Skip to main content
Erschienen in: Neurotherapeutics 3/2015

01.07.2015 | Review

Behavioral and Neuroanatomical Phenotypes in Mouse Models of Autism

verfasst von: Jacob Ellegood, Jacqueline N. Crawley

Erschienen in: Neurotherapeutics | Ausgabe 3/2015

Einloggen, um Zugang zu erhalten

Abstract

In order to understand the consequences of the mutation on behavioral and biological phenotypes relevant to autism, mutations in many of the risk genes for autism spectrum disorder have been experimentally generated in mice. Here, we summarize behavioral outcomes and neuroanatomical abnormalities, with a focus on high-resolution magnetic resonance imaging of postmortem mouse brains. Results are described from multiple mouse models of autism spectrum disorder and comorbid syndromes, including the 15q11-13, 16p11.2, 22q11.2, Cntnap2, Engrailed2, Fragile X, Integrinβ3, MET, Neurexin1a, Neuroligin3, Reelin, Rett, Shank3, Slc6a4, tuberous sclerosis, and Williams syndrome models, and inbred strains with strong autism-relevant behavioral phenotypes, including BTBR and BALB. Concomitant behavioral and neuroanatomical abnormalities can strengthen the interpretation of results from a mouse model, and may elevate the usefulness of the model system for therapeutic discovery.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat American Psychiatric Association. The diagnostic and statistical manual of mental disorders, fifth edition. American Psychiatric Association, Arlington, VA, 2013. American Psychiatric Association. The diagnostic and statistical manual of mental disorders, fifth edition. American Psychiatric Association, Arlington, VA, 2013.
2.
3.
Zurück zum Zitat Kim YS, Fombonne E, Koh YJ, Kim SJ. A comparison of DSM-IV pervasive developmental disorder and DSM-5 autism spectrum disorder prevalence in an epidemiologic sample. J Am Acad Child Adolesc Psychiatry 2014;53:500–508.PubMedCentralPubMed Kim YS, Fombonne E, Koh YJ, Kim SJ. A comparison of DSM-IV pervasive developmental disorder and DSM-5 autism spectrum disorder prevalence in an epidemiologic sample. J Am Acad Child Adolesc Psychiatry 2014;53:500–508.PubMedCentralPubMed
4.
Zurück zum Zitat Huguet G, Ey E, Bourgeron T. The genetic landscapes of autism spectrum disorders. Annu Rev Genomics Hum Genet 2013;14:191–213.PubMed Huguet G, Ey E, Bourgeron T. The genetic landscapes of autism spectrum disorders. Annu Rev Genomics Hum Genet 2013;14:191–213.PubMed
5.
Zurück zum Zitat Jeste SS, Geschwind DH. Disentangling the heterogeneity of autism spectrum disorder through genetic findings. Nat Rev Neurol 2014;10:74–81.PubMedCentralPubMed Jeste SS, Geschwind DH. Disentangling the heterogeneity of autism spectrum disorder through genetic findings. Nat Rev Neurol 2014;10:74–81.PubMedCentralPubMed
6.
Zurück zum Zitat Silverman JL, Yang M, Lord C, Crawley JN. Behavioural phenotyping assays for mouse models of autism. Nat Rev Neurosci 2010;11:490–502.PubMedCentralPubMed Silverman JL, Yang M, Lord C, Crawley JN. Behavioural phenotyping assays for mouse models of autism. Nat Rev Neurosci 2010;11:490–502.PubMedCentralPubMed
7.
Zurück zum Zitat Spooren W, Lindemann L, Ghosh A. Synapse dysfunction in autism: a molecular medicine approach to drug discovery in neurodevelopmental disorders. Trends Pharmacological Sci 2012;33:669–684. Spooren W, Lindemann L, Ghosh A. Synapse dysfunction in autism: a molecular medicine approach to drug discovery in neurodevelopmental disorders. Trends Pharmacological Sci 2012;33:669–684.
8.
Zurück zum Zitat Crawley JN. Designing mouse behavioral tasks relevant to autistic-like behaviors. Ment Retard Dev Disabil Res Rev 2005;10:248–258. Crawley JN. Designing mouse behavioral tasks relevant to autistic-like behaviors. Ment Retard Dev Disabil Res Rev 2005;10:248–258.
9.
Zurück zum Zitat Moy SS, Nadler JJ, Perez A, Barbaro RP. Sociability and preference for social novelty in five inbred strains: an approach to assess autistic-like behavior in mice. Genes Brain Behav 2004;3:287–302.PubMed Moy SS, Nadler JJ, Perez A, Barbaro RP. Sociability and preference for social novelty in five inbred strains: an approach to assess autistic-like behavior in mice. Genes Brain Behav 2004;3:287–302.PubMed
10.
Zurück zum Zitat McFarlane HG, Kusek GK, Yang M, Phoenix JL, Bolivar VJ, Crawley JN. Autism-like behavioral phenotypes in BTBR T + tf/J mice. Genes Brain Behav 2008;7:152–163.PubMed McFarlane HG, Kusek GK, Yang M, Phoenix JL, Bolivar VJ, Crawley JN. Autism-like behavioral phenotypes in BTBR T + tf/J mice. Genes Brain Behav 2008;7:152–163.PubMed
11.
Zurück zum Zitat Scattoni ML, Ricceri L, Crawley JN. Unusual repertoire of vocalizations in adult BTBR T + tf/J mice during three types of social encounters. Genes Brain Behav 2011;10:44–56.PubMedCentralPubMed Scattoni ML, Ricceri L, Crawley JN. Unusual repertoire of vocalizations in adult BTBR T + tf/J mice during three types of social encounters. Genes Brain Behav 2011;10:44–56.PubMedCentralPubMed
12.
Zurück zum Zitat Wöhr M, Roullet FI, Crawley JN. Reduced scent marking and ultrasonic vocalizations in the BTBR T + tf/J mouse model of autism. Genes Brain Behav 2011;10:35–43.PubMedCentralPubMed Wöhr M, Roullet FI, Crawley JN. Reduced scent marking and ultrasonic vocalizations in the BTBR T + tf/J mouse model of autism. Genes Brain Behav 2011;10:35–43.PubMedCentralPubMed
13.
Zurück zum Zitat Yang M, Silverman JL, Crawley JN. Automated three-chambered social approach task for mice. Curr Protoc Neurosci 2011;Chapter 8: Unit 8.26. Yang M, Silverman JL, Crawley JN. Automated three-chambered social approach task for mice. Curr Protoc Neurosci 2011;Chapter 8: Unit 8.26.
14.
Zurück zum Zitat Crawley JN. Translational animal models of autism and neurodevelopmental disorders. Dialogues Clin Neurosci 2012;14:293–305.PubMedCentralPubMed Crawley JN. Translational animal models of autism and neurodevelopmental disorders. Dialogues Clin Neurosci 2012;14:293–305.PubMedCentralPubMed
15.
Zurück zum Zitat Peça J, Feliciano C, Ting JT, et al. Shank3 mutant mice display autistic-like behaviours and striatal dysfunction. Nature 2011;472:437–442.PubMedCentralPubMed Peça J, Feliciano C, Ting JT, et al. Shank3 mutant mice display autistic-like behaviours and striatal dysfunction. Nature 2011;472:437–442.PubMedCentralPubMed
16.
Zurück zum Zitat Yang M, Bozdagi O, Scattoni ML, et al. Reduced excitatory neurotransmission and mild autism-relevant phenotypes in adolescent Shank3 null mutant mice. J Neurosci 2012;32: 6525–6541.PubMedCentralPubMed Yang M, Bozdagi O, Scattoni ML, et al. Reduced excitatory neurotransmission and mild autism-relevant phenotypes in adolescent Shank3 null mutant mice. J Neurosci 2012;32: 6525–6541.PubMedCentralPubMed
17.
Zurück zum Zitat Peñagarikano O, Abrahams BS, Herman EI, et al. Absence of CNTNAP2 leads to epilepsy, neuronal migration abnormalities, and core autism-related deficits. Cell 2011;147:235–246.PubMedCentralPubMed Peñagarikano O, Abrahams BS, Herman EI, et al. Absence of CNTNAP2 leads to epilepsy, neuronal migration abnormalities, and core autism-related deficits. Cell 2011;147:235–246.PubMedCentralPubMed
18.
Zurück zum Zitat Clipperton-Allen AE, Page DT. Pten haploinsufficient mice show broad brain overgrowth but selective impairments in autism-relevant behavioral tests. Hum Mol Genet 2014;23:3490–3505.PubMed Clipperton-Allen AE, Page DT. Pten haploinsufficient mice show broad brain overgrowth but selective impairments in autism-relevant behavioral tests. Hum Mol Genet 2014;23:3490–3505.PubMed
19.
Zurück zum Zitat Tsai PT, Hull C, Chu Y, et al. Autistic-like behaviour and cerebellar dysfunction in Purkinje cell Tsc1 mutant mice. Nature 2012;488:647–651.PubMedCentralPubMed Tsai PT, Hull C, Chu Y, et al. Autistic-like behaviour and cerebellar dysfunction in Purkinje cell Tsc1 mutant mice. Nature 2012;488:647–651.PubMedCentralPubMed
20.
Zurück zum Zitat Brielmaier J, Matteson PG, Silverman JL, et al. Autism-relevant social abnormalities and cognitive deficits in engrailed-2 knockout mice. PLoS ONE 2012;7:e40914.PubMedCentralPubMed Brielmaier J, Matteson PG, Silverman JL, et al. Autism-relevant social abnormalities and cognitive deficits in engrailed-2 knockout mice. PLoS ONE 2012;7:e40914.PubMedCentralPubMed
21.
Zurück zum Zitat DeLorey TM, Sahbaie P, Hashemi E, Homanics GE, Clark JD. Gabrb3 gene deficient mice exhibit impaired social and exploratory behaviors, deficits in non-selective attention and hypoplasia of cerebellar vermal lobules: a potential model of autism spectrum disorder. Behavioural Brain Research 2008;187:207–220.PubMedCentralPubMed DeLorey TM, Sahbaie P, Hashemi E, Homanics GE, Clark JD. Gabrb3 gene deficient mice exhibit impaired social and exploratory behaviors, deficits in non-selective attention and hypoplasia of cerebellar vermal lobules: a potential model of autism spectrum disorder. Behavioural Brain Research 2008;187:207–220.PubMedCentralPubMed
22.
Zurück zum Zitat Smith SEP, Zhou Y-D, Zhang G, Jin Z, Stoppel DC, Anderson MP. Increased gene dosage of Ube3a results in autism traits and decreased glutamate synaptic transmission in mice. Sci Transl Med 2011;3:103ra97.PubMedCentralPubMed Smith SEP, Zhou Y-D, Zhang G, Jin Z, Stoppel DC, Anderson MP. Increased gene dosage of Ube3a results in autism traits and decreased glutamate synaptic transmission in mice. Sci Transl Med 2011;3:103ra97.PubMedCentralPubMed
23.
Zurück zum Zitat Pobbe RLH, Pearson BL, Defensor EB, et al. Oxytocin receptor knockout mice display deficits in the expression of autism-related behaviors. Horm Behav 2012;61:436–444.PubMedCentralPubMed Pobbe RLH, Pearson BL, Defensor EB, et al. Oxytocin receptor knockout mice display deficits in the expression of autism-related behaviors. Horm Behav 2012;61:436–444.PubMedCentralPubMed
24.
Zurück zum Zitat Crawley JN, Chen T, Puri A, et al. Social approach behaviors in oxytocin knockout mice: comparison of two independent lines tested in different laboratory environments. Neuropeptides 2007;41:145–163.PubMed Crawley JN, Chen T, Puri A, et al. Social approach behaviors in oxytocin knockout mice: comparison of two independent lines tested in different laboratory environments. Neuropeptides 2007;41:145–163.PubMed
25.
Zurück zum Zitat Silverman JL, Turner SM, Barkan CL, et al. Sociability and motor functions in Shank1 mutant mice. Brain Res 2011;1380:120–137.PubMedCentralPubMed Silverman JL, Turner SM, Barkan CL, et al. Sociability and motor functions in Shank1 mutant mice. Brain Res 2011;1380:120–137.PubMedCentralPubMed
26.
Zurück zum Zitat Wöhr M, Silverman JL, Scattoni ML, et al. Developmental delays and reduced pup ultrasonic vocalizations but normal sociability in mice lacking the postsynaptic cell adhesion protein neuroligin2. Behav Brain Res 2013;251:50–64.PubMedCentralPubMed Wöhr M, Silverman JL, Scattoni ML, et al. Developmental delays and reduced pup ultrasonic vocalizations but normal sociability in mice lacking the postsynaptic cell adhesion protein neuroligin2. Behav Brain Res 2013;251:50–64.PubMedCentralPubMed
27.
Zurück zum Zitat Wurzman R, Forcelli PA, Griffey CJ, Kromer LF. Repetitive grooming and sensorimotor abnormalities in an ephrin-A knockout model for Autism Spectrum Disorders. Behav Brain Res 2014;278C:115–128. Wurzman R, Forcelli PA, Griffey CJ, Kromer LF. Repetitive grooming and sensorimotor abnormalities in an ephrin-A knockout model for Autism Spectrum Disorders. Behav Brain Res 2014;278C:115–128.
28.
Zurück zum Zitat Portmann T, Yang M, Mao R, et al. Behavioral abnormalities and circuit defects in the basal ganglia of a mouse model of 16p11.2 deletion syndrome. Cell Rep 2014;7:1077–1092.PubMedCentralPubMed Portmann T, Yang M, Mao R, et al. Behavioral abnormalities and circuit defects in the basal ganglia of a mouse model of 16p11.2 deletion syndrome. Cell Rep 2014;7:1077–1092.PubMedCentralPubMed
29.
Zurück zum Zitat Moy SS, Nadler JJ, Young NB, et al. Social approach in genetically engineered mouse lines relevant to autism. Genes Brain Behav 2009;8:129–142.PubMedCentralPubMed Moy SS, Nadler JJ, Young NB, et al. Social approach in genetically engineered mouse lines relevant to autism. Genes Brain Behav 2009;8:129–142.PubMedCentralPubMed
30.
Zurück zum Zitat Spencer CM, Alekseyenko O, Hamilton SM, et al. Modifying behavioral phenotypes in Fmr1KO mice: genetic background differences reveal autistic-like responses. Autism Res 2011;4:40–56.PubMedCentralPubMed Spencer CM, Alekseyenko O, Hamilton SM, et al. Modifying behavioral phenotypes in Fmr1KO mice: genetic background differences reveal autistic-like responses. Autism Res 2011;4:40–56.PubMedCentralPubMed
31.
Zurück zum Zitat Tabuchi K, Blundell J, Etherton MR, et al. A neuroligin-3 mutation implicated in autism increases inhibitory synaptic transmission in mice. Science 2007;318:71–76.PubMedCentralPubMed Tabuchi K, Blundell J, Etherton MR, et al. A neuroligin-3 mutation implicated in autism increases inhibitory synaptic transmission in mice. Science 2007;318:71–76.PubMedCentralPubMed
32.
Zurück zum Zitat Chadman KK, Gong S, Scattoni ML, et al. Minimal aberrant behavioral phenotypes of neuroligin-3 R451C knockin mice. Autism Res 2008;1:147–158.PubMedCentralPubMed Chadman KK, Gong S, Scattoni ML, et al. Minimal aberrant behavioral phenotypes of neuroligin-3 R451C knockin mice. Autism Res 2008;1:147–158.PubMedCentralPubMed
33.
Zurück zum Zitat Etherton M, Földy C, Sharma M, et al. Autism-linked neuroligin-3 R451C mutation differentially alters hippocampal and cortical synaptic function. Proc Natl Acad Sci USA 2011;108:13764–13769.PubMedCentralPubMed Etherton M, Földy C, Sharma M, et al. Autism-linked neuroligin-3 R451C mutation differentially alters hippocampal and cortical synaptic function. Proc Natl Acad Sci USA 2011;108:13764–13769.PubMedCentralPubMed
34.
Zurück zum Zitat Jaramillo TC, Liu S, Pettersen A, Birnbaum SG, Powell CM. Autism-related neuroligin-3 mutation alters social behavior and spatial learning. Autism Res 2014;7:264–272.PubMedCentralPubMed Jaramillo TC, Liu S, Pettersen A, Birnbaum SG, Powell CM. Autism-related neuroligin-3 mutation alters social behavior and spatial learning. Autism Res 2014;7:264–272.PubMedCentralPubMed
35.
Zurück zum Zitat Ey E, Yang M, Katz AM, et al.. Absence of deficits in social behaviors and ultrasonic vocalizations in later generations of mice lacking neuroligin4. Genes Brain Behav 2012 Sep 18 [Epub ahead of print]. Ey E, Yang M, Katz AM, et al.. Absence of deficits in social behaviors and ultrasonic vocalizations in later generations of mice lacking neuroligin4. Genes Brain Behav 2012 Sep 18 [Epub ahead of print].
36.
Zurück zum Zitat El-Kordi A, Winkler D, Hammerschmidt K, et al. Development of an autism severity score for mice using Nlgn4 null mutants as a construct-valid model of heritable monogenic autism. Behav Brain Res 2013;251:41–49.PubMed El-Kordi A, Winkler D, Hammerschmidt K, et al. Development of an autism severity score for mice using Nlgn4 null mutants as a construct-valid model of heritable monogenic autism. Behav Brain Res 2013;251:41–49.PubMed
37.
Zurück zum Zitat Bolivar VJ, Walters SR, Phoenix JL. Assessing autism-like behavior in mice: variations in social interactions among inbred strains. Behav Brain Res 2007;176:21–26.PubMedCentralPubMed Bolivar VJ, Walters SR, Phoenix JL. Assessing autism-like behavior in mice: variations in social interactions among inbred strains. Behav Brain Res 2007;176:21–26.PubMedCentralPubMed
38.
Zurück zum Zitat Moy SS, Nadler JJ, Young NB, et al. Mouse behavioral tasks relevant to autism: phenotypes of 10 inbred strains. Behav Brain Res 2007;176:4–20.PubMedCentralPubMed Moy SS, Nadler JJ, Young NB, et al. Mouse behavioral tasks relevant to autism: phenotypes of 10 inbred strains. Behav Brain Res 2007;176:4–20.PubMedCentralPubMed
39.
Zurück zum Zitat Yang M, Clarke AM, Crawley JN. Postnatal lesion evidence against a primary role for the corpus callosum in mouse sociability. Eur J Neurosci 2009;29:1663–1677.PubMedCentralPubMed Yang M, Clarke AM, Crawley JN. Postnatal lesion evidence against a primary role for the corpus callosum in mouse sociability. Eur J Neurosci 2009;29:1663–1677.PubMedCentralPubMed
40.
Zurück zum Zitat Pobbe RLH, Pearson BL, Defensor EB, Bolivar VJ, Blanchard DC, Blanchard RJ. Expression of social behaviors of C57BL/6J versus BTBR inbred mouse strains in the visible burrow system. Behav Brain Res 2010;214:443–449.PubMedCentralPubMed Pobbe RLH, Pearson BL, Defensor EB, Bolivar VJ, Blanchard DC, Blanchard RJ. Expression of social behaviors of C57BL/6J versus BTBR inbred mouse strains in the visible burrow system. Behav Brain Res 2010;214:443–449.PubMedCentralPubMed
41.
Zurück zum Zitat Silverman JL, Babineau BA, Oliver CF, Karras MN, Crawley JN. Influence of stimulant-induced hyperactivity on social approach in the BTBR mouse model of autism. Neuropharmacology 2013;68:210–222.PubMedCentralPubMed Silverman JL, Babineau BA, Oliver CF, Karras MN, Crawley JN. Influence of stimulant-induced hyperactivity on social approach in the BTBR mouse model of autism. Neuropharmacology 2013;68:210–222.PubMedCentralPubMed
42.
Zurück zum Zitat Yang M, Abrams DN, Zhang JY, et al. Low sociability in BTBR T + tf/J mice is independent of partner strain. Physiol Behav 2012;107:649–662.PubMedCentralPubMed Yang M, Abrams DN, Zhang JY, et al. Low sociability in BTBR T + tf/J mice is independent of partner strain. Physiol Behav 2012;107:649–662.PubMedCentralPubMed
43.
Zurück zum Zitat Burket JA, Benson AD, Tang AH, Deutsch SI. D-Cycloserine improves sociability in the BTBR T+ Itpr3tf/J mouse model of autism spectrum disorders with altered Ras/Raf/ERK1/2 signaling. Brain Res Bull 2013;96:62–70.PubMed Burket JA, Benson AD, Tang AH, Deutsch SI. D-Cycloserine improves sociability in the BTBR T+ Itpr3tf/J mouse model of autism spectrum disorders with altered Ras/Raf/ERK1/2 signaling. Brain Res Bull 2013;96:62–70.PubMed
44.
Zurück zum Zitat Han S, Tai C, Jones CJ, Scheuer T, Catterall WA. Enhancement of inhibitory neurotransmission by GABAA receptors having α2,3-subunits ameliorates behavioral deficits in a mouse model of autism. Neuron 2014;81:1282–1289.PubMedCentralPubMed Han S, Tai C, Jones CJ, Scheuer T, Catterall WA. Enhancement of inhibitory neurotransmission by GABAA receptors having α2,3-subunits ameliorates behavioral deficits in a mouse model of autism. Neuron 2014;81:1282–1289.PubMedCentralPubMed
46.
Zurück zum Zitat Fairless AH, Dow HC, Kreibich AS, et al. Sociability and brain development in BALB/cJ and C57BL/6J mice. Behav Brain Res 2012;228:299–310.PubMedCentralPubMed Fairless AH, Dow HC, Kreibich AS, et al. Sociability and brain development in BALB/cJ and C57BL/6J mice. Behav Brain Res 2012;228:299–310.PubMedCentralPubMed
47.
Zurück zum Zitat Wang X, McCoy PA, Rodriguiz RM, et al. Synaptic dysfunction and abnormal behaviors in mice lacking major isoforms of Shank3. Hum Mol Genet 2011;20:3093–3108.PubMedCentralPubMed Wang X, McCoy PA, Rodriguiz RM, et al. Synaptic dysfunction and abnormal behaviors in mice lacking major isoforms of Shank3. Hum Mol Genet 2011;20:3093–3108.PubMedCentralPubMed
48.
Zurück zum Zitat Bangash MA, Park JM, Melnikova T, et al. Enhanced polyubiquitination of Shank3 and NMDA receptor in a mouse model of autism. Cell 2011;145:758–772.PubMedCentralPubMed Bangash MA, Park JM, Melnikova T, et al. Enhanced polyubiquitination of Shank3 and NMDA receptor in a mouse model of autism. Cell 2011;145:758–772.PubMedCentralPubMed
49.
Zurück zum Zitat Cheh MA, Millonig JH, Roselli LM, et al. En2 knockout mice display neurobehavioral and neurochemical alterations relevant to autism spectrum disorder. Brain Res 2006;1116:166–176.PubMed Cheh MA, Millonig JH, Roselli LM, et al. En2 knockout mice display neurobehavioral and neurochemical alterations relevant to autism spectrum disorder. Brain Res 2006;1116:166–176.PubMed
50.
Zurück zum Zitat Shah CR, Forsberg CG, Kang J-Q, Veenstra-VanderWeele J. Letting a typical mouse judge whether mouse social interactions are atypical. Autism Res 2013;6:212–220.PubMedCentralPubMed Shah CR, Forsberg CG, Kang J-Q, Veenstra-VanderWeele J. Letting a typical mouse judge whether mouse social interactions are atypical. Autism Res 2013;6:212–220.PubMedCentralPubMed
51.
Zurück zum Zitat Kwon C-H, Luikart BW, Powell CM, et al. Pten regulates neuronal arborization and social interaction in mice. Neuron 2006;50:377–388.PubMedCentralPubMed Kwon C-H, Luikart BW, Powell CM, et al. Pten regulates neuronal arborization and social interaction in mice. Neuron 2006;50:377–388.PubMedCentralPubMed
52.
Zurück zum Zitat Silverman JL, Smith DG, Rizzo SJS, et al. Negative allosteric modulation of the mGluR5 receptor reduces repetitive behaviors and rescues social deficits in mouse models of autism. Sci Transl Med 2012;4:131ra51.PubMed Silverman JL, Smith DG, Rizzo SJS, et al. Negative allosteric modulation of the mGluR5 receptor reduces repetitive behaviors and rescues social deficits in mouse models of autism. Sci Transl Med 2012;4:131ra51.PubMed
53.
Zurück zum Zitat Burket JA, Herndon AL, Winebarger EE, Jacome LF, Deutsch SI. Complex effects of mGluR5 antagonism on sociability and stereotypic behaviors in mice: possible implications for the pharmacotherapy of autism spectrum disorders. Brain Res Bull 2011;86:152–158.PubMed Burket JA, Herndon AL, Winebarger EE, Jacome LF, Deutsch SI. Complex effects of mGluR5 antagonism on sociability and stereotypic behaviors in mice: possible implications for the pharmacotherapy of autism spectrum disorders. Brain Res Bull 2011;86:152–158.PubMed
54.
Zurück zum Zitat Horev G, Ellegood J, Lerch JP, et al. Dosage-dependent phenotypes in models of 16p11.2 lesions found in autism. Proc Natl Acad Sci U S A 2011;108:17076–17081.PubMedCentralPubMed Horev G, Ellegood J, Lerch JP, et al. Dosage-dependent phenotypes in models of 16p11.2 lesions found in autism. Proc Natl Acad Sci U S A 2011;108:17076–17081.PubMedCentralPubMed
55.
Zurück zum Zitat Pearson BL, Pobbe RLH, Defensor EB, et al. Motor and cognitive stereotypies in the BTBR T + tf/J mouse model of autism. Genes Brain Behav 2011;10:228–235.PubMedCentralPubMed Pearson BL, Pobbe RLH, Defensor EB, et al. Motor and cognitive stereotypies in the BTBR T + tf/J mouse model of autism. Genes Brain Behav 2011;10:228–235.PubMedCentralPubMed
56.
Zurück zum Zitat Schwartzer JJ, Careaga M, Onore CE, Rushakoff JA, Berman RF, Ashwood P. Maternal immune activation and strain specific interactions in the development of autism-like behaviors in mice. Transl Psychiatry 2013;3:e240.PubMedCentralPubMed Schwartzer JJ, Careaga M, Onore CE, Rushakoff JA, Berman RF, Ashwood P. Maternal immune activation and strain specific interactions in the development of autism-like behaviors in mice. Transl Psychiatry 2013;3:e240.PubMedCentralPubMed
57.
Zurück zum Zitat Amodeo DA, Yi J, Sweeney JA, Ragozzino ME. Oxotremorine treatment reduces repetitive behaviors in BTBR T+ tf/J mice. Front Synaptic Neurosci 2014;6:17.PubMedCentralPubMed Amodeo DA, Yi J, Sweeney JA, Ragozzino ME. Oxotremorine treatment reduces repetitive behaviors in BTBR T+ tf/J mice. Front Synaptic Neurosci 2014;6:17.PubMedCentralPubMed
58.
Zurück zum Zitat Ryan BC, Young NB, Crawley JN, Bodfish JW, Moy SS. Social deficits, stereotypy and early emergence of repetitive behavior in the C58/J inbred mouse strain. Behav Brain Res 2010;208:178–188.PubMedCentralPubMed Ryan BC, Young NB, Crawley JN, Bodfish JW, Moy SS. Social deficits, stereotypy and early emergence of repetitive behavior in the C58/J inbred mouse strain. Behav Brain Res 2010;208:178–188.PubMedCentralPubMed
59.
Zurück zum Zitat Lewis MH, Tanimura Y, Lee LW, Bodfish JW. Animal models of restricted repetitive behavior in autism. Behav Brain Res 2007;176:66–74.PubMedCentralPubMed Lewis MH, Tanimura Y, Lee LW, Bodfish JW. Animal models of restricted repetitive behavior in autism. Behav Brain Res 2007;176:66–74.PubMedCentralPubMed
60.
Zurück zum Zitat Meikle L, Talos DM, Onda H, et al. A mouse model of tuberous sclerosis: neuronal loss of Tsc1 causes dysplastic and ectopic neurons, reduced myelination, seizure activity, and limited survival. J Neurosci 2007;27:5546–5558.PubMed Meikle L, Talos DM, Onda H, et al. A mouse model of tuberous sclerosis: neuronal loss of Tsc1 causes dysplastic and ectopic neurons, reduced myelination, seizure activity, and limited survival. J Neurosci 2007;27:5546–5558.PubMed
61.
Zurück zum Zitat Zeng L-H, Ouyang Y, Gazit V, et al. Abnormal glutamate homeostasis and impaired synaptic plasticity and learning in a mouse model of tuberous sclerosis complex. Neurobiol Dis 2007;28:184–196.PubMedCentralPubMed Zeng L-H, Ouyang Y, Gazit V, et al. Abnormal glutamate homeostasis and impaired synaptic plasticity and learning in a mouse model of tuberous sclerosis complex. Neurobiol Dis 2007;28:184–196.PubMedCentralPubMed
62.
Zurück zum Zitat Homanics GE, DeLorey TM, Firestone LL, et al. Mice devoid of gamma-aminobutyrate type A receptor beta3 subunit have epilepsy, cleft palate, and hypersensitive behavior. Proc Natl Acad Sci U S A 1997;94:4143–4148.PubMedCentralPubMed Homanics GE, DeLorey TM, Firestone LL, et al. Mice devoid of gamma-aminobutyrate type A receptor beta3 subunit have epilepsy, cleft palate, and hypersensitive behavior. Proc Natl Acad Sci U S A 1997;94:4143–4148.PubMedCentralPubMed
63.
64.
Zurück zum Zitat Carter MD, Shah CR, Muller CL, Crawley JN, Carneiro AMD, Veenstra-Van der Weele J. Absence of preference for social novelty and increased grooming in integrin β3 knockout mice: initial studies and future directions. Autism Res 2011;4:57–67. Carter MD, Shah CR, Muller CL, Crawley JN, Carneiro AMD, Veenstra-Van der Weele J. Absence of preference for social novelty and increased grooming in integrin β3 knockout mice: initial studies and future directions. Autism Res 2011;4:57–67.
65.
Zurück zum Zitat Blundell, J., Tabuchi, K., Bolliger, M. F., et al. Increased anxiety-like behavior in mice lacking the inhibitory synapse cell adhesion molecule neuroligin 2. Genes Brain Behav 2009;8:114–126.PubMedCentralPubMed Blundell, J., Tabuchi, K., Bolliger, M. F., et al. Increased anxiety-like behavior in mice lacking the inhibitory synapse cell adhesion molecule neuroligin 2. Genes Brain Behav 2009;8:114–126.PubMedCentralPubMed
66.
Zurück zum Zitat Ehninger D, Silva AJ. Increased levels of anxiety-related behaviors in a Tsc2 dominant negative transgenic mouse model of tuberous sclerosis. Behav Genet 2011;41:357–363.PubMedCentralPubMed Ehninger D, Silva AJ. Increased levels of anxiety-related behaviors in a Tsc2 dominant negative transgenic mouse model of tuberous sclerosis. Behav Genet 2011;41:357–363.PubMedCentralPubMed
67.
Zurück zum Zitat Samaco RC, Mandel-Brehm C, McGraw CM, Shaw CA, McGill BE, Zoghbi HY. Crh and Oprm1 mediate anxiety-related behavior and social approach in a mouse model of MECP2 duplication syndrome. Nat Genet 2012;44:206–211.PubMedCentralPubMed Samaco RC, Mandel-Brehm C, McGraw CM, Shaw CA, McGill BE, Zoghbi HY. Crh and Oprm1 mediate anxiety-related behavior and social approach in a mouse model of MECP2 duplication syndrome. Nat Genet 2012;44:206–211.PubMedCentralPubMed
68.
Zurück zum Zitat Dachtler J, Glasper J, Cohen RN, et al. Deletion of α-neurexin II results in autism-related behaviors in mice. Transl Psychiatry 2014;4:e484.PubMedCentralPubMed Dachtler J, Glasper J, Cohen RN, et al. Deletion of α-neurexin II results in autism-related behaviors in mice. Transl Psychiatry 2014;4:e484.PubMedCentralPubMed
69.
Zurück zum Zitat Spencer CM, Alekseyenko O, Serysheva E, Yuva-Paylor LA, Paylor R. Altered anxiety-related and social behaviors in the Fmr1 knockout mouse model of fragile X syndrome. Genes Brain Behav 2005;4:420–430.PubMed Spencer CM, Alekseyenko O, Serysheva E, Yuva-Paylor LA, Paylor R. Altered anxiety-related and social behaviors in the Fmr1 knockout mouse model of fragile X syndrome. Genes Brain Behav 2005;4:420–430.PubMed
70.
Zurück zum Zitat Silva AJ, Frankland PW, Marowitz Z, et al. A mouse model for the learning and memory deficits associated with neurofibromatosis type I. Nat Genet 1997;15:281–284.PubMed Silva AJ, Frankland PW, Marowitz Z, et al. A mouse model for the learning and memory deficits associated with neurofibromatosis type I. Nat Genet 1997;15:281–284.PubMed
71.
Zurück zum Zitat Brigman JL, Daut RA, Wright T, et al. GluN2B in corticostriatal circuits governs choice learning and choice shifting. Nat Neurosci 2013;16:1101–1110.PubMedCentralPubMed Brigman JL, Daut RA, Wright T, et al. GluN2B in corticostriatal circuits governs choice learning and choice shifting. Nat Neurosci 2013;16:1101–1110.PubMedCentralPubMed
72.
Zurück zum Zitat Bissonette GB, Schoenbaum G, Roesch MR, Powell EM. Interneurons are necessary for coordinated activity during reversal learning in orbitofrontal cortex. Biol Psychiatry 2015;77:454–464.PubMed Bissonette GB, Schoenbaum G, Roesch MR, Powell EM. Interneurons are necessary for coordinated activity during reversal learning in orbitofrontal cortex. Biol Psychiatry 2015;77:454–464.PubMed
73.
74.
Zurück zum Zitat Via E, Radua J, Cardoner N, Happé F, Mataix-Cols D. Meta-analysis of gray matter abnormalities in autism spectrum disorder: should Asperger disorder be subsumed under a broader umbrella of autistic spectrum disorder? Arch Gen Psychiatry 2011;68:409–418.PubMed Via E, Radua J, Cardoner N, Happé F, Mataix-Cols D. Meta-analysis of gray matter abnormalities in autism spectrum disorder: should Asperger disorder be subsumed under a broader umbrella of autistic spectrum disorder? Arch Gen Psychiatry 2011;68:409–418.PubMed
75.
Zurück zum Zitat Radua J, Via E, Catani M, Mataix-Cols D. Voxel-based meta-analysis of regional white-matter volume differences in autism spectrum disorder versus healthy controls. Psychol Med 2010;41:1539–1550.PubMed Radua J, Via E, Catani M, Mataix-Cols D. Voxel-based meta-analysis of regional white-matter volume differences in autism spectrum disorder versus healthy controls. Psychol Med 2010;41:1539–1550.PubMed
76.
Zurück zum Zitat Stanfield AC, McIntosh AM, Spencer MD, Philip R, Gaur S, Lawrie SM. Towards a neuroanatomy of autism: a systematic review and meta-analysis of structural magnetic resonance imaging studies. Eur Psychiatry 2008;23:289–299.PubMed Stanfield AC, McIntosh AM, Spencer MD, Philip R, Gaur S, Lawrie SM. Towards a neuroanatomy of autism: a systematic review and meta-analysis of structural magnetic resonance imaging studies. Eur Psychiatry 2008;23:289–299.PubMed
77.
Zurück zum Zitat Hatton DD, Sideris J, Skinner M, et al. Autistic behavior in children with fragile X syndrome: prevalence, stability, and the impact of FMRP. Am J Med Genet A 2006;140A:1804–1813.PubMed Hatton DD, Sideris J, Skinner M, et al. Autistic behavior in children with fragile X syndrome: prevalence, stability, and the impact of FMRP. Am J Med Genet A 2006;140A:1804–1813.PubMed
78.
Zurück zum Zitat Clifford S, Dissanayake C, Bui QM, Huggins R, Taylor AK, Loesch DZ. Autism spectrum phenotype in males and females with fragile X full mutation and premutation. J Autism Dev Disord 2007;37:738–747.PubMed Clifford S, Dissanayake C, Bui QM, Huggins R, Taylor AK, Loesch DZ. Autism spectrum phenotype in males and females with fragile X full mutation and premutation. J Autism Dev Disord 2007;37:738–747.PubMed
79.
Zurück zum Zitat Harris SW, Hessl D, Goodlin-Jones B, et al. Autism profiles of males with fragile X syndrome. Am J Ment Retard 2008;113:427–438.PubMedCentralPubMed Harris SW, Hessl D, Goodlin-Jones B, et al. Autism profiles of males with fragile X syndrome. Am J Ment Retard 2008;113:427–438.PubMedCentralPubMed
80.
Zurück zum Zitat No authors listed. Fmr1 knockout mice: a model to study fragile X mental retardation. The Dutch-Belgian Fragile X Consortium. Cell 1994;78:23–33. No authors listed. Fmr1 knockout mice: a model to study fragile X mental retardation. The Dutch-Belgian Fragile X Consortium. Cell 1994;78:23–33.
81.
Zurück zum Zitat Comery TA, Harris JB, Willems PJ, et al. Abnormal dendritic spines in fragile X knockout mice: Maturation and pruning deficits. Proc Natl Acad Sci U S A 1997;94:5401–5404.PubMedCentralPubMed Comery TA, Harris JB, Willems PJ, et al. Abnormal dendritic spines in fragile X knockout mice: Maturation and pruning deficits. Proc Natl Acad Sci U S A 1997;94:5401–5404.PubMedCentralPubMed
82.
Zurück zum Zitat Irwin SA, Galvez R, Greenough WT. Dendritic spine structural anomalies in fragile-X mental retardation syndrome. Cereb. Cortex 2000;10:1038–1044.PubMed Irwin SA, Galvez R, Greenough WT. Dendritic spine structural anomalies in fragile-X mental retardation syndrome. Cereb. Cortex 2000;10:1038–1044.PubMed
83.
Zurück zum Zitat Irwin SA, Patel B, Idupulapati M, et al. Abnormal dendritic spine characteristics in the temporal and visual cortices of patients with fragile-X syndrome: a quantitative examination. Am J Med Genet 2001;98:161–167.PubMed Irwin SA, Patel B, Idupulapati M, et al. Abnormal dendritic spine characteristics in the temporal and visual cortices of patients with fragile-X syndrome: a quantitative examination. Am J Med Genet 2001;98:161–167.PubMed
84.
Zurück zum Zitat Guy J, Hendrich B, Holmes M, Martin JE, Bird A. A mouse Mecp2-null mutation causes neurological symptoms that mimic Rett syndrome. Nat Genet 2001;27:322–326.PubMed Guy J, Hendrich B, Holmes M, Martin JE, Bird A. A mouse Mecp2-null mutation causes neurological symptoms that mimic Rett syndrome. Nat Genet 2001;27:322–326.PubMed
85.
Zurück zum Zitat Chen RZ, Akbarian S, Tudor M, Jaenisch R. Deficiency of methyl-CpG binding protein-2 in CNS neurons results in a Rett-like phenotype in mice. Nat Genet 2001;27:327–331.PubMed Chen RZ, Akbarian S, Tudor M, Jaenisch R. Deficiency of methyl-CpG binding protein-2 in CNS neurons results in a Rett-like phenotype in mice. Nat Genet 2001;27:327–331.PubMed
86.
Zurück zum Zitat Shahbazian MD, Antalffy B, Armstrong DL, Zoghbi HY. Insight into Rett syndrome: MeCP2 levels display tissue- and cell-specific differences and correlate with neuronal maturation. Hum Mol Genet 2002;11:115–124.PubMed Shahbazian MD, Antalffy B, Armstrong DL, Zoghbi HY. Insight into Rett syndrome: MeCP2 levels display tissue- and cell-specific differences and correlate with neuronal maturation. Hum Mol Genet 2002;11:115–124.PubMed
87.
Zurück zum Zitat Waage-Baudet H, Lauder JM, Dehart DB. Abnormal serotonergic development in a mouse model for the Smith–Lemli–Opitz syndrome: implications for autism. Int J Dev Neurosci 2003;21:451–459.PubMed Waage-Baudet H, Lauder JM, Dehart DB. Abnormal serotonergic development in a mouse model for the Smith–Lemli–Opitz syndrome: implications for autism. Int J Dev Neurosci 2003;21:451–459.PubMed
88.
Zurück zum Zitat Young JG, Kavanagh ME, Anderson GM, Shaywitz BA, Cohen DJ. Clinical neurochemistry of autism and associated disorders. J Autism Dev Disord 1982;12:147–165.PubMed Young JG, Kavanagh ME, Anderson GM, Shaywitz BA, Cohen DJ. Clinical neurochemistry of autism and associated disorders. J Autism Dev Disord 1982;12:147–165.PubMed
89.
Zurück zum Zitat Cook EH, Leventhal BL. The serotonin system in autism. Curr Opin Pediatr 1996;8:348–354.PubMed Cook EH, Leventhal BL. The serotonin system in autism. Curr Opin Pediatr 1996;8:348–354.PubMed
90.
Zurück zum Zitat Gabriele S, Sacco R, Persico AM. Blood serotonin levels in autism spectrum disorder: a systematic review and meta-analysis. Eur Neuropsychopharmacol 2014;24:919–929.PubMed Gabriele S, Sacco R, Persico AM. Blood serotonin levels in autism spectrum disorder: a systematic review and meta-analysis. Eur Neuropsychopharmacol 2014;24:919–929.PubMed
91.
Zurück zum Zitat Liu W, Pappas GD, Carter CS. Oxytocin receptors in brain cortical regions are reduced in haploinsufficient (+/−) reeler mice. Neurol Res 2005;27:339–345.PubMed Liu W, Pappas GD, Carter CS. Oxytocin receptors in brain cortical regions are reduced in haploinsufficient (+/−) reeler mice. Neurol Res 2005;27:339–345.PubMed
92.
Zurück zum Zitat Fukuda T, Itoh M, Ichikawa T, Washiyama K, Goto Y-I. Delayed maturation of neuronal architecture and synaptogenesis in cerebral cortex of Mecp2-deficient mice. J Neuropathol Exp Neurol 2005;64:537–544.PubMed Fukuda T, Itoh M, Ichikawa T, Washiyama K, Goto Y-I. Delayed maturation of neuronal architecture and synaptogenesis in cerebral cortex of Mecp2-deficient mice. J Neuropathol Exp Neurol 2005;64:537–544.PubMed
93.
Zurück zum Zitat Henkelman RM. Systems biology through mouse imaging centers: experience and new directions. Annu Rev Biomed Eng 2010;12:143–166.PubMed Henkelman RM. Systems biology through mouse imaging centers: experience and new directions. Annu Rev Biomed Eng 2010;12:143–166.PubMed
94.
Zurück zum Zitat Nieman BJ, Flenniken AM, Adamson SL, Henkelman RM, Sled JG. Anatomical phenotyping in the brain and skull of a mutant mouse by magnetic resonance imaging and computed tomography. Physiol Genomics 2006;24:154–162.PubMed Nieman BJ, Flenniken AM, Adamson SL, Henkelman RM, Sled JG. Anatomical phenotyping in the brain and skull of a mutant mouse by magnetic resonance imaging and computed tomography. Physiol Genomics 2006;24:154–162.PubMed
95.
Zurück zum Zitat Kampschulte, M., Brinkmann, A., Stieger, P., et al. Quantitative CT imaging of the spatio-temporal distribution patterns of vasa vasorum in aortas of apoE−/−/LDL−/− double knockout mice. Atherosclerosis 2010;212:444–450.PubMed Kampschulte, M., Brinkmann, A., Stieger, P., et al. Quantitative CT imaging of the spatio-temporal distribution patterns of vasa vasorum in aortas of apoE−/−/LDL−/− double knockout mice. Atherosclerosis 2010;212:444–450.PubMed
96.
Zurück zum Zitat Yang J, Yu LX, Rennie MY, Sled JG, Henkelman RM. Comparative structural and hemodynamic analysis of vascular trees. Am J Physiol Heart Circ Physiol 2010;298:H1249-H1259.PubMed Yang J, Yu LX, Rennie MY, Sled JG, Henkelman RM. Comparative structural and hemodynamic analysis of vascular trees. Am J Physiol Heart Circ Physiol 2010;298:H1249-H1259.PubMed
97.
Zurück zum Zitat Wong MD, Dorr AE, Walls JR, Lerch JP, Henkelman RM. A novel 3D mouse embryo atlas based on micro-CT. Development 2012;139:3248–3256.PubMed Wong MD, Dorr AE, Walls JR, Lerch JP, Henkelman RM. A novel 3D mouse embryo atlas based on micro-CT. Development 2012;139:3248–3256.PubMed
98.
Zurück zum Zitat Metscher BD. MicroCT for developmental biology: a versatile tool for high-contrast 3D imaging at histological resolutions. Dev Dyn 2009;238:632–640.PubMed Metscher BD. MicroCT for developmental biology: a versatile tool for high-contrast 3D imaging at histological resolutions. Dev Dyn 2009;238:632–640.PubMed
99.
Zurück zum Zitat Degenhardt K, Wright AC, Horng D, Padmanabhan A, Epstein JA. Rapid 3D phenotyping of cardiovascular development in mouse embryos by micro-CT with iodine staining. Circ Cardiovasc Imaging 2010;3:314–322.PubMedCentralPubMed Degenhardt K, Wright AC, Horng D, Padmanabhan A, Epstein JA. Rapid 3D phenotyping of cardiovascular development in mouse embryos by micro-CT with iodine staining. Circ Cardiovasc Imaging 2010;3:314–322.PubMedCentralPubMed
100.
Zurück zum Zitat Phoon CKL, Ji RP, Aristizábal O, et al. Embryonic heart failure in NFATc1−/− mice: novel mechanistic insights from in utero ultrasound biomicroscopy. Circ Res 2004;95:92–99.PubMed Phoon CKL, Ji RP, Aristizábal O, et al. Embryonic heart failure in NFATc1−/− mice: novel mechanistic insights from in utero ultrasound biomicroscopy. Circ Res 2004;95:92–99.PubMed
101.
Zurück zum Zitat Phoon CKL, Turnbull DH. Ultrasound biomicroscopy-Doppler in mouse cardiovascular development. Physiol Genomics 2003;14:3–15.PubMed Phoon CKL, Turnbull DH. Ultrasound biomicroscopy-Doppler in mouse cardiovascular development. Physiol Genomics 2003;14:3–15.PubMed
102.
Zurück zum Zitat Zhou Y-Q, Foster FS, Nieman BJ, Davidson L, Chen XJ, Henkelman RM. Comprehensive transthoracic cardiac imaging in mice using ultrasound biomicroscopy with anatomical confirmation by magnetic resonance imaging. Physiol Genomics 2004;18:232–244.PubMed Zhou Y-Q, Foster FS, Nieman BJ, Davidson L, Chen XJ, Henkelman RM. Comprehensive transthoracic cardiac imaging in mice using ultrasound biomicroscopy with anatomical confirmation by magnetic resonance imaging. Physiol Genomics 2004;18:232–244.PubMed
103.
Zurück zum Zitat Turnbull DH, Bloomfield TS, Baldwin HS, Foster FS, Joyner AL. Ultrasound backscatter microscope analysis of early mouse embryonic brain development. Proc Natl Acad Sci U S A 1995;92:2239–2243.PubMedCentralPubMed Turnbull DH, Bloomfield TS, Baldwin HS, Foster FS, Joyner AL. Ultrasound backscatter microscope analysis of early mouse embryonic brain development. Proc Natl Acad Sci U S A 1995;92:2239–2243.PubMedCentralPubMed
104.
Zurück zum Zitat Yang Y, Tai Y-C, Siegel S, et al. Optimization and performance evaluation of the microPET II scanner for in vivo small-animal imaging. Phys Med Biol 2004;49:2527–2545.PubMed Yang Y, Tai Y-C, Siegel S, et al. Optimization and performance evaluation of the microPET II scanner for in vivo small-animal imaging. Phys Med Biol 2004;49:2527–2545.PubMed
105.
106.
Zurück zum Zitat Gleave,JA, Wong MD, Dazai J, et al. Neuroanatomical phenotyping of the mouse brain with three-dimensional autofluorescence imaging. Physiol Genomics 2012;44:778–785. Gleave,JA, Wong MD, Dazai J, et al. Neuroanatomical phenotyping of the mouse brain with three-dimensional autofluorescence imaging. Physiol Genomics 2012;44:778–785.
107.
Zurück zum Zitat Nieman BJ, Bock NA, Bishop J, et al. Magnetic resonance imaging for detection and analysis of mouse phenotypes. NMR Biomed 2005;18:447–468.PubMed Nieman BJ, Bock NA, Bishop J, et al. Magnetic resonance imaging for detection and analysis of mouse phenotypes. NMR Biomed 2005;18:447–468.PubMed
108.
Zurück zum Zitat Zhang J, Richards LJ, Yarowsky P, Huang H, van Zijl PCM, Mori S. Three-dimensional anatomical characterization of the developing mouse brain by diffusion tensor microimaging. Neuroimage 2003;20:1639–1648.PubMed Zhang J, Richards LJ, Yarowsky P, Huang H, van Zijl PCM, Mori S. Three-dimensional anatomical characterization of the developing mouse brain by diffusion tensor microimaging. Neuroimage 2003;20:1639–1648.PubMed
109.
Zurück zum Zitat Aggarwal M, Zhang J, Miller MI, Sidman RL, Mori S. Magnetic resonance imaging and micro-computed tomography combined atlas of developing and adult mouse brains for stereotaxic surgery. Neuroscience 2009;162:1339–1350.PubMedCentralPubMed Aggarwal M, Zhang J, Miller MI, Sidman RL, Mori S. Magnetic resonance imaging and micro-computed tomography combined atlas of developing and adult mouse brains for stereotaxic surgery. Neuroscience 2009;162:1339–1350.PubMedCentralPubMed
110.
Zurück zum Zitat Cyr M, Caron MG, Johnson GA, Laakso A. Magnetic resonance imaging at microscopic resolution reveals subtle morphological changes in a mouse model of dopaminergic hyperfunction. Neuroimage 2005;26:83–90.PubMed Cyr M, Caron MG, Johnson GA, Laakso A. Magnetic resonance imaging at microscopic resolution reveals subtle morphological changes in a mouse model of dopaminergic hyperfunction. Neuroimage 2005;26:83–90.PubMed
111.
Zurück zum Zitat Johnson GA, Cofer GP, Fubara B, Gewalt SL, Hedlund LW, Maronpot RR. Magnetic resonance histology for morphologic phenotyping. J Magn Reson Imaging 2002;16:423–429.PubMed Johnson GA, Cofer GP, Fubara B, Gewalt SL, Hedlund LW, Maronpot RR. Magnetic resonance histology for morphologic phenotyping. J Magn Reson Imaging 2002;16:423–429.PubMed
112.
Zurück zum Zitat Johnson GA, Ali-Sharief A, Badea A, et al. High-throughput morphologic phenotyping of the mouse brain with magnetic resonance histology. Neuroimage 2007;37:82–89.PubMed Johnson GA, Ali-Sharief A, Badea A, et al. High-throughput morphologic phenotyping of the mouse brain with magnetic resonance histology. Neuroimage 2007;37:82–89.PubMed
113.
Zurück zum Zitat Cleary JO, Wiseman FK, Norris FC, et al. Structural correlates of active-staining following magnetic resonance microscopy in the mouse brain. Neuroimage 2011;56:974–983.PubMedCentralPubMed Cleary JO, Wiseman FK, Norris FC, et al. Structural correlates of active-staining following magnetic resonance microscopy in the mouse brain. Neuroimage 2011;56:974–983.PubMedCentralPubMed
114.
Zurück zum Zitat Kovacević N, Henderson JT, Chan E, et al. A three-dimensional MRI atlas of the mouse brain with estimates of the average and variability. Cereb Cortex 2005;15:639–645.PubMed Kovacević N, Henderson JT, Chan E, et al. A three-dimensional MRI atlas of the mouse brain with estimates of the average and variability. Cereb Cortex 2005;15:639–645.PubMed
115.
Zurück zum Zitat Kooy RF, Reyniers E, Verhoye M, et al. Neuroanatomy of the fragile X knockout mouse brain studied using in vivo high resolution magnetic resonance imaging. Eur J Hum Genet 1999;7:526–532.PubMed Kooy RF, Reyniers E, Verhoye M, et al. Neuroanatomy of the fragile X knockout mouse brain studied using in vivo high resolution magnetic resonance imaging. Eur J Hum Genet 1999;7:526–532.PubMed
116.
Zurück zum Zitat Saywell V, Viola A, Confort-Gouny S, Le Fur Y, Villard L, Cozzone PJ. Brain magnetic resonance study of Mecp2 deletion effects on anatomy and metabolism. Biochem Biophys Res Commun 2006;340:776–783.PubMed Saywell V, Viola A, Confort-Gouny S, Le Fur Y, Villard L, Cozzone PJ. Brain magnetic resonance study of Mecp2 deletion effects on anatomy and metabolism. Biochem Biophys Res Commun 2006;340:776–783.PubMed
117.
Zurück zum Zitat Reiss AL, Faruque F, Naidu S, et al. Neuroanatomy of Rett syndrome: a volumetric imaging study. Ann Neurol 1993;34:227–234.PubMed Reiss AL, Faruque F, Naidu S, et al. Neuroanatomy of Rett syndrome: a volumetric imaging study. Ann Neurol 1993;34:227–234.PubMed
118.
Zurück zum Zitat Subramaniam B, Naidu S, Reiss AL. Neuroanatomy in Rett syndrome: cerebral cortex and posterior fossa. Neurology 1997;48:399–407.PubMed Subramaniam B, Naidu S, Reiss AL. Neuroanatomy in Rett syndrome: cerebral cortex and posterior fossa. Neurology 1997;48:399–407.PubMed
119.
Zurück zum Zitat Carter JC, Lanham DC, Pham D, Bibat G, Naidu S, Kaufmann WE. Selective cerebral volume reduction in Rett syndrome: a multiple-approach MR imaging study. AJNR Am J Neuroradiol 2008;29:436–441.PubMedCentralPubMed Carter JC, Lanham DC, Pham D, Bibat G, Naidu S, Kaufmann WE. Selective cerebral volume reduction in Rett syndrome: a multiple-approach MR imaging study. AJNR Am J Neuroradiol 2008;29:436–441.PubMedCentralPubMed
120.
Zurück zum Zitat Ward BC, Agarwal S, Wang K, Berger-Sweeney J, Kolodny NH. Longitudinal brain MRI study in a mouse model of Rett Syndrome and the effects of choline. Neurobiol Dis 2008;31:110–119.PubMed Ward BC, Agarwal S, Wang K, Berger-Sweeney J, Kolodny NH. Longitudinal brain MRI study in a mouse model of Rett Syndrome and the effects of choline. Neurobiol Dis 2008;31:110–119.PubMed
121.
Zurück zum Zitat Nag N, Moriuchi JM, Peitzman CGK, Ward BC, Kolodny NH, Berger-Sweeney JE. Environmental enrichment alters locomotor behaviour and ventricular volume in Mecp21lox mice. Behav Brain Res 2009;196:44–48.PubMed Nag N, Moriuchi JM, Peitzman CGK, Ward BC, Kolodny NH, Berger-Sweeney JE. Environmental enrichment alters locomotor behaviour and ventricular volume in Mecp21lox mice. Behav Brain Res 2009;196:44–48.PubMed
122.
Zurück zum Zitat Jamain S, Quach H, Betancur C, et al. Mutations of the X-linked genes encoding neuroligins NLGN3 and NLGN4 are associated with autism. Nat Genet 2003;34:27–29.PubMedCentralPubMed Jamain S, Quach H, Betancur C, et al. Mutations of the X-linked genes encoding neuroligins NLGN3 and NLGN4 are associated with autism. Nat Genet 2003;34:27–29.PubMedCentralPubMed
123.
Zurück zum Zitat Bourgeron T. A synaptic trek to autism. Curr Opin Neurobiol 2009;19:231–234.PubMed Bourgeron T. A synaptic trek to autism. Curr Opin Neurobiol 2009;19:231–234.PubMed
124.
Zurück zum Zitat Buxbaum JD. Multiple rare variants in the etiology of autism spectrum disorders. Dialogues Clin Neurosci 2009;11:35–43.PubMedCentralPubMed Buxbaum JD. Multiple rare variants in the etiology of autism spectrum disorders. Dialogues Clin Neurosci 2009;11:35–43.PubMedCentralPubMed
125.
Zurück zum Zitat Radyushkin K, Hammerschmidt K, Boretius S, et al. Neuroligin-3-deficient mice: model of a monogenic heritable form of autism with an olfactory deficit. Genes Brain Behav 2009;8:416–425.PubMed Radyushkin K, Hammerschmidt K, Boretius S, et al. Neuroligin-3-deficient mice: model of a monogenic heritable form of autism with an olfactory deficit. Genes Brain Behav 2009;8:416–425.PubMed
126.
Zurück zum Zitat Goorden SMI, van Woerden GM, van der Weerd L, Cheadle JP, Elgersma Y. Cognitive deficits in Tsc1+/−mice in the absence of cerebral lesions and seizures. Ann Neurol 2007;62:648–655.PubMed Goorden SMI, van Woerden GM, van der Weerd L, Cheadle JP, Elgersma Y. Cognitive deficits in Tsc1+/−mice in the absence of cerebral lesions and seizures. Ann Neurol 2007;62:648–655.PubMed
127.
Zurück zum Zitat Bock NA, Konyer NB, Henkelman RM. Multiple-mouse MRI. Magn Reson Med 2003;49:158–167.PubMed Bock NA, Konyer NB, Henkelman RM. Multiple-mouse MRI. Magn Reson Med 2003;49:158–167.PubMed
128.
Zurück zum Zitat Lau JC, Lerch JP, Sled JG, Henkelman RM, Evans AC, Bedell BJ. Longitudinal neuroanatomical changes determined by deformation-based morphometry in a mouse model of Alzheimer's disease. Neuroimage 2008;42:19–27.PubMed Lau JC, Lerch JP, Sled JG, Henkelman RM, Evans AC, Bedell BJ. Longitudinal neuroanatomical changes determined by deformation-based morphometry in a mouse model of Alzheimer's disease. Neuroimage 2008;42:19–27.PubMed
129.
Zurück zum Zitat Dorr AE, Lerch JP, Spring S, Kabani N, Henkelman RM. High resolution three-dimensional brain atlas using an average magnetic resonance image of 40 adult C57Bl/6J mice. Neuroimage 2008;42:60–69.PubMed Dorr AE, Lerch JP, Spring S, Kabani N, Henkelman RM. High resolution three-dimensional brain atlas using an average magnetic resonance image of 40 adult C57Bl/6J mice. Neuroimage 2008;42:60–69.PubMed
130.
Zurück zum Zitat Ellegood J, Pacey LK, Hampson DR, Lerch JP, Henkelman RM. Anatomical phenotyping in a mouse model of fragile X syndrome with magnetic resonance imaging. Neuroimage 2010;53:1023–1029.PubMed Ellegood J, Pacey LK, Hampson DR, Lerch JP, Henkelman RM. Anatomical phenotyping in a mouse model of fragile X syndrome with magnetic resonance imaging. Neuroimage 2010;53:1023–1029.PubMed
131.
Zurück zum Zitat Ellegood J, Lerch JP, Henkelman RM. Brain abnormalities in a Neuroligin3 R451C knockin mouse model associated with autism. Autism Res 2011;4:368–376.PubMed Ellegood J, Lerch JP, Henkelman RM. Brain abnormalities in a Neuroligin3 R451C knockin mouse model associated with autism. Autism Res 2011;4:368–376.PubMed
132.
Zurück zum Zitat Kumar M, Duda JT, Hwang W-T, et al. High resolution magnetic resonance imaging for characterization of the neuroligin-3 knock-in mouse model associated with autism spectrum disorder. PLoS ONE 2014;9:e109872.PubMedCentralPubMed Kumar M, Duda JT, Hwang W-T, et al. High resolution magnetic resonance imaging for characterization of the neuroligin-3 knock-in mouse model associated with autism spectrum disorder. PLoS ONE 2014;9:e109872.PubMedCentralPubMed
133.
Zurück zum Zitat Ellegood J, Henkelman RM, Lerch JP. Neuroanatomical assessment of the integrin β3 mouse model related to autism and the serotonin system using high resolution MRI. Front Psychiatry 2012;3:37.PubMedCentralPubMed Ellegood J, Henkelman RM, Lerch JP. Neuroanatomical assessment of the integrin β3 mouse model related to autism and the serotonin system using high resolution MRI. Front Psychiatry 2012;3:37.PubMedCentralPubMed
134.
Zurück zum Zitat Ecker C, Suckling J, Deoni SC, et al. Brain anatomy and its relationship to behavior in adults with autism spectrum disorder: a multicenter magnetic resonance imaging study. Arch Gen Psychiatry 2012;69:195–209.PubMed Ecker C, Suckling J, Deoni SC, et al. Brain anatomy and its relationship to behavior in adults with autism spectrum disorder: a multicenter magnetic resonance imaging study. Arch Gen Psychiatry 2012;69:195–209.PubMed
135.
Zurück zum Zitat Geschwind DH, Levitt P. Autism spectrum disorders: developmental disconnection syndromes. Curr Opin Neurobiol 2007;17:103–111.PubMed Geschwind DH, Levitt P. Autism spectrum disorders: developmental disconnection syndromes. Curr Opin Neurobiol 2007;17:103–111.PubMed
136.
Zurück zum Zitat Ameis SH, Fan J, Rockel C, et al. Impaired structural connectivity of socio-emotional circuits in autism spectrum disorders: a diffusion tensor imaging study. PLoS ONE 2011;6:e28044.PubMedCentralPubMed Ameis SH, Fan J, Rockel C, et al. Impaired structural connectivity of socio-emotional circuits in autism spectrum disorders: a diffusion tensor imaging study. PLoS ONE 2011;6:e28044.PubMedCentralPubMed
137.
Zurück zum Zitat Di Martino A, Yan C-G, Li Q, et al. The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism. Mol Psychiatry 2014;19:659–667.PubMedCentralPubMed Di Martino A, Yan C-G, Li Q, et al. The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism. Mol Psychiatry 2014;19:659–667.PubMedCentralPubMed
138.
Zurück zum Zitat Kana RK, Libero LE, Moore MS. Disrupted cortical connectivity theory as an explanatory model for autism spectrum disorders. Phys Life Rev 2011;8:410–437.PubMed Kana RK, Libero LE, Moore MS. Disrupted cortical connectivity theory as an explanatory model for autism spectrum disorders. Phys Life Rev 2011;8:410–437.PubMed
139.
Zurück zum Zitat Deboer T, Wu Z, Lee A, Simon TJ. Hippocampal volume reduction in children with chromosome 22q11.2 deletion syndrome is associated with cognitive impairment. Behav Brain Funct 2007;3:54.PubMedCentralPubMed Deboer T, Wu Z, Lee A, Simon TJ. Hippocampal volume reduction in children with chromosome 22q11.2 deletion syndrome is associated with cognitive impairment. Behav Brain Funct 2007;3:54.PubMedCentralPubMed
140.
Zurück zum Zitat Gothelf D, Michaelovsky E, Frisch A, et al. Association of the low-activity COMT 158Met allele with ADHD and OCD in subjects with velocardiofacial syndrome. Int J Neuropsychopharmacol 2007;10:301–308.PubMed Gothelf D, Michaelovsky E, Frisch A, et al. Association of the low-activity COMT 158Met allele with ADHD and OCD in subjects with velocardiofacial syndrome. Int J Neuropsychopharmacol 2007;10:301–308.PubMed
141.
Zurück zum Zitat Kates WR, Burnette CP, Bessette BA, et al. Frontal and caudate alterations in velocardiofacial syndrome (deletion at chromosome 22q11.2). J Child Neurol 2004;19:337–342.PubMed Kates WR, Burnette CP, Bessette BA, et al. Frontal and caudate alterations in velocardiofacial syndrome (deletion at chromosome 22q11.2). J Child Neurol 2004;19:337–342.PubMed
142.
Zurück zum Zitat Cook EH, Lindgren V, Leventhal BL, et al. Autism or atypical autism in maternally but not paternally derived proximal 15q duplication. Am J Hum Genet 1997;60:928–934.PubMedCentralPubMed Cook EH, Lindgren V, Leventhal BL, et al. Autism or atypical autism in maternally but not paternally derived proximal 15q duplication. Am J Hum Genet 1997;60:928–934.PubMedCentralPubMed
143.
Zurück zum Zitat Nakatani J, Tamada K, Hatanaka F, et al. Abnormal behavior in a chromosome-engineered mouse model for human 15q11-13 duplication seen in autism. Cell 2009;137:1235–1246.PubMedCentralPubMed Nakatani J, Tamada K, Hatanaka F, et al. Abnormal behavior in a chromosome-engineered mouse model for human 15q11-13 duplication seen in autism. Cell 2009;137:1235–1246.PubMedCentralPubMed
144.
Zurück zum Zitat Ellegood J, Nakai N, Nakatani J, Henkelman M, Takumi T, Lerch J. Neuroanatomical phenotypes are consistent with autism-like behavioral phenotypes in the 15q11-13 duplication mouse model. Autism Res 2015 Mar 7 [Epub ahead of print]. Ellegood J, Nakai N, Nakatani J, Henkelman M, Takumi T, Lerch J. Neuroanatomical phenotypes are consistent with autism-like behavioral phenotypes in the 15q11-13 duplication mouse model. Autism Res 2015 Mar 7 [Epub ahead of print].
145.
Zurück zum Zitat Bolton PF, Dennis NR, Browne CE, et al. The phenotypic manifestations of interstitial duplications of proximal 15q with special reference to the autistic spectrum disorders. Am J Med Genet 2001;105:675–685.PubMed Bolton PF, Dennis NR, Browne CE, et al. The phenotypic manifestations of interstitial duplications of proximal 15q with special reference to the autistic spectrum disorders. Am J Med Genet 2001;105:675–685.PubMed
146.
Zurück zum Zitat Wegiel J, Schanen NC, Cook EH, et al. Differences between the pattern of developmental abnormalities in autism associated with duplications 15q11.2-q13 and idiopathic autism. J Neuropathol Exp Neurol 2012;71:382–397.PubMedCentralPubMed Wegiel J, Schanen NC, Cook EH, et al. Differences between the pattern of developmental abnormalities in autism associated with duplications 15q11.2-q13 and idiopathic autism. J Neuropathol Exp Neurol 2012;71:382–397.PubMedCentralPubMed
147.
Zurück zum Zitat Brodkin ES. BALB/c mice: low sociability and other phenotypes that may be relevant to autism. Behav Brain Res 2007;176:53–65.PubMed Brodkin ES. BALB/c mice: low sociability and other phenotypes that may be relevant to autism. Behav Brain Res 2007;176:53–65.PubMed
148.
Zurück zum Zitat Benson AD, Burket JA, Deutsch SI. Balb/c mice treated with D-cycloserine arouse increased social interest in conspecifics. Brain Res Bull 2013;99:95–99.PubMed Benson AD, Burket JA, Deutsch SI. Balb/c mice treated with D-cycloserine arouse increased social interest in conspecifics. Brain Res Bull 2013;99:95–99.PubMed
149.
Zurück zum Zitat Ellegood J, Babineau BA, Henkelman RM, Lerch JP, Crawley JN. Neuroanatomical analysis of the BTBR mouse model of autism using magnetic resonance imaging and diffusion tensor imaging. Neuroimage 2013;70:288–300.PubMedCentralPubMed Ellegood J, Babineau BA, Henkelman RM, Lerch JP, Crawley JN. Neuroanatomical analysis of the BTBR mouse model of autism using magnetic resonance imaging and diffusion tensor imaging. Neuroimage 2013;70:288–300.PubMedCentralPubMed
150.
Zurück zum Zitat Wahlsten D, Metten P, Crabbe JC. Survey of 21 inbred mouse strains in two laboratories reveals that BTBR T/+ tf/tf has severely reduced hippocampal commissure and absent corpus callosum. Brain Res 2003;971:47–54.PubMed Wahlsten D, Metten P, Crabbe JC. Survey of 21 inbred mouse strains in two laboratories reveals that BTBR T/+ tf/tf has severely reduced hippocampal commissure and absent corpus callosum. Brain Res 2003;971:47–54.PubMed
151.
Zurück zum Zitat Dodero L, Damiano M, Galbusera A, et al. Neuroimaging evidence of major morpho-anatomical and functional abnormalities in the BTBR T + TF/J mouse model of autism. PLoS ONE 2013;8:e76655.PubMedCentralPubMed Dodero L, Damiano M, Galbusera A, et al. Neuroimaging evidence of major morpho-anatomical and functional abnormalities in the BTBR T + TF/J mouse model of autism. PLoS ONE 2013;8:e76655.PubMedCentralPubMed
152.
Zurück zum Zitat Squillace M, Dodero L, Federici M, et al. Dysfunctional dopaminergic neurotransmission in asocial BTBR mice. Transl Psychiatry 2014;4:e427.PubMedCentralPubMed Squillace M, Dodero L, Federici M, et al. Dysfunctional dopaminergic neurotransmission in asocial BTBR mice. Transl Psychiatry 2014;4:e427.PubMedCentralPubMed
153.
Zurück zum Zitat Kim S, Pickup S, Fairless AH, et al. Association between sociability and diffusion tensor imaging in BALB/cJ mice. NMR Biomed 2012;25:104–112.PubMedCentralPubMed Kim S, Pickup S, Fairless AH, et al. Association between sociability and diffusion tensor imaging in BALB/cJ mice. NMR Biomed 2012;25:104–112.PubMedCentralPubMed
154.
Zurück zum Zitat Kumar M, Kim S, Pickup S, et al. Longitudinal in-vivo diffusion tensor imaging for assessing brain developmental changes in BALB/cJ mice, a model of reduced sociability relevant to autism. Brain Res 2012;1455:56–67.PubMedCentralPubMed Kumar M, Kim S, Pickup S, et al. Longitudinal in-vivo diffusion tensor imaging for assessing brain developmental changes in BALB/cJ mice, a model of reduced sociability relevant to autism. Brain Res 2012;1455:56–67.PubMedCentralPubMed
155.
Zurück zum Zitat Nieman BJ, Lerch JP, Bock NA, Chen XJ, Sled.JG, Henkelman RM. Mouse behavioral mutants have neuroimaging abnormalities. Hum Brain Mapp 2007;28:567–575. Nieman BJ, Lerch JP, Bock NA, Chen XJ, Sled.JG, Henkelman RM. Mouse behavioral mutants have neuroimaging abnormalities. Hum Brain Mapp 2007;28:567–575.
156.
Zurück zum Zitat Lerch, J. P., Yiu, A. P., Martinez-Canabal, A., et al. Maze training in mice induces MRI-detectable brain shape changes specific to the type of learning. Neuroimage 2011;54:2086–2095.PubMed Lerch, J. P., Yiu, A. P., Martinez-Canabal, A., et al. Maze training in mice induces MRI-detectable brain shape changes specific to the type of learning. Neuroimage 2011;54:2086–2095.PubMed
157.
Zurück zum Zitat Gross M. Shining new light on the brain. Curr Biol 2011;21:R831-R833.PubMed Gross M. Shining new light on the brain. Curr Biol 2011;21:R831-R833.PubMed
158.
Zurück zum Zitat Allsop SA, Vander Weele CM, Wichmann R, Tye KM. Optogenetic insights on the relationship between anxiety-related behaviors and social deficits. Front Behav Neurosci 2014;8:241.PubMedCentralPubMed Allsop SA, Vander Weele CM, Wichmann R, Tye KM. Optogenetic insights on the relationship between anxiety-related behaviors and social deficits. Front Behav Neurosci 2014;8:241.PubMedCentralPubMed
159.
Zurück zum Zitat Ellegood J, Markx S, Lerch JP, et al. Neuroanatomical phenotypes in a mouse model of the 22q11.2 microdeletion. Mol Psychiatry 2014;19:99–107.PubMed Ellegood J, Markx S, Lerch JP, et al. Neuroanatomical phenotypes in a mouse model of the 22q11.2 microdeletion. Mol Psychiatry 2014;19:99–107.PubMed
160.
Zurück zum Zitat Harper KM, Hiramoto T, Tanigaki K, et al. Alterations of social interaction through genetic and environmental manipulation of the 22q11.2 gene Sept5 in the mouse brain. Hum Mol Genet 2012;21:3489–3499.PubMedCentralPubMed Harper KM, Hiramoto T, Tanigaki K, et al. Alterations of social interaction through genetic and environmental manipulation of the 22q11.2 gene Sept5 in the mouse brain. Hum Mol Genet 2012;21:3489–3499.PubMedCentralPubMed
161.
Zurück zum Zitat Mineur YS, Huynh LX, Crusio WE. Social behavior deficits in the Fmr1 mutant mouse. Behav Brain Res 2006;168:172–175.PubMed Mineur YS, Huynh LX, Crusio WE. Social behavior deficits in the Fmr1 mutant mouse. Behav Brain Res 2006;168:172–175.PubMed
162.
Zurück zum Zitat Pacey LKK, Xuan ICY, Guan S, et al. Delayed myelination in a mouse model of fragile X syndrome. Hum Mol Genet 2013;22:3920–3930.PubMed Pacey LKK, Xuan ICY, Guan S, et al. Delayed myelination in a mouse model of fragile X syndrome. Hum Mol Genet 2013;22:3920–3930.PubMed
163.
Zurück zum Zitat Ellegood J, Anagnostou E, Babineau BA, et al. Clustering autism: using neuroanatomical differences in 26 mouse models to gain insight into the heterogeneity. Mol Psychiatry 2015;20:118–125.PubMedCentralPubMed Ellegood J, Anagnostou E, Babineau BA, et al. Clustering autism: using neuroanatomical differences in 26 mouse models to gain insight into the heterogeneity. Mol Psychiatry 2015;20:118–125.PubMedCentralPubMed
164.
Zurück zum Zitat Samaco RC, McGraw CM, Ward CS, Sun Y, Neul JL, Zoghbi HY. Female Mecp2(+/−) mice display robust behavioral deficits on two different genetic backgrounds providing a framework for pre-clinical studies. Hum Mol Genet 2013;22:96–109.PubMedCentralPubMed Samaco RC, McGraw CM, Ward CS, Sun Y, Neul JL, Zoghbi HY. Female Mecp2(+/−) mice display robust behavioral deficits on two different genetic backgrounds providing a framework for pre-clinical studies. Hum Mol Genet 2013;22:96–109.PubMedCentralPubMed
165.
Zurück zum Zitat Schaevitz LR, Moriuchi JM, Nag N, Mellot TJ, Berger-Sweeney J. Cognitive and social functions and growth factors in a mouse model of Rett syndrome. Physiol Behav 2010;100:255–263.PubMed Schaevitz LR, Moriuchi JM, Nag N, Mellot TJ, Berger-Sweeney J. Cognitive and social functions and growth factors in a mouse model of Rett syndrome. Physiol Behav 2010;100:255–263.PubMed
166.
Zurück zum Zitat Pearson BL, Defensor EB, Pobbe RLH, et al. Mecp2 truncation in male mice promotes affiliative social behavior. Behav Genet 2012;42:299–312.PubMed Pearson BL, Defensor EB, Pobbe RLH, et al. Mecp2 truncation in male mice promotes affiliative social behavior. Behav Genet 2012;42:299–312.PubMed
167.
Zurück zum Zitat Steadman PE, Ellegood J, Szulc KU, et al. Genetic effects on cerebellar structure across mouse models of autism using a magnetic resonance imaging atlas. Autism Res 2014;7:124–137.PubMedCentralPubMed Steadman PE, Ellegood J, Szulc KU, et al. Genetic effects on cerebellar structure across mouse models of autism using a magnetic resonance imaging atlas. Autism Res 2014;7:124–137.PubMedCentralPubMed
168.
Zurück zum Zitat Moretti P, Bouwknecht JA, Teague R, Paylor R, Zoghbi HY. Abnormalities of social interactions and home-cage behavior in a mouse model of Rett syndrome. Hum Mol Genet 2005;14:205–220.PubMed Moretti P, Bouwknecht JA, Teague R, Paylor R, Zoghbi HY. Abnormalities of social interactions and home-cage behavior in a mouse model of Rett syndrome. Hum Mol Genet 2005;14:205–220.PubMed
169.
Zurück zum Zitat Raznahan A, Probst F, Palmert MR, Giedd JN, Lerch JP. High resolution whole brain imaging of anatomical variation in XO, XX, and XY mice. Neuroimage 2013;83:962–968.PubMed Raznahan A, Probst F, Palmert MR, Giedd JN, Lerch JP. High resolution whole brain imaging of anatomical variation in XO, XX, and XY mice. Neuroimage 2013;83:962–968.PubMed
170.
Zurück zum Zitat Smith JM, Xu J, Powell EM. Age dependent forebrain structural changes in mice deficient in the autism associated gene Met tyrosine kinase. Neuroimage Clin 2012;1:66–74.PubMedCentralPubMed Smith JM, Xu J, Powell EM. Age dependent forebrain structural changes in mice deficient in the autism associated gene Met tyrosine kinase. Neuroimage Clin 2012;1:66–74.PubMedCentralPubMed
171.
Zurück zum Zitat Etherton MR, Blaiss CA, Powell CM, Südhof TC. Mouse neurexin-1alpha deletion causes correlated electrophysiological and behavioral changes consistent with cognitive impairments. Proc Natl Acad Sci U S A 2009;106:17998–18003.PubMedCentralPubMed Etherton MR, Blaiss CA, Powell CM, Südhof TC. Mouse neurexin-1alpha deletion causes correlated electrophysiological and behavioral changes consistent with cognitive impairments. Proc Natl Acad Sci U S A 2009;106:17998–18003.PubMedCentralPubMed
172.
Zurück zum Zitat Grayton HM, Missler M, Collier DA, Fernandes C. Altered social behaviours in neurexin 1α knockout mice resemble core symptoms in neurodevelopmental disorders. PLoS ONE 2013;8:e67114.PubMedCentralPubMed Grayton HM, Missler M, Collier DA, Fernandes C. Altered social behaviours in neurexin 1α knockout mice resemble core symptoms in neurodevelopmental disorders. PLoS ONE 2013;8:e67114.PubMedCentralPubMed
173.
Zurück zum Zitat Michetti C, Romano E, Altabella L, et al. Mapping pathological phenotypes in reelin mutant mice. Front Pediatr 2014;2:95.PubMedCentralPubMed Michetti C, Romano E, Altabella L, et al. Mapping pathological phenotypes in reelin mutant mice. Front Pediatr 2014;2:95.PubMedCentralPubMed
174.
Zurück zum Zitat Roussignol G, Ango F, Romorini S, et al. Shank expression is sufficient to induce functional dendritic spine synapses in aspiny neurons. J Neurosci 2005;25:3560–3570.PubMed Roussignol G, Ango F, Romorini S, et al. Shank expression is sufficient to induce functional dendritic spine synapses in aspiny neurons. J Neurosci 2005;25:3560–3570.PubMed
175.
Zurück zum Zitat Bozdagi O, Sakurai T, Papapetrou D, et al. Haploinsufficiency of the autism-associated Shank3 gene leads to deficits in synaptic function, social interaction, and social communication. Mol Autism 2010;1:15.PubMedCentralPubMed Bozdagi O, Sakurai T, Papapetrou D, et al. Haploinsufficiency of the autism-associated Shank3 gene leads to deficits in synaptic function, social interaction, and social communication. Mol Autism 2010;1:15.PubMedCentralPubMed
Metadaten
Titel
Behavioral and Neuroanatomical Phenotypes in Mouse Models of Autism
verfasst von
Jacob Ellegood
Jacqueline N. Crawley
Publikationsdatum
01.07.2015
Verlag
Springer US
Erschienen in
Neurotherapeutics / Ausgabe 3/2015
Print ISSN: 1933-7213
Elektronische ISSN: 1878-7479
DOI
https://doi.org/10.1007/s13311-015-0360-z

Weitere Artikel der Ausgabe 3/2015

Neurotherapeutics 3/2015 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Schützt Olivenöl vor dem Tod durch Demenz?

10.05.2024 Morbus Alzheimer Nachrichten

Konsumieren Menschen täglich 7 Gramm Olivenöl, ist ihr Risiko, an einer Demenz zu sterben, um mehr als ein Viertel reduziert – und dies weitgehend unabhängig von ihrer sonstigen Ernährung. Dafür sprechen Auswertungen zweier großer US-Studien.

Bluttest erkennt Parkinson schon zehn Jahre vor der Diagnose

10.05.2024 Parkinson-Krankheit Nachrichten

Ein Bluttest kann abnorm aggregiertes Alpha-Synuclein bei einigen Menschen schon zehn Jahre vor Beginn der motorischen Parkinsonsymptome nachweisen. Mit einem solchen Test lassen sich möglicherweise Prodromalstadien erfassen und die Betroffenen früher behandeln.

Darf man die Behandlung eines Neonazis ablehnen?

08.05.2024 Gesellschaft Nachrichten

In einer Leseranfrage in der Zeitschrift Journal of the American Academy of Dermatology möchte ein anonymer Dermatologe bzw. eine anonyme Dermatologin wissen, ob er oder sie einen Patienten behandeln muss, der eine rassistische Tätowierung trägt.

Wartezeit nicht kürzer, aber Arbeit flexibler

Psychotherapie Medizin aktuell

Fünf Jahren nach der Neugestaltung der Psychotherapie-Richtlinie wurden jetzt die Effekte der vorgenommenen Änderungen ausgewertet. Das Hauptziel der Novellierung war eine kürzere Wartezeit auf Therapieplätze. Dieses Ziel wurde nicht erreicht, es gab jedoch positive Auswirkungen auf andere Bereiche.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.