Skip to main content
Erschienen in: Current Osteoporosis Reports 1/2015

01.02.2015 | Muscle and Bone (L Bonewald and M Hamrick, Section Editors)

Biomechanical Aspects of the Muscle-Bone Interaction

verfasst von: Keith G. Avin, Susan A. Bloomfield, Ted S. Gross, Stuart J. Warden

Erschienen in: Current Osteoporosis Reports | Ausgabe 1/2015

Einloggen, um Zugang zu erhalten

Abstract

There is growing interest in the interaction between skeletal muscle and bone, particularly at the genetic and molecular levels. However, the genetic and molecular linkages between muscle and bone are achieved only within the context of the essential mechanical coupling of the tissues. This biomechanical and physiological linkage is readily evident as muscles attach to bone and induce exposure to varied mechanical stimuli via functional activity. The responsiveness of bone cells to mechanical stimuli, or their absence, is well established. However, questions remain regarding how muscle forces applied to bone serve to modulate bone homeostasis and adaptation. Similarly, the contributions of varied, but unique, stimuli generated by muscle to bone (such as low-magnitude, high-frequency stimuli) remains to be established. The current article focuses upon the mechanical relationship between muscle and bone. In doing so, we explore the stimuli that muscle imparts upon bone, models that enable investigation of this relationship, and recent data generated by these models.
Literatur
2.
Zurück zum Zitat Mitchell WK, Williams J, Atherton P, Larvin M, Lund J, Narici M. Sarcopenia, dynapenia, and the impact of advancing age on human skeletal muscle size and strength; a quantitative review. Front Physiol. 2012;3:260.PubMedCentralPubMedCrossRef Mitchell WK, Williams J, Atherton P, Larvin M, Lund J, Narici M. Sarcopenia, dynapenia, and the impact of advancing age on human skeletal muscle size and strength; a quantitative review. Front Physiol. 2012;3:260.PubMedCentralPubMedCrossRef
3.••
Zurück zum Zitat Bonewald LF, Kiel DP, Clemens TL, Esser K, Orwoll ES, O’Keefe RJ, et al. Forum on bone and skeletal muscle interactions: summary of the proceedings of an ASBMR workshop. J Bone Miner Res. 2013;28:1857–65. Provides a useful summary of the current state of knowledge of the muscle-bone interaction, including areas requiring further exploration. PubMedCentralPubMedCrossRef Bonewald LF, Kiel DP, Clemens TL, Esser K, Orwoll ES, O’Keefe RJ, et al. Forum on bone and skeletal muscle interactions: summary of the proceedings of an ASBMR workshop. J Bone Miner Res. 2013;28:1857–65. Provides a useful summary of the current state of knowledge of the muscle-bone interaction, including areas requiring further exploration. PubMedCentralPubMedCrossRef
4.
Zurück zum Zitat DiGirolamo DJ, Kiel DP, Esser KA. Bone and skeletal muscle: neighbors with close ties. J Bone Miner Res. 2013;28:1509–18.PubMedCrossRef DiGirolamo DJ, Kiel DP, Esser KA. Bone and skeletal muscle: neighbors with close ties. J Bone Miner Res. 2013;28:1509–18.PubMedCrossRef
6.
Zurück zum Zitat DiGirolamo DJ, Clemens TL, Kousteni S. The skeleton as an endocrine organ. Nat Rev Rheumatol. 2012;8:674–83.PubMedCrossRef DiGirolamo DJ, Clemens TL, Kousteni S. The skeleton as an endocrine organ. Nat Rev Rheumatol. 2012;8:674–83.PubMedCrossRef
7.
Zurück zum Zitat Pedersen BK, Febbraio MA. Muscles, exercise and obesity: skeletal muscle as a secretory organ. Nat Rev Endocrinol. 2012;8:457–65.PubMedCrossRef Pedersen BK, Febbraio MA. Muscles, exercise and obesity: skeletal muscle as a secretory organ. Nat Rev Endocrinol. 2012;8:457–65.PubMedCrossRef
8.
Zurück zum Zitat Burr DB. Muscle strength, bone mass, and age-related bone loss. J Bone Miner Res. 1997;12:1547–51.PubMedCrossRef Burr DB. Muscle strength, bone mass, and age-related bone loss. J Bone Miner Res. 1997;12:1547–51.PubMedCrossRef
9.
Zurück zum Zitat Frost HM. Muscle, bone, and the Utah paradigm: a 1999 overview. Med Sci Sports Exerc. 2000;32:911–7.PubMedCrossRef Frost HM. Muscle, bone, and the Utah paradigm: a 1999 overview. Med Sci Sports Exerc. 2000;32:911–7.PubMedCrossRef
10.
Zurück zum Zitat Lu TW, Taylor SJ, O’Connor JJ, Walker PS. Influence of muscle activity on the forces in the femur: an in vivo study. J Biomech. 1997;30:1101–6.PubMedCrossRef Lu TW, Taylor SJ, O’Connor JJ, Walker PS. Influence of muscle activity on the forces in the femur: an in vivo study. J Biomech. 1997;30:1101–6.PubMedCrossRef
11.
Zurück zum Zitat Gross TS, Poliachik SL, Prasad J, Bain SD. The effect of muscle dysfunction on bone mass and morphology. J Musculoskelet Neuronal Interact. 2010;10:25–34.PubMed Gross TS, Poliachik SL, Prasad J, Bain SD. The effect of muscle dysfunction on bone mass and morphology. J Musculoskelet Neuronal Interact. 2010;10:25–34.PubMed
12.
Zurück zum Zitat Dudley-Javoroski S, Shields RK. Muscle and bone plasticity after spinal cord injury: review of adaptations to disuse and to electrical muscle stimulation. J Rehabil Res Dev. 2008;45:283–96.PubMedCentralPubMedCrossRef Dudley-Javoroski S, Shields RK. Muscle and bone plasticity after spinal cord injury: review of adaptations to disuse and to electrical muscle stimulation. J Rehabil Res Dev. 2008;45:283–96.PubMedCentralPubMedCrossRef
14.
Zurück zum Zitat Morey-Holton ER, Globus RK. Hindlimb unloading rodent model: technical aspects. J Appl Physiol. 2002;92:1367–77.PubMedCrossRef Morey-Holton ER, Globus RK. Hindlimb unloading rodent model: technical aspects. J Appl Physiol. 2002;92:1367–77.PubMedCrossRef
15.
Zurück zum Zitat Baldwin KM, Haddad F, Pandorf CE, Roy RR, Edgerton VR. Alterations in muscle mass and contractile phenotype in response to unloading models: role of transcriptional/pretranslational mechanisms. Front Physiol. 2013;4:284.PubMedCentralPubMedCrossRef Baldwin KM, Haddad F, Pandorf CE, Roy RR, Edgerton VR. Alterations in muscle mass and contractile phenotype in response to unloading models: role of transcriptional/pretranslational mechanisms. Front Physiol. 2013;4:284.PubMedCentralPubMedCrossRef
16.
Zurück zum Zitat Nagaraja MP, Risin D. The current state of bone loss research: data from spaceflight and microgravity simulators. J Cell Biochem. 2013;114:1001–8.PubMedCrossRef Nagaraja MP, Risin D. The current state of bone loss research: data from spaceflight and microgravity simulators. J Cell Biochem. 2013;114:1001–8.PubMedCrossRef
17.
Zurück zum Zitat Basso N, Heersche JN. Effects of hind limb unloading and reloading on nitric oxide synthase expression and apoptosis of osteocytes and chondrocytes. Bone. 2006;39:807–14.PubMedCrossRef Basso N, Heersche JN. Effects of hind limb unloading and reloading on nitric oxide synthase expression and apoptosis of osteocytes and chondrocytes. Bone. 2006;39:807–14.PubMedCrossRef
18.
Zurück zum Zitat Ishijima M, Rittling SR, Yamashita T, Tsuji K, Kurosawa H, Nifuji A, et al. Enhancement of osteoclastic bone resorption and suppression of osteoblastic bone formation in response to reduced mechanical stress do not occur in the absence of osteopontin. J Exp Med. 2001;193:399–404.PubMedCentralPubMedCrossRef Ishijima M, Rittling SR, Yamashita T, Tsuji K, Kurosawa H, Nifuji A, et al. Enhancement of osteoclastic bone resorption and suppression of osteoblastic bone formation in response to reduced mechanical stress do not occur in the absence of osteopontin. J Exp Med. 2001;193:399–404.PubMedCentralPubMedCrossRef
19.
Zurück zum Zitat Smith BJ, King JB, Lucas EA, Akhter MP, Arjmandi BH, Stoecker BJ. Skeletal unloading and dietary copper depletion are detrimental to bone quality of mature rats. J Nutr. 2002;132:190–6.PubMed Smith BJ, King JB, Lucas EA, Akhter MP, Arjmandi BH, Stoecker BJ. Skeletal unloading and dietary copper depletion are detrimental to bone quality of mature rats. J Nutr. 2002;132:190–6.PubMed
20.
Zurück zum Zitat Morey-Holton E, Globus RK, Kaplansky A, Durnova G. The hindlimb unloading rat model: literature overview, technique update and comparison with space flight data. Adv Space Biol Med. 2005;10:7–40.PubMedCrossRef Morey-Holton E, Globus RK, Kaplansky A, Durnova G. The hindlimb unloading rat model: literature overview, technique update and comparison with space flight data. Adv Space Biol Med. 2005;10:7–40.PubMedCrossRef
21.
Zurück zum Zitat Kao I, Drachman DB, Price DL. Botulinum toxin: mechanism of presynaptic blockade. Science. 1976;193:1256–8.PubMedCrossRef Kao I, Drachman DB, Price DL. Botulinum toxin: mechanism of presynaptic blockade. Science. 1976;193:1256–8.PubMedCrossRef
22.
Zurück zum Zitat Manske SL, Boyd SK, Zernicke RF. Vertical ground reaction forces diminish in mice after botulinum toxin injection. J Biomech. 2011;44:637–43.PubMedCrossRef Manske SL, Boyd SK, Zernicke RF. Vertical ground reaction forces diminish in mice after botulinum toxin injection. J Biomech. 2011;44:637–43.PubMedCrossRef
23.
24.•
Zurück zum Zitat Aliprantis AO, Stolina M, Kostenuik PJ, Poliachik SL, Warner SE, Bain SD, et al. Transient muscle paralysis degrades bone via rapid osteoclastogenesis. FASEB J. 2012;26:1110–8. Demonstrated the rapidness of osteoclast-mediated bone changes associated with Botox-induced muscle paralysis. PubMedCentralPubMedCrossRef Aliprantis AO, Stolina M, Kostenuik PJ, Poliachik SL, Warner SE, Bain SD, et al. Transient muscle paralysis degrades bone via rapid osteoclastogenesis. FASEB J. 2012;26:1110–8. Demonstrated the rapidness of osteoclast-mediated bone changes associated with Botox-induced muscle paralysis. PubMedCentralPubMedCrossRef
25.
Zurück zum Zitat Ellman R, Grasso DJ, van Vliet M, Brooks DJ, Spatz JM, Conlon C, et al. Combined effects of botulinum toxin injection and hind limb unloading on bone and muscle. Calcif Tissue Int. 2013;94:327–37.PubMedCrossRef Ellman R, Grasso DJ, van Vliet M, Brooks DJ, Spatz JM, Conlon C, et al. Combined effects of botulinum toxin injection and hind limb unloading on bone and muscle. Calcif Tissue Int. 2013;94:327–37.PubMedCrossRef
26.
Zurück zum Zitat Dolly JO, O’Connell MA. Neurotherapeutics to inhibit exocytosis from sensory neurons for the control of chronic pain. Curr Opin Pharmacol. 2012;12:100–8.PubMedCrossRef Dolly JO, O’Connell MA. Neurotherapeutics to inhibit exocytosis from sensory neurons for the control of chronic pain. Curr Opin Pharmacol. 2012;12:100–8.PubMedCrossRef
27.
Zurück zum Zitat Manni E, Bagolini B, Pettorossi VE, Errico P. Effect of botulinum toxin on extraocular muscle proprioception. Doc Ophthalmol. 1989;72:189–98.PubMedCrossRef Manni E, Bagolini B, Pettorossi VE, Errico P. Effect of botulinum toxin on extraocular muscle proprioception. Doc Ophthalmol. 1989;72:189–98.PubMedCrossRef
28.
Zurück zum Zitat Poliachik SL, Bain SD, Threet D, Huber P, Gross TS. Transient muscle paralysis disrupts bone homeostasis by rapid degradation of bone morphology. Bone. 2010;46:18–23.PubMedCentralPubMedCrossRef Poliachik SL, Bain SD, Threet D, Huber P, Gross TS. Transient muscle paralysis disrupts bone homeostasis by rapid degradation of bone morphology. Bone. 2010;46:18–23.PubMedCentralPubMedCrossRef
29.
Zurück zum Zitat Allen MR, Hogan HA, Bloomfield SA. Differential bone and muscle recovery following hindlimb unloading in skeletally mature male rats. J Musculoskelet Neuronal Interact. 2006;6:217–25.PubMed Allen MR, Hogan HA, Bloomfield SA. Differential bone and muscle recovery following hindlimb unloading in skeletally mature male rats. J Musculoskelet Neuronal Interact. 2006;6:217–25.PubMed
30.
Zurück zum Zitat Bloomfield SA, Allen MR, Hogan HA, Delp MD. Site- and compartment-specific changes in bone with hindlimb unloading in mature adult rats. Bone. 2002;31:149–57.PubMedCrossRef Bloomfield SA, Allen MR, Hogan HA, Delp MD. Site- and compartment-specific changes in bone with hindlimb unloading in mature adult rats. Bone. 2002;31:149–57.PubMedCrossRef
31.
Zurück zum Zitat Lloyd SA, Lang CH, Zhang Y, Paul EM, Laufenberg LJ, Lewis GS, et al. Interdependence of muscle atrophy and bone loss induced by mechanical unloading. J Bone Miner Res. 2014;29:1118–30.PubMedCrossRef Lloyd SA, Lang CH, Zhang Y, Paul EM, Laufenberg LJ, Lewis GS, et al. Interdependence of muscle atrophy and bone loss induced by mechanical unloading. J Bone Miner Res. 2014;29:1118–30.PubMedCrossRef
32.
Zurück zum Zitat Manske SL, Boyd SK, Zernicke RF. Muscle and bone follow similar temporal patterns of recovery from muscle-induced disuse due to botulinum toxin injection. Bone. 2010;46:24–31.PubMedCrossRef Manske SL, Boyd SK, Zernicke RF. Muscle and bone follow similar temporal patterns of recovery from muscle-induced disuse due to botulinum toxin injection. Bone. 2010;46:24–31.PubMedCrossRef
33.
Zurück zum Zitat Shirazi-Fard Y, Kupke JS, Bloomfield SA, Hogan HA. Discordant recovery of bone mass and mechanical properties during prolonged recovery from disuse. Bone. 2013;52:433–43.PubMedCrossRef Shirazi-Fard Y, Kupke JS, Bloomfield SA, Hogan HA. Discordant recovery of bone mass and mechanical properties during prolonged recovery from disuse. Bone. 2013;52:433–43.PubMedCrossRef
34.
Zurück zum Zitat Pickett A, O’Keeffe R, Judge A, Dodd S. The in vivo rat muscle force model is a reliable and clinically relevant test of consistency among botulinum toxin preparations. Toxicon. 2008;52:455–64.PubMedCrossRef Pickett A, O’Keeffe R, Judge A, Dodd S. The in vivo rat muscle force model is a reliable and clinically relevant test of consistency among botulinum toxin preparations. Toxicon. 2008;52:455–64.PubMedCrossRef
35.
Zurück zum Zitat Ma J, Elsaidi GA, Smith TL, Walker FO, Tan KH, Martin E, et al. Time course of recovery of juvenile skeletal muscle after botulinum toxin A injection: an animal model study. Am J Phys Med Rehabil. 2004;83:774–80. quiz 81–3.PubMedCrossRef Ma J, Elsaidi GA, Smith TL, Walker FO, Tan KH, Martin E, et al. Time course of recovery of juvenile skeletal muscle after botulinum toxin A injection: an animal model study. Am J Phys Med Rehabil. 2004;83:774–80. quiz 81–3.PubMedCrossRef
36.
Zurück zum Zitat Ausk BJ, Huber P, Srinivasan S, Bain SD, Kwon RY, McNamara EA, et al. Metaphyseal and diaphyseal bone loss in the tibia following transient muscle paralysis are spatiotemporally distinct resorption events. Bone. 2013;57:413–22.PubMedCrossRef Ausk BJ, Huber P, Srinivasan S, Bain SD, Kwon RY, McNamara EA, et al. Metaphyseal and diaphyseal bone loss in the tibia following transient muscle paralysis are spatiotemporally distinct resorption events. Bone. 2013;57:413–22.PubMedCrossRef
37.
Zurück zum Zitat Jaworski ZF, Duck B, Sekaly G. Kinetics of osteoclasts and their nuclei in evolving secondary Haversian systems. J Anat. 1981;133:397–405.PubMedCentralPubMed Jaworski ZF, Duck B, Sekaly G. Kinetics of osteoclasts and their nuclei in evolving secondary Haversian systems. J Anat. 1981;133:397–405.PubMedCentralPubMed
38.••
Zurück zum Zitat Warden SJ, Galley MR, Richard JS, George LA, Dirks RC, Guildenbecher EA, et al. Reduced gravitational loading does not account for the skeletal effect of botulinum toxin-induced muscle inhibition suggesting a direct effect of muscle on bone. Bone. 2013;54:98–105. Investigated the skeletal effects of combined tail suspension and Botox-induced muscle paralysis to demonstrate a direct relationship between muscle and bone. PubMedCentralPubMedCrossRef Warden SJ, Galley MR, Richard JS, George LA, Dirks RC, Guildenbecher EA, et al. Reduced gravitational loading does not account for the skeletal effect of botulinum toxin-induced muscle inhibition suggesting a direct effect of muscle on bone. Bone. 2013;54:98–105. Investigated the skeletal effects of combined tail suspension and Botox-induced muscle paralysis to demonstrate a direct relationship between muscle and bone. PubMedCentralPubMedCrossRef
39.
Zurück zum Zitat Manske SL, Boyd SK, Zernicke RF. Muscle changes can account for bone loss after botulinum toxin injection. Calcif Tissue Int. 2010;87:541–9.PubMedCrossRef Manske SL, Boyd SK, Zernicke RF. Muscle changes can account for bone loss after botulinum toxin injection. Calcif Tissue Int. 2010;87:541–9.PubMedCrossRef
40.
Zurück zum Zitat Swift JM, Nilsson MI, Hogan HA, Sumner LR, Bloomfield SA. Simulated resistance training during hindlimb unloading abolishes disuse bone loss and maintains muscle strength. J Bone Miner Res. 2010;25:564–74.PubMedCrossRef Swift JM, Nilsson MI, Hogan HA, Sumner LR, Bloomfield SA. Simulated resistance training during hindlimb unloading abolishes disuse bone loss and maintains muscle strength. J Bone Miner Res. 2010;25:564–74.PubMedCrossRef
41.•
Zurück zum Zitat Macias BR, Swift JM, Nilsson MI, Hogan HA, Bouse SD, Bloomfield SA. Simulated resistance training, but not alendronate, increases cortical bone formation and suppresses sclerostin during disuse. J Appl Physiol. 2012;112:918–25. Demonstrated that simulated resistive training independent of weight bearing forces provided a potent stimulus to bone suggesting a direct role of muscle contractile forces on bone. PubMedCrossRef Macias BR, Swift JM, Nilsson MI, Hogan HA, Bouse SD, Bloomfield SA. Simulated resistance training, but not alendronate, increases cortical bone formation and suppresses sclerostin during disuse. J Appl Physiol. 2012;112:918–25. Demonstrated that simulated resistive training independent of weight bearing forces provided a potent stimulus to bone suggesting a direct role of muscle contractile forces on bone. PubMedCrossRef
42.
Zurück zum Zitat Nowlan NC, Sharpe J, Roddy KA, Prendergast PJ, Murphy P. Mechanobiology of embryonic skeletal development: insights from animal models. Birth Defects Res C Embryol Today. 2010;90:203–13.CrossRef Nowlan NC, Sharpe J, Roddy KA, Prendergast PJ, Murphy P. Mechanobiology of embryonic skeletal development: insights from animal models. Birth Defects Res C Embryol Today. 2010;90:203–13.CrossRef
43.
Zurück zum Zitat Shwartz Y, Blitz E, Zelzer E. One load to rule them all: mechanical control of the musculoskeletal system in development and aging. Differentiation. 2013;86:104–11.PubMedCrossRef Shwartz Y, Blitz E, Zelzer E. One load to rule them all: mechanical control of the musculoskeletal system in development and aging. Differentiation. 2013;86:104–11.PubMedCrossRef
44.••
Zurück zum Zitat Sharir A, Stern T, Rot C, Shahar R, Zelzer E. Muscle force regulates bone shaping for optimal load-bearing capacity during embryogenesis. Development. 2011;138:3247–59. Modeled intrauterine muscle forces and their role in modulating periosteal bone growth and morphogenesis. PubMedCrossRef Sharir A, Stern T, Rot C, Shahar R, Zelzer E. Muscle force regulates bone shaping for optimal load-bearing capacity during embryogenesis. Development. 2011;138:3247–59. Modeled intrauterine muscle forces and their role in modulating periosteal bone growth and morphogenesis. PubMedCrossRef
45.
Zurück zum Zitat Gomez C, David V, Peet NM, Vico L, Chenu C, Malaval L, et al. Absence of mechanical loading in utero influences bone mass and architecture but not innervation in Myod-Myf5-deficient mice. J Anat. 2007;210:259–71.PubMedCentralPubMedCrossRef Gomez C, David V, Peet NM, Vico L, Chenu C, Malaval L, et al. Absence of mechanical loading in utero influences bone mass and architecture but not innervation in Myod-Myf5-deficient mice. J Anat. 2007;210:259–71.PubMedCentralPubMedCrossRef
46.
Zurück zum Zitat Nowlan NC, Bourdon C, Dumas G, Tajbakhsh S, Prendergast PJ, Murphy P. Developing bones are differentially affected by compromised skeletal muscle formation. Bone. 2010;46:1275–85.PubMedCentralPubMedCrossRef Nowlan NC, Bourdon C, Dumas G, Tajbakhsh S, Prendergast PJ, Murphy P. Developing bones are differentially affected by compromised skeletal muscle formation. Bone. 2010;46:1275–85.PubMedCentralPubMedCrossRef
47.
Zurück zum Zitat Rot-Nikcevic I, Reddy T, Downing KJ, Belliveau AC, Hallgrimsson B, Hall BK, et al. Myf5−/− :MyoD−/− amyogenic fetuses reveal the importance of early contraction and static loading by striated muscle in mouse skeletogenesis. Dev Genes Evol. 2006;216:1–9.PubMedCrossRef Rot-Nikcevic I, Reddy T, Downing KJ, Belliveau AC, Hallgrimsson B, Hall BK, et al. Myf5−/− :MyoD−/− amyogenic fetuses reveal the importance of early contraction and static loading by striated muscle in mouse skeletogenesis. Dev Genes Evol. 2006;216:1–9.PubMedCrossRef
48.
Zurück zum Zitat Roddy KA, Prendergast PJ, Murphy P. Mechanical influences on morphogenesis of the knee joint revealed through morphological, molecular and computational analysis of immobilised embryos. PLoS ONE. 2011;6:e17526.PubMedCentralPubMedCrossRef Roddy KA, Prendergast PJ, Murphy P. Mechanical influences on morphogenesis of the knee joint revealed through morphological, molecular and computational analysis of immobilised embryos. PLoS ONE. 2011;6:e17526.PubMedCentralPubMedCrossRef
49.
Zurück zum Zitat Thomopoulos S, Kim HM, Rothermich SY, Biederstadt C, Das R, Galatz LM. Decreased muscle loading delays maturation of the tendon enthesis during postnatal development. J Orthop Res. 2007;25:1154–63.PubMedCrossRef Thomopoulos S, Kim HM, Rothermich SY, Biederstadt C, Das R, Galatz LM. Decreased muscle loading delays maturation of the tendon enthesis during postnatal development. J Orthop Res. 2007;25:1154–63.PubMedCrossRef
50.
Zurück zum Zitat Schwartz AG, Lipner JH, Pasteris JD, Genin GM, Thomopoulos S. Muscle loading is necessary for the formation of a functional tendon enthesis. Bone. 2013;55:44–51.PubMedCentralPubMedCrossRef Schwartz AG, Lipner JH, Pasteris JD, Genin GM, Thomopoulos S. Muscle loading is necessary for the formation of a functional tendon enthesis. Bone. 2013;55:44–51.PubMedCentralPubMedCrossRef
52.
Zurück zum Zitat McPherron AC, Lawler AM, Lee SJ. Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature. 1997;387:83–90.PubMedCrossRef McPherron AC, Lawler AM, Lee SJ. Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature. 1997;387:83–90.PubMedCrossRef
53.
Zurück zum Zitat Elkasrawy MN, Hamrick MW. Myostatin (GDF-8) as a key factor linking muscle mass and bone structure. J Musculoskelet Neuronal Interact. 2010;10:56–63.PubMedCentralPubMed Elkasrawy MN, Hamrick MW. Myostatin (GDF-8) as a key factor linking muscle mass and bone structure. J Musculoskelet Neuronal Interact. 2010;10:56–63.PubMedCentralPubMed
54.•
Zurück zum Zitat Arounleut P, Bialek P, Liang LF, Upadhyay S, Fulzele S, Johnson M, et al. A myostatin inhibitor (propeptide-Fc) increases muscle mass and muscle fiber size in aged mice but does not increase bone density or bone strength. Exp Gerontol. 2013;48:898–904. Observed that a myostatin propeptide increased muscle, but not bone, mass suggesting that it may need to be coupled with physical activity in order for the muscle benefits to generate bone benefits. PubMedCentralPubMedCrossRef Arounleut P, Bialek P, Liang LF, Upadhyay S, Fulzele S, Johnson M, et al. A myostatin inhibitor (propeptide-Fc) increases muscle mass and muscle fiber size in aged mice but does not increase bone density or bone strength. Exp Gerontol. 2013;48:898–904. Observed that a myostatin propeptide increased muscle, but not bone, mass suggesting that it may need to be coupled with physical activity in order for the muscle benefits to generate bone benefits. PubMedCentralPubMedCrossRef
55.
Zurück zum Zitat Bialek P, Parkington J, Li X, Gavin D, Wallace C, Zhang J, et al. A myostatin and activin decoy receptor enhances bone formation in mice. Bone. 2014;60:162–71.PubMedCrossRef Bialek P, Parkington J, Li X, Gavin D, Wallace C, Zhang J, et al. A myostatin and activin decoy receptor enhances bone formation in mice. Bone. 2014;60:162–71.PubMedCrossRef
56.
Zurück zum Zitat Tian X, Jee WS, Li X, Paszty C, Ke HZ. Sclerostin antibody increases bone mass by stimulating bone formation and inhibiting bone resorption in a hindlimb-immobilization rat model. Bone. 2011;48:197–201.PubMedCrossRef Tian X, Jee WS, Li X, Paszty C, Ke HZ. Sclerostin antibody increases bone mass by stimulating bone formation and inhibiting bone resorption in a hindlimb-immobilization rat model. Bone. 2011;48:197–201.PubMedCrossRef
57.
Zurück zum Zitat Widrick JJ, Fuchs R, Maddalozzo GF, Marley K, Snow C. Relative effects of exercise training and alendronate treatment on skeletal muscle function of ovariectomized rats. Menopause. 2007;14:528–34.PubMedCrossRef Widrick JJ, Fuchs R, Maddalozzo GF, Marley K, Snow C. Relative effects of exercise training and alendronate treatment on skeletal muscle function of ovariectomized rats. Menopause. 2007;14:528–34.PubMedCrossRef
58.
Zurück zum Zitat Robling AG, Burr DB, Turner CH. Skeletal loading in animals. J Musculoskelet Nueronal Interact. 2001;1:249–62. Robling AG, Burr DB, Turner CH. Skeletal loading in animals. J Musculoskelet Nueronal Interact. 2001;1:249–62.
59.
Zurück zum Zitat Bone HG, Hosking D, Devogelaer JP, Tucci JR, Emkey RD, Tonino RP, et al. Ten years’ experience with alendronate for osteoporosis in postmenopausal women. N Engl J Med. 2004;350:1189–99.PubMedCrossRef Bone HG, Hosking D, Devogelaer JP, Tucci JR, Emkey RD, Tonino RP, et al. Ten years’ experience with alendronate for osteoporosis in postmenopausal women. N Engl J Med. 2004;350:1189–99.PubMedCrossRef
60.
Zurück zum Zitat Gallagher JC, Rapuri PB, Haynatzki G, Detter JR. Effect of discontinuation of estrogen, calcitriol, and the combination of both on bone density and bone markers. J Clin Endocrinol Metab. 2002;87:4914–23.PubMedCrossRef Gallagher JC, Rapuri PB, Haynatzki G, Detter JR. Effect of discontinuation of estrogen, calcitriol, and the combination of both on bone density and bone markers. J Clin Endocrinol Metab. 2002;87:4914–23.PubMedCrossRef
61.
Zurück zum Zitat Karlsson MK, Linden C, Karlsson C, Johnell O, Obrant K, Seeman E. Exercise during growth and bone mineral density and fractures in old age. Lancet. 2000;355:469–70.PubMedCrossRef Karlsson MK, Linden C, Karlsson C, Johnell O, Obrant K, Seeman E. Exercise during growth and bone mineral density and fractures in old age. Lancet. 2000;355:469–70.PubMedCrossRef
62.
Zurück zum Zitat Kurland ES, Heller SL, Diamond B, McMahon DJ, Cosman F, Bilezikian JP. The importance of bisphosphonate therapy in maintaining bone mass in men after therapy with teriparatide [human parathyroid hormone(1–34)]. Osteoporos Int. 2004;15:992–7.PubMedCrossRef Kurland ES, Heller SL, Diamond B, McMahon DJ, Cosman F, Bilezikian JP. The importance of bisphosphonate therapy in maintaining bone mass in men after therapy with teriparatide [human parathyroid hormone(1–34)]. Osteoporos Int. 2004;15:992–7.PubMedCrossRef
63.
Zurück zum Zitat Warden SJ, Fuchs RK, Castillo AB, Nelson IR, Turner CH. Exercise when young provides lifelong benefits to bone structure and strength. J Bone Miner Res. 2007;22:251–9.PubMedCrossRef Warden SJ, Fuchs RK, Castillo AB, Nelson IR, Turner CH. Exercise when young provides lifelong benefits to bone structure and strength. J Bone Miner Res. 2007;22:251–9.PubMedCrossRef
64.
Zurück zum Zitat Warden SJ, Galley MR, Hurd AL, Richard JS, George LA, Guildenbecher EA, et al. Cortical and trabecular bone benefits of mechanical loading are maintained long-term in mice independent of ovariectomy. J Bone Miner Res. 2014;29:1131–40.PubMedCrossRef Warden SJ, Galley MR, Hurd AL, Richard JS, George LA, Guildenbecher EA, et al. Cortical and trabecular bone benefits of mechanical loading are maintained long-term in mice independent of ovariectomy. J Bone Miner Res. 2014;29:1131–40.PubMedCrossRef
65.
Zurück zum Zitat Warden SJ, Mantila Roosa SM, Kersh ME, Hurd AL, Fleisig GS, Pandy MG, et al. Physical activity when young provides lifelong benefits to cortical bone size and strength in men. Proc Natl Acad Sci U S A. 2014;111:5337–42.PubMedCentralPubMedCrossRef Warden SJ, Mantila Roosa SM, Kersh ME, Hurd AL, Fleisig GS, Pandy MG, et al. Physical activity when young provides lifelong benefits to cortical bone size and strength in men. Proc Natl Acad Sci U S A. 2014;111:5337–42.PubMedCentralPubMedCrossRef
66.
Zurück zum Zitat Bass SL, Saxon L, Daly RM, Turner CH, Robling AG, Seeman E, et al. The effect of mechanical loading on the size and shape of bone in pre-, peri-, and postpubertal girls: a study in tennis players. J Bone Miner Res. 2002;17:2274–80.PubMedCrossRef Bass SL, Saxon L, Daly RM, Turner CH, Robling AG, Seeman E, et al. The effect of mechanical loading on the size and shape of bone in pre-, peri-, and postpubertal girls: a study in tennis players. J Bone Miner Res. 2002;17:2274–80.PubMedCrossRef
67.
Zurück zum Zitat Ruff CB, Walker A, Trinkaus E. Postcranial robusticity in Homo. III: ontogeny. Am J Phys Anthropol. 1994;93:35–54.PubMedCrossRef Ruff CB, Walker A, Trinkaus E. Postcranial robusticity in Homo. III: ontogeny. Am J Phys Anthropol. 1994;93:35–54.PubMedCrossRef
68.
Zurück zum Zitat Zebaze RMD, Ghasem-Zadeh A, Bohte A, Iuliano-Burns S, Mirams M, Price RI, et al. Intracortical remodelling and porosity in the distal radius and post-mortem femurs of women: a cross-sectional study. Lancet. 2010;375:1729–36.PubMedCrossRef Zebaze RMD, Ghasem-Zadeh A, Bohte A, Iuliano-Burns S, Mirams M, Price RI, et al. Intracortical remodelling and porosity in the distal radius and post-mortem femurs of women: a cross-sectional study. Lancet. 2010;375:1729–36.PubMedCrossRef
69.
Zurück zum Zitat Donahue SW. The role of muscular force and fatigue in stress fractures. In: Burr DB, Milgrom C, editors. Musculoskeletal fatigue and stress fractures. Bota Raton: CRC Press; 2001. p. 131–49. Donahue SW. The role of muscular force and fatigue in stress fractures. In: Burr DB, Milgrom C, editors. Musculoskeletal fatigue and stress fractures. Bota Raton: CRC Press; 2001. p. 131–49.
70.
Zurück zum Zitat Scott SH, Winter DA. Internal forces at chronic running injury sites. Med Sci Sports Exerc. 1990;22:357–69.PubMedCrossRef Scott SH, Winter DA. Internal forces at chronic running injury sites. Med Sci Sports Exerc. 1990;22:357–69.PubMedCrossRef
71.
Zurück zum Zitat Yoshikawa T, Mori S, Santiesteban AJ, Sun TC, Hafstad E, Chen J, et al. The effects of muscle fatigue on bone strain. J Exp Biol. 1994;188:217–33.PubMed Yoshikawa T, Mori S, Santiesteban AJ, Sun TC, Hafstad E, Chen J, et al. The effects of muscle fatigue on bone strain. J Exp Biol. 1994;188:217–33.PubMed
72.
Zurück zum Zitat Fyhrie DP, Milgrom C, Hoshaw SJ, Simkin A, Dar S, Drumb D, et al. Effect of fatiguing exercise on longitudinal bone strain as related to stress fracture in humans. Ann Biomed Eng. 1998;26:660–5.PubMedCrossRef Fyhrie DP, Milgrom C, Hoshaw SJ, Simkin A, Dar S, Drumb D, et al. Effect of fatiguing exercise on longitudinal bone strain as related to stress fracture in humans. Ann Biomed Eng. 1998;26:660–5.PubMedCrossRef
73.
Zurück zum Zitat Milgrom C, Radeva-Petrova DR, Finestone A, Nyska M, Mendelson S, Benjuya N, et al. The effect of muscle fatigue on in vivo tibial strains. J Biomech. 2007;40:845–50.PubMedCrossRef Milgrom C, Radeva-Petrova DR, Finestone A, Nyska M, Mendelson S, Benjuya N, et al. The effect of muscle fatigue on in vivo tibial strains. J Biomech. 2007;40:845–50.PubMedCrossRef
74.
Zurück zum Zitat Clansey AC, Hanlon M, Wallace ES, Lake MJ. Effects of fatigue on running mechanics associated with tibial stress fracture risk. Med Sci Sports Exerc. 2012;44:1917–23.PubMedCrossRef Clansey AC, Hanlon M, Wallace ES, Lake MJ. Effects of fatigue on running mechanics associated with tibial stress fracture risk. Med Sci Sports Exerc. 2012;44:1917–23.PubMedCrossRef
75.
Zurück zum Zitat Armstrong III DW, Rue J-PH, Wilckens JH, Frassica FJ. Stress fracture injury in young military men and women. Bone. 2004;35:806–16.PubMedCrossRef Armstrong III DW, Rue J-PH, Wilckens JH, Frassica FJ. Stress fracture injury in young military men and women. Bone. 2004;35:806–16.PubMedCrossRef
76.
Zurück zum Zitat Beck TJ, Ruff CB, Shaffer RA, Betsinger K, Trone DW, Brodine SK. Stress fracture in military recruits: gender differences in muscle and bone susceptibility factors. Bone. 2000;27:437–44.PubMedCrossRef Beck TJ, Ruff CB, Shaffer RA, Betsinger K, Trone DW, Brodine SK. Stress fracture in military recruits: gender differences in muscle and bone susceptibility factors. Bone. 2000;27:437–44.PubMedCrossRef
77.
Zurück zum Zitat Bennell KL, Malcolm SA, Thomas SA, Reid SJ, Brukner PD, Ebeling PR, et al. Risk factors for stress fractures in track and field athletes: a 12-month prospective study. Am J Sports Med. 1996;24:810–8.PubMedCrossRef Bennell KL, Malcolm SA, Thomas SA, Reid SJ, Brukner PD, Ebeling PR, et al. Risk factors for stress fractures in track and field athletes: a 12-month prospective study. Am J Sports Med. 1996;24:810–8.PubMedCrossRef
78.
Zurück zum Zitat Hoffman JR, Chapnik L, Shamis A, Givon U, Davidson B. The effect of leg strength on the incidence of lower extremity overuse injuries during military training. Mil Med. 1999;164:153–6.PubMed Hoffman JR, Chapnik L, Shamis A, Givon U, Davidson B. The effect of leg strength on the incidence of lower extremity overuse injuries during military training. Mil Med. 1999;164:153–6.PubMed
79.
Zurück zum Zitat Fritton SP, McLeod KJ, Rubin CT. Quantifying the strain history of bone: spatial uniformity and self-similarity of low-magnitude strains. J Biomech. 2000;33:317–25.PubMedCrossRef Fritton SP, McLeod KJ, Rubin CT. Quantifying the strain history of bone: spatial uniformity and self-similarity of low-magnitude strains. J Biomech. 2000;33:317–25.PubMedCrossRef
80.
Zurück zum Zitat Huang RP, Rubin CT, McLeod KJ. Changes in postural muscle dynamics as a function of age. J Gerontol A Biol Sci Med Sci. 1999;54:B352–7.PubMedCrossRef Huang RP, Rubin CT, McLeod KJ. Changes in postural muscle dynamics as a function of age. J Gerontol A Biol Sci Med Sci. 1999;54:B352–7.PubMedCrossRef
81.
Zurück zum Zitat Rubin CT, McLeod KJ. Promotion of bony ingrowth by frequency-specific, low-amplitude mechanical strain. Clin Orthop Relat Res. 1984;298:165–74. Rubin CT, McLeod KJ. Promotion of bony ingrowth by frequency-specific, low-amplitude mechanical strain. Clin Orthop Relat Res. 1984;298:165–74.
82.
Zurück zum Zitat Qin YX, Rubin CT, McLeod KJ. Nonlinear dependence of loading intensity and cycle number in the maintenance of bone mass and morphology. J Orthop Res. 1998;16:482–9.PubMedCrossRef Qin YX, Rubin CT, McLeod KJ. Nonlinear dependence of loading intensity and cycle number in the maintenance of bone mass and morphology. J Orthop Res. 1998;16:482–9.PubMedCrossRef
83.
Zurück zum Zitat Rubin C, Judex S, Qin YX. Low-level mechanical signals and their potential as a non-pharmacological intervention for osteoporosis. Age Ageing. 2006;35 Suppl 2:ii32–ii6.PubMed Rubin C, Judex S, Qin YX. Low-level mechanical signals and their potential as a non-pharmacological intervention for osteoporosis. Age Ageing. 2006;35 Suppl 2:ii32–ii6.PubMed
84.
Zurück zum Zitat Rubin C, Turner AS, Bain S, Mallinckrodt C, McLeod K. Low mechanical signals strengthen long bones. Nature. 2001;412:603–4.PubMedCrossRef Rubin C, Turner AS, Bain S, Mallinckrodt C, McLeod K. Low mechanical signals strengthen long bones. Nature. 2001;412:603–4.PubMedCrossRef
85.
Zurück zum Zitat Gilsanz V, Wren TA, Sanchez M, Dorey F, Judex S, Rubin C. Low-level, high-frequency mechanical signals enhance musculoskeletal development of young women with low BMD. J Bone Miner Res. 2006;21:1464–74.PubMedCrossRef Gilsanz V, Wren TA, Sanchez M, Dorey F, Judex S, Rubin C. Low-level, high-frequency mechanical signals enhance musculoskeletal development of young women with low BMD. J Bone Miner Res. 2006;21:1464–74.PubMedCrossRef
86.
Zurück zum Zitat Rubin C, Recker R, Cullen D, Ryaby J, McCabe J, McLeod K. Prevention of postmenopausal bone loss by a low-magnitude, high-frequency mechanical stimuli: a clinical trial assessing compliance, efficacy, and safety. J Bone Miner Res. 2004;19:343–51.PubMedCrossRef Rubin C, Recker R, Cullen D, Ryaby J, McCabe J, McLeod K. Prevention of postmenopausal bone loss by a low-magnitude, high-frequency mechanical stimuli: a clinical trial assessing compliance, efficacy, and safety. J Bone Miner Res. 2004;19:343–51.PubMedCrossRef
87.
Zurück zum Zitat Ward K, Alsop C, Caulton J, Rubin C, Adams J, Mughal Z. Low magnitude mechanical loading is osteogenic in children with disabling conditions. J Bone Miner Res. 2004;19:360–9.PubMedCrossRef Ward K, Alsop C, Caulton J, Rubin C, Adams J, Mughal Z. Low magnitude mechanical loading is osteogenic in children with disabling conditions. J Bone Miner Res. 2004;19:360–9.PubMedCrossRef
88.
Zurück zum Zitat Wysocki A, Butler M, Shamliyan T, Kane RL. Whole-body vibration therapy for osteoporosis: state of the science. Ann Intern Med. 2011;155(680–6):W206–13. Wysocki A, Butler M, Shamliyan T, Kane RL. Whole-body vibration therapy for osteoporosis: state of the science. Ann Intern Med. 2011;155(680–6):W206–13.
89.
Zurück zum Zitat Qin YX, Lam H, Ferreri S, Rubin C. Dynamic skeletal muscle stimulation and its potential in bone adaptation. J Musculoskelet Neuronal Interact. 2010;10:12–24.PubMed Qin YX, Lam H, Ferreri S, Rubin C. Dynamic skeletal muscle stimulation and its potential in bone adaptation. J Musculoskelet Neuronal Interact. 2010;10:12–24.PubMed
90.
Zurück zum Zitat Lam H, Qin YX. The effects of frequency-dependent dynamic muscle stimulation on inhibition of trabecular bone loss in a disuse model. Bone. 2008;43:1093–100.PubMedCentralPubMedCrossRef Lam H, Qin YX. The effects of frequency-dependent dynamic muscle stimulation on inhibition of trabecular bone loss in a disuse model. Bone. 2008;43:1093–100.PubMedCentralPubMedCrossRef
91.
Zurück zum Zitat Qin YX, Lam H. Intramedullary pressure and matrix strain induced by oscillatory skeletal muscle stimulation and its potential in adaptation. J Biomech. 2009;42:140–5.PubMedCentralPubMedCrossRef Qin YX, Lam H. Intramedullary pressure and matrix strain induced by oscillatory skeletal muscle stimulation and its potential in adaptation. J Biomech. 2009;42:140–5.PubMedCentralPubMedCrossRef
92.
Zurück zum Zitat Riddle RC, Donahue HJ. From streaming-potentials to shear stress: 25 years of bone cell mechanotransduction. J Orthop Res. 2009;27:143–9.PubMedCrossRef Riddle RC, Donahue HJ. From streaming-potentials to shear stress: 25 years of bone cell mechanotransduction. J Orthop Res. 2009;27:143–9.PubMedCrossRef
93.
Zurück zum Zitat Qin YX, Lin W, Rubin C. The pathway of bone fluid flow as defined by in vivo intramedullary pressure and streaming potential measurements. Ann Biomed Eng. 2002;30:693–702.PubMedCrossRef Qin YX, Lin W, Rubin C. The pathway of bone fluid flow as defined by in vivo intramedullary pressure and streaming potential measurements. Ann Biomed Eng. 2002;30:693–702.PubMedCrossRef
94.
Zurück zum Zitat Kwon RY, Meays DR, Tang WJ, Frangos JA. Microfluidic enhancement of intramedullary pressure increases interstitial fluid flow and inhibits bone loss in hindlimb suspended mice. J Bone Miner Res. 2010;25:1798–807.PubMedCentralPubMedCrossRef Kwon RY, Meays DR, Tang WJ, Frangos JA. Microfluidic enhancement of intramedullary pressure increases interstitial fluid flow and inhibits bone loss in hindlimb suspended mice. J Bone Miner Res. 2010;25:1798–807.PubMedCentralPubMedCrossRef
95.
Zurück zum Zitat Hu M, Cheng J, Qin YX. Dynamic hydraulic flow stimulation on mitigation of trabecular bone loss in a rat functional disuse model. Bone. 2012;51:819–25.PubMedCentralPubMedCrossRef Hu M, Cheng J, Qin YX. Dynamic hydraulic flow stimulation on mitigation of trabecular bone loss in a rat functional disuse model. Bone. 2012;51:819–25.PubMedCentralPubMedCrossRef
96.
Zurück zum Zitat Hu M, Serra-Hsu F, Bethel N, Lin L, Ferreri S, Cheng J, et al. Dynamic hydraulic fluid stimulation regulated intramedullary pressure. Bone. 2013;57:137–41.PubMedCrossRef Hu M, Serra-Hsu F, Bethel N, Lin L, Ferreri S, Cheng J, et al. Dynamic hydraulic fluid stimulation regulated intramedullary pressure. Bone. 2013;57:137–41.PubMedCrossRef
97.
98.
Zurück zum Zitat Zhang P, Tanaka SM, Jiang H, Su M, Yokota H. Diaphyseal bone formation in murine tibiae in response to knee loading. J Appl Physiol. 2006;100:1452–9.PubMedCrossRef Zhang P, Tanaka SM, Jiang H, Su M, Yokota H. Diaphyseal bone formation in murine tibiae in response to knee loading. J Appl Physiol. 2006;100:1452–9.PubMedCrossRef
Metadaten
Titel
Biomechanical Aspects of the Muscle-Bone Interaction
verfasst von
Keith G. Avin
Susan A. Bloomfield
Ted S. Gross
Stuart J. Warden
Publikationsdatum
01.02.2015
Verlag
Springer US
Erschienen in
Current Osteoporosis Reports / Ausgabe 1/2015
Print ISSN: 1544-1873
Elektronische ISSN: 1544-2241
DOI
https://doi.org/10.1007/s11914-014-0244-x

Weitere Artikel der Ausgabe 1/2015

Current Osteoporosis Reports 1/2015 Zur Ausgabe

Bone and Diabetes (AV Schwartz and P Vestergaard, Section Editors)

Diabetes Medications and Bone

Orthopedic Management of Fractures (D Little and T Miclau, Section Editors)

Osteoporotic Fracture Models

Orthopedic Management of Fractures (D Little and T Miclau, Section Editors)

Fragility Fracture Programs: Are They Effective and What Is the Surgeon’s Role?

Nutrition, Exercise, and Lifestyle in Osteoporosis (CM Weaver and R Daly, Section Editors)

Lifestyle and Osteoporosis

Orthopedic Management of Fractures (D Little and T Miclau, Section Editors)

Internal Fixation of Osteoporotic Fractures

Orthopedic Management of Fractures (D Little and T Miclau, Section Editors)

Orthobiologics in the Augmentation of Osteoporotic Fractures

Arthropedia

Grundlagenwissen der Arthroskopie und Gelenkchirurgie. Erweitert durch Fallbeispiele, Videos und Abbildungen. 
» Jetzt entdecken

Notfall-TEP der Hüfte ist auch bei 90-Jährigen machbar

26.04.2024 Hüft-TEP Nachrichten

Ob bei einer Notfalloperation nach Schenkelhalsfraktur eine Hemiarthroplastik oder eine totale Endoprothese (TEP) eingebaut wird, sollte nicht allein vom Alter der Patientinnen und Patienten abhängen. Auch über 90-Jährige können von der TEP profitieren.

Arthroskopie kann Knieprothese nicht hinauszögern

25.04.2024 Gonarthrose Nachrichten

Ein arthroskopischer Eingriff bei Kniearthrose macht im Hinblick darauf, ob und wann ein Gelenkersatz fällig wird, offenbar keinen Unterschied.

Therapiestart mit Blutdrucksenkern erhöht Frakturrisiko

25.04.2024 Hypertonie Nachrichten

Beginnen ältere Männer im Pflegeheim eine Antihypertensiva-Therapie, dann ist die Frakturrate in den folgenden 30 Tagen mehr als verdoppelt. Besonders häufig stürzen Demenzkranke und Männer, die erstmals Blutdrucksenker nehmen. Dafür spricht eine Analyse unter US-Veteranen.

Ärztliche Empathie hilft gegen Rückenschmerzen

23.04.2024 Leitsymptom Rückenschmerzen Nachrichten

Personen mit chronischen Rückenschmerzen, die von einfühlsamen Ärzten und Ärztinnen betreut werden, berichten über weniger Beschwerden und eine bessere Lebensqualität.

Update Orthopädie und Unfallchirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.