pathog. 2016;101:1–11.PubMed Gopinath K, Kumaraguru S, Bhakyaraj K, Mohan S, Venkatesh KS, Esakkirajan M, et al. Green synthesis of silver, gold and silver/gold bimetallic nanoparticles using the Gloriosa superba leaf extract and their antibacterial and antibiofilm activities. Microb Pathog. 2016;101:1–11.PubMed
74.
Zurück zum Zitat Singh R, Dumlupinar G, Andersson-Engels S, Melgar S. Emerging applications of upconverting nanoparticles in intestinal infection and colorectal cancer. Int J Nanomed. 2019;14:1027–38. Singh R, Dumlupinar G, Andersson-Engels S, Melgar S. Emerging applications of upconverting nanoparticles in intestinal infection and colorectal cancer. Int J Nanomed. 2019;14:1027–38.
75.
Zurück zum Zitat Nayak M, Singh AK, Prakash P, Kant R, Bhattacharya S. Structural studies on thiosalicylate complexes of Zn (II) & Hg (II). First insight into Zn (II)-thiosalicylate complex as potential antibacterial, antibiofilm and anti-tumour agent. Inorg Chim Acta. 2020;501:119263. Nayak M, Singh AK, Prakash P, Kant R, Bhattacharya S. Structural studies on thiosalicylate complexes of Zn (II) & Hg (II). First insight into Zn (II)-thiosalicylate complex as potential antibacterial, antibiofilm and anti-tumour agent. Inorg Chim Acta. 2020;501:119263.
77.
Zurück zum Zitat Sambanthamoorthy K, Luo C, Pattabiraman N, Feng X, Koestler B, Waters CM, et al. Identification of small molecules inhibiting diguanylate cyclases to control bacterial biofilm development. Biofouling. 2014;30(1–2):17–28.PubMed Sambanthamoorthy K, Luo C, Pattabiraman N, Feng X, Koestler B, Waters CM, et al. Identification of small molecules inhibiting diguanylate cyclases to control bacterial biofilm development. Biofouling. 2014;30(1–2):17–28.PubMed
79.
Zurück zum Zitat Mogi T, Kita K. Gramicidin S and polymyxins: the revival of cationic cyclic peptide antibiotics. Cell Mol Life Sci. 2009;66(23):3821–6.PubMed Mogi T, Kita K. Gramicidin S and polymyxins: the revival of cationic cyclic peptide antibiotics. Cell Mol Life Sci. 2009;66(23):3821–6.PubMed
81.
Zurück zum Zitat Vizán J, Hernandez-Chico CI, Castillo ID, Moreno F. The peptide antibiotic microcin B17 induces double-strand cleavage of DNA mediated by E. coli DNA gyrase. The EMBO journal. 1999;10(2):467–76. Vizán J, Hernandez-Chico CI, Castillo ID, Moreno F. The peptide antibiotic microcin B17 induces double-strand cleavage of DNA mediated by E. coli DNA gyrase. The EMBO journal. 1999;10(2):467–76.
82.
Zurück zum Zitat Kharidia R, Liang J. The activity of a small lytic peptide PTP-7 on Staphylococcus aureus biofilms. J Microbiol. 2011;49(4):663–8.PubMed Kharidia R, Liang J. The activity of a small lytic peptide PTP-7 on Staphylococcus aureus biofilms. J Microbiol. 2011;49(4):663–8.PubMed
83.
Zurück zum Zitat Overhage J, Campisano A, Bains M, Torfs E, Hancock R. Immunity human host defense peptide LL-37 prevents bacterial biofilm formation. Infect Immun. 2008;76(9):4176–82.PubMedPubMedCentral Overhage J, Campisano A, Bains M, Torfs E, Hancock R. Immunity human host defense peptide LL-37 prevents bacterial biofilm formation. Infect Immun. 2008;76(9):4176–82.PubMedPubMedCentral
84.
Zurück zum Zitat Boman HG. Mechanisms of action on Escherichia coli of cecropin P1 and PR-39, two antibacterial peptides from pig intestine. Infect Immun. 1993;61(7):2978–84.PubMedPubMedCentral Boman HG. Mechanisms of action on Escherichia coli of cecropin P1 and PR-39, two antibacterial peptides from pig intestine. Infect Immun. 1993;61(7):2978–84.PubMedPubMedCentral
85.
Zurück zum Zitat Hsu CH, Chen C, Jou ML, Lee YL, Wu SH. Structural and DNA-binding studies on the bovine antimicrobial peptide, indolicidin: evidence for multiple conformations involved in binding to membranes and DNA. Nucleic Acids Res. 2005;33(13):4053–64.PubMedPubMedCentral Hsu CH, Chen C, Jou ML, Lee YL, Wu SH. Structural and DNA-binding studies on the bovine antimicrobial peptide, indolicidin: evidence for multiple conformations involved in binding to membranes and DNA. Nucleic Acids Res. 2005;33(13):4053–64.PubMedPubMedCentral
86.
Zurück zum Zitat Ju HC, Sung BH, Sun CK. Buforins: histone H2A-derived antimicrobial peptides from toad stomach. Biochim BiophysActa Biomembr. 2009;1788(8):1564–9. Ju HC, Sung BH, Sun CK. Buforins: histone H2A-derived antimicrobial peptides from toad stomach. Biochim BiophysActa Biomembr. 2009;1788(8):1564–9.
87.
Zurück zum Zitat Ma DSL, Tan LT, Chan KG, Yap WH, Pusparajah P, Chuah LH, et al. Resveratrol-potential antibacterial agent against foodborne pathogens. Front Pharmacol. 2018;9:102.PubMedPubMedCentral Ma DSL, Tan LT, Chan KG, Yap WH, Pusparajah P, Chuah LH, et al. Resveratrol-potential antibacterial agent against foodborne pathogens. Front Pharmacol. 2018;9:102.PubMedPubMedCentral
88.
Zurück zum Zitat Santosh Kumar SC, Srinivas P, Negi PS, Bettadaiah BK. Antibacterial and antimutagenic activities of novel zerumbone analogues. Food Chem. 2013;141(2):1097–103.PubMed Santosh Kumar SC, Srinivas P, Negi PS, Bettadaiah BK. Antibacterial and antimutagenic activities of novel zerumbone analogues. Food Chem. 2013;141(2):1097–103.PubMed
89.
Zurück zum Zitat Haque MA, Jantan I, Arshad L, Bukhari SNA. Exploring the immunomodulatory and anticancer properties of zerumbone. Food Funct. 2017;8(10):3410–31.PubMed Haque MA, Jantan I, Arshad L, Bukhari SNA. Exploring the immunomodulatory and anticancer properties of zerumbone. Food Funct. 2017;8(10):3410–31.PubMed
90.
Zurück zum Zitat Kim HR, Rhee KJ, Eom YB. Anti-biofilm and antimicrobial effects of zerumbone against Bacteroides fragilis. Anaerobe. 2019;57:99–106.PubMed Kim HR, Rhee KJ, Eom YB. Anti-biofilm and antimicrobial effects of zerumbone against Bacteroides fragilis. Anaerobe. 2019;57:99–106.PubMed
91.
Zurück zum Zitat Jang HI, Rhee KJ, Eom YB. Antibacterial and antibiofilm effects of α-humulene against Bacteroides fragilis. Can J Microbiol. 2020;66(6):389–99.PubMed Jang HI, Rhee KJ, Eom YB. Antibacterial and antibiofilm effects of α-humulene against Bacteroides fragilis. Can J Microbiol. 2020;66(6):389–99.PubMed
92.
Zurück zum Zitat Chmit M, Kanaan H, Habib J, Abbass M, McHeik A, Chokr A. Antibacterial and antibiofilm activities of polysaccharides, essential oil, and fatty oil extracted from Laurus nobilis growing in Lebanon. Asian Pac J Trop Med. 2014;71:546–52. Chmit M, Kanaan H, Habib J, Abbass M, McHeik A, Chokr A. Antibacterial and antibiofilm activities of polysaccharides, essential oil, and fatty oil extracted from Laurus nobilis growing in Lebanon. Asian Pac J Trop Med. 2014;71:546–52.
93.
Zurück zum Zitat Bakkiyaraj D, Nandhini JR, Malathy B, Pandian SK. The anti-biofilm potential of pomegranate (Punica granatum L.) extract against human bacterial and fungal pathogens. Biofouling. 2013;29(8):929–37.PubMed Bakkiyaraj D, Nandhini JR, Malathy B, Pandian SK. The anti-biofilm potential of pomegranate (Punica granatum L.) extract against human bacterial and fungal pathogens. Biofouling. 2013;29(8):929–37.PubMed
94.
Zurück zum Zitat Tan LT, Chan KG, Lee LH, Goh BH. Streptomyces bacteria as potential probiotics in aquaculture. Front Microbiol. 2016;7:79.PubMedPubMedCentral Tan LT, Chan KG, Lee LH, Goh BH. Streptomyces bacteria as potential probiotics in aquaculture. Front Microbiol. 2016;7:79.PubMedPubMedCentral
95.
Zurück zum Zitat Shin DS, Rhee KJ, Eom YB. Effect of probiotic clostridium butyricum NCTC 7423 supernatant on biofilm formation and gene expression of Bacteroides fragilis. J Microbiol Biotechnol. 2020;30(3):368–77.PubMed Shin DS, Rhee KJ, Eom YB. Effect of probiotic clostridium butyricum NCTC 7423 supernatant on biofilm formation and gene expression of Bacteroides fragilis. J Microbiol Biotechnol. 2020;30(3):368–77.PubMed
96.
Zurück zum Zitat Abdelhamid AG, Esaam A, Hazaa MM. Cell free preparations of probiotics exerted antibacterial and antibiofilm activities against multidrug resistant E. coli. Saudi Pharm J. 2018;26(5):603–7.PubMedPubMedCentral Abdelhamid AG, Esaam A, Hazaa MM. Cell free preparations of probiotics exerted antibacterial and antibiofilm activities against multidrug resistant E. coli. Saudi Pharm J. 2018;26(5):603–7.PubMedPubMedCentral
97.
Zurück zum Zitat Mukai T, Kaneko S, Matsumoto M, Ohori H. Binding of Bifidobacterium bifidum and Lactobacillus reuteri to the carbohydrate moieties of intestinal glycolipids recognized by peanut agglutinin. Int J Food Microbiol. 2004;90(3):357–62.PubMed Mukai T, Kaneko S, Matsumoto M, Ohori H. Binding of Bifidobacterium bifidum and Lactobacillus reuteri to the carbohydrate moieties of intestinal glycolipids recognized by peanut agglutinin. Int J Food Microbiol. 2004;90(3):357–62.PubMed
98.
Zurück zum Zitat Barzegari A, Kheyrolahzadeh K, Hosseiniyan Khatibi SM, Sharifi S, Memar MY, Zununi VS. The battle of probiotics and their derivatives against biofilms. Infect Drug Res. 2020;13:659–72. Barzegari A, Kheyrolahzadeh K, Hosseiniyan Khatibi SM, Sharifi S, Memar MY, Zununi VS. The battle of probiotics and their derivatives against biofilms. Infect Drug Res. 2020;13:659–72.
99.
Zurück zum Zitat Mahdhi A, Leban N, Chakroun I, Bayar S, Mahdouani K, Majdoub H, et al. Use of extracellular polysaccharides, secreted by Lactobacillus plantarum and Bacillus, as reducing indole production agents to control biofilm formation and efflux pumps inhibitor in Escherichia coli. Microb Pathog. 2018;125:448–53.PubMed Mahdhi A, Leban N, Chakroun I, Bayar S, Mahdouani K, Majdoub H, et al. Use of extracellular polysaccharides, secreted by Lactobacillus plantarum and Bacillus, as reducing indole production agents to control biofilm formation and efflux pumps inhibitor in Escherichia coli. Microb Pathog. 2018;125:448–53.PubMed
100.
Zurück zum Zitat Sharma V, Harjai K, Shukla G. Effect of bacteriocin and exopolysaccharides isolated from probiotic on P aeruginosa PAO1 biofilm. Folia Microbiol. 2018;63(2):181–90. Sharma V, Harjai K, Shukla G. Effect of bacteriocin and exopolysaccharides isolated from probiotic on P aeruginosa PAO1 biofilm. Folia Microbiol. 2018;63(2):181–90.
101.
Zurück zum Zitat Jiang Q, Chen J, Yang C, Yin Y, Yao K. Quorum sensing: a prospective therapeutic target for bacterial diseases. Biomed Res Int. 2019;2019:2015978.PubMedPubMedCentral Jiang Q, Chen J, Yang C, Yin Y, Yao K. Quorum sensing: a prospective therapeutic target for bacterial diseases. Biomed Res Int. 2019;2019:2015978.PubMedPubMedCentral
103.
Zurück zum Zitat Walz JM, Avelar RL, Longtine KJ, Carter KL, Mermel LA, Heard SO. Anti-infective external coating of central venous catheters: a randomized, noninferiority trial comparing 5-fluorouracil with chlorhexidine/silver sulfadiazine in preventing catheter colonization. Crit Care Med. 2010;38(11):2095–102.PubMed Walz JM, Avelar RL, Longtine KJ, Carter KL, Mermel LA, Heard SO. Anti-infective external coating of central venous catheters: a randomized, noninferiority trial comparing 5-fluorouracil with chlorhexidine/silver sulfadiazine in preventing catheter colonization. Crit Care Med. 2010;38(11):2095–102.PubMed
104.
Zurück zum Zitat van Delden C, Köhler T, Brunner-Ferber F, François B, Carlet J, Pechère JC. Azithromycin to prevent Pseudomonas aeruginosa ventilator-associated pneumonia by inhibition of quorum sensing: a randomized controlled trial. Intensive Care Med. 2012;38(7):1118–25.PubMed van Delden C, Köhler T, Brunner-Ferber F, François B, Carlet J, Pechère JC. Azithromycin to prevent Pseudomonas aeruginosa ventilator-associated pneumonia by inhibition of quorum sensing: a randomized controlled trial. Intensive Care Med. 2012;38(7):1118–25.PubMed
Metadaten
Titel
Bacterial driver–passenger model in biofilms: a new mechanism in the development of colorectal cancer
verfasst von
J. Xing
Y. Fang
W. Zhang
H. Zhang
D. Tang
D. Wang
Publikationsdatum
09.01.2022
Verlag
Springer International Publishing
Erschienen in
Clinical and Translational Oncology / Ausgabe 5/2022
Print ISSN: 1699-048X
Elektronische ISSN: 1699-3055
DOI
https://doi.org/10.1007/s12094-021-02738-y

Weitere Artikel der Ausgabe 5/2022

Clinical and Translational Oncology 5/2022 Zur Ausgabe

Adjuvante Immuntherapie verlängert Leben bei RCC

25.04.2024 Nierenkarzinom Nachrichten

Nun gibt es auch Resultate zum Gesamtüberleben: Eine adjuvante Pembrolizumab-Therapie konnte in einer Phase-3-Studie das Leben von Menschen mit Nierenzellkarzinom deutlich verlängern. Die Sterberate war im Vergleich zu Placebo um 38% geringer.

Alectinib verbessert krankheitsfreies Überleben bei ALK-positivem NSCLC

25.04.2024 NSCLC Nachrichten

Das Risiko für Rezidiv oder Tod von Patienten und Patientinnen mit reseziertem ALK-positivem NSCLC ist unter einer adjuvanten Therapie mit dem Tyrosinkinase-Inhibitor Alectinib signifikant geringer als unter platinbasierter Chemotherapie.

Bei Senioren mit Prostatakarzinom auf Anämie achten!

24.04.2024 DGIM 2024 Nachrichten

Patienten, die zur Behandlung ihres Prostatakarzinoms eine Androgendeprivationstherapie erhalten, entwickeln nicht selten eine Anämie. Wer ältere Patienten internistisch mitbetreut, sollte auf diese Nebenwirkung achten.

ICI-Therapie in der Schwangerschaft wird gut toleriert

Müssen sich Schwangere einer Krebstherapie unterziehen, rufen Immuncheckpointinhibitoren offenbar nicht mehr unerwünschte Wirkungen hervor als andere Mittel gegen Krebs.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.