Skip to main content
Erschienen in: Cancer Immunology, Immunotherapy 2/2018

01.11.2017 | Original Article

BRAF peptide vaccine facilitates therapy of murine BRAF-mutant melanoma

verfasst von: Qi Liu, Hongda Zhu, Yun Liu, Sara Musetti, Leaf Huang

Erschienen in: Cancer Immunology, Immunotherapy | Ausgabe 2/2018

Einloggen, um Zugang zu erhalten

Abstract

Approximately, 50% of human melanomas are driven by BRAF mutations, which produce tumors that are highly immunosuppressive and often resistant to vaccine therapy. We introduced lipid-coated calcium phosphate nanoparticles (LCP NPs) as a carrier to efficiently deliver a tumor-specific antigen, the BRAFV600E peptide, to drive dendritic cell (DC) maturation and antigen presentation in C57BL6 mice. The BRAF peptide vaccine elicited a robust, antigen-specific cytotoxic T cell response and potent tumor growth inhibition in a murine BRAF-mutant melanoma model. Advanced BRAF-specific immune response was illustrated by IFN-γ production assay and cytotoxic T lymphocyte (CTL) assay. Remodeling of immunosuppressive modules within the tumor microenvironment further facilitated CTL infiltration. Thus, using LCP NPs to deliver the BRAF peptide vaccine is a promising strategy for the BRAF-mutant melanoma therapy.
Literatur
1.
2.
Zurück zum Zitat Gloster HM Jr, Brodland DG (1996) The epidemiology of skin cancer. Dermatol Surg 22(3):217–226CrossRefPubMed Gloster HM Jr, Brodland DG (1996) The epidemiology of skin cancer. Dermatol Surg 22(3):217–226CrossRefPubMed
3.
Zurück zum Zitat Smyth MJ, Dunn GP, Schreiber RD (2006) Cancer immunosurveillance and immunoediting: the roles of immunity in suppressing tumor development and shaping tumor immunogenicity. Adv Immunol 90:1–50CrossRefPubMed Smyth MJ, Dunn GP, Schreiber RD (2006) Cancer immunosurveillance and immunoediting: the roles of immunity in suppressing tumor development and shaping tumor immunogenicity. Adv Immunol 90:1–50CrossRefPubMed
5.
Zurück zum Zitat Klemm F, Joyce JA (2015) Microenvironmental regulation of therapeutic response in cancer. Trends Cell Biol 25(4):198–213CrossRefPubMed Klemm F, Joyce JA (2015) Microenvironmental regulation of therapeutic response in cancer. Trends Cell Biol 25(4):198–213CrossRefPubMed
6.
Zurück zum Zitat Sithanandam G, Kolch W, Duh FM et al (1990) Complete coding sequence of a human B-raf cDNA and detection of B-raf protein kinase with isozyme specific antibodies. Oncogene 5(12):1775–1780PubMed Sithanandam G, Kolch W, Duh FM et al (1990) Complete coding sequence of a human B-raf cDNA and detection of B-raf protein kinase with isozyme specific antibodies. Oncogene 5(12):1775–1780PubMed
7.
Zurück zum Zitat Chapman PB, Hauschild A, Robert C et al (2011) Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med 364(26):2507–2516CrossRefPubMedPubMedCentral Chapman PB, Hauschild A, Robert C et al (2011) Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med 364(26):2507–2516CrossRefPubMedPubMedCentral
8.
Zurück zum Zitat Hauschild A, Grob JJ, Demidov LV et al (2012) Dabrafenib in BRAF-mutated metastatic melanoma: a multicentre, open-label, phase 3 randomised controlled trial. Lancet 380(9839):358–365CrossRefPubMed Hauschild A, Grob JJ, Demidov LV et al (2012) Dabrafenib in BRAF-mutated metastatic melanoma: a multicentre, open-label, phase 3 randomised controlled trial. Lancet 380(9839):358–365CrossRefPubMed
9.
Zurück zum Zitat Long GV, Stroyakovskiy D, Gogas H et al (2014) Combined BRAF and MEK inhibition versus BRAF inhibition alone in melanoma. N Engl J Med 371(20):1877–1888CrossRefPubMed Long GV, Stroyakovskiy D, Gogas H et al (2014) Combined BRAF and MEK inhibition versus BRAF inhibition alone in melanoma. N Engl J Med 371(20):1877–1888CrossRefPubMed
10.
Zurück zum Zitat Junttila MR, de Sauvage FJ (2013) Influence of tumour micro-environment heterogeneity on therapeutic response. Nature 501(7467):346–354CrossRefPubMed Junttila MR, de Sauvage FJ (2013) Influence of tumour micro-environment heterogeneity on therapeutic response. Nature 501(7467):346–354CrossRefPubMed
11.
Zurück zum Zitat Rammensee H, Bachmann J, Emmerich NP et al (1999) SYFPEITHI: database for MHC ligands and peptide motifs. Immunogenetics 50(3–4):213–219CrossRefPubMed Rammensee H, Bachmann J, Emmerich NP et al (1999) SYFPEITHI: database for MHC ligands and peptide motifs. Immunogenetics 50(3–4):213–219CrossRefPubMed
12.
Zurück zum Zitat Cintolo JA, Datta J, Xu S et al (2016) Type I-polarized BRAF-pulsed dendritic cells induce antigen-specific CD8 + T cells that impact BRAF-mutant murine melanoma. Melanoma Res 26(1):1–11CrossRefPubMed Cintolo JA, Datta J, Xu S et al (2016) Type I-polarized BRAF-pulsed dendritic cells induce antigen-specific CD8 + T cells that impact BRAF-mutant murine melanoma. Melanoma Res 26(1):1–11CrossRefPubMed
13.
Zurück zum Zitat Guo X, Huang L (2012) Recent advances in nonviral vectors for gene delivery. Acc Chem Res 45(7):971–979CrossRefPubMed Guo X, Huang L (2012) Recent advances in nonviral vectors for gene delivery. Acc Chem Res 45(7):971–979CrossRefPubMed
15.
Zurück zum Zitat Li J, Chen YC, Tseng YC et al (2010) Biodegradable calcium phosphate nanoparticle with lipid coating for systemic siRNA delivery. J Control Release 142(3):416–421CrossRefPubMed Li J, Chen YC, Tseng YC et al (2010) Biodegradable calcium phosphate nanoparticle with lipid coating for systemic siRNA delivery. J Control Release 142(3):416–421CrossRefPubMed
16.
Zurück zum Zitat Xu Z, Ramishetti S, Tseng YC et al (2013) Multifunctional nanoparticles co-delivering Trp2 peptide and CpG adjuvant induce potent cytotoxic T-lymphocyte response against melanoma and its lung metastasis. J Control Release 172(1):259–265CrossRefPubMed Xu Z, Ramishetti S, Tseng YC et al (2013) Multifunctional nanoparticles co-delivering Trp2 peptide and CpG adjuvant induce potent cytotoxic T-lymphocyte response against melanoma and its lung metastasis. J Control Release 172(1):259–265CrossRefPubMed
17.
Zurück zum Zitat Reddy R, Zhou F, Nair S et al (1992) In vivo cytotoxic T lymphocyte induction with soluble proteins administered in liposomes. J Immunol 148(5):1585–1589PubMed Reddy R, Zhou F, Nair S et al (1992) In vivo cytotoxic T lymphocyte induction with soluble proteins administered in liposomes. J Immunol 148(5):1585–1589PubMed
18.
Zurück zum Zitat Czerkinsky CC, Nilsson LA, Nygren H et al (1983) A solid-phase enzyme-linked immunospot (ELISPOT) assay for enumeration of specific antibody-secreting cells. J Immunol Methods 65(1–2):109–121CrossRefPubMed Czerkinsky CC, Nilsson LA, Nygren H et al (1983) A solid-phase enzyme-linked immunospot (ELISPOT) assay for enumeration of specific antibody-secreting cells. J Immunol Methods 65(1–2):109–121CrossRefPubMed
19.
Zurück zum Zitat Chen WS, Xu PZ, Gottlob K et al (2001) Growth retardation and increased apoptosis in mice with homozygous disruption of the Akt1 gene. Genes Dev 15(17):2203–2208CrossRefPubMedPubMedCentral Chen WS, Xu PZ, Gottlob K et al (2001) Growth retardation and increased apoptosis in mice with homozygous disruption of the Akt1 gene. Genes Dev 15(17):2203–2208CrossRefPubMedPubMedCentral
20.
Zurück zum Zitat Xu Z, Wang Y, Zhang L et al (2014) Nanoparticle-delivered transforming growth factor-beta siRNA enhances vaccination against advanced melanoma by modifying tumor microenvironment. ACS Nano 8(4):3636–3645CrossRefPubMedPubMedCentral Xu Z, Wang Y, Zhang L et al (2014) Nanoparticle-delivered transforming growth factor-beta siRNA enhances vaccination against advanced melanoma by modifying tumor microenvironment. ACS Nano 8(4):3636–3645CrossRefPubMedPubMedCentral
21.
Zurück zum Zitat Lu Y, Miao L, Wang Y et al (2016) Curcumin micelles remodel tumor microenvironment and enhance vaccine activity in an advanced melanoma model. Mol Ther 24(2):364–374CrossRefPubMed Lu Y, Miao L, Wang Y et al (2016) Curcumin micelles remodel tumor microenvironment and enhance vaccine activity in an advanced melanoma model. Mol Ther 24(2):364–374CrossRefPubMed
22.
Zurück zum Zitat Bamford S, Dawson E, Forbes S et al (2004) The COSMIC (Catalogue of Somatic Mutations in Cancer) database and website. Br J Cancer 91(2):355–358CrossRefPubMedPubMedCentral Bamford S, Dawson E, Forbes S et al (2004) The COSMIC (Catalogue of Somatic Mutations in Cancer) database and website. Br J Cancer 91(2):355–358CrossRefPubMedPubMedCentral
23.
Zurück zum Zitat Davies H, Bignell GR, Cox C et al (2002) Mutations of the BRAF gene in human cancer. Nature 417(6892):949–954CrossRefPubMed Davies H, Bignell GR, Cox C et al (2002) Mutations of the BRAF gene in human cancer. Nature 417(6892):949–954CrossRefPubMed
24.
Zurück zum Zitat Pratilas CA, Taylor BS, Ye Q et al (2009) (V600E)BRAF is associated with disabled feedback inhibition of RAF-MEK signaling and elevated transcriptional output of the pathway. Proc Natl Acad Sci USA 106(11):4519–4524CrossRefPubMedPubMedCentral Pratilas CA, Taylor BS, Ye Q et al (2009) (V600E)BRAF is associated with disabled feedback inhibition of RAF-MEK signaling and elevated transcriptional output of the pathway. Proc Natl Acad Sci USA 106(11):4519–4524CrossRefPubMedPubMedCentral
25.
Zurück zum Zitat Soengas MS, Lowe SW (2003) Apoptosis and melanoma chemoresistance. Oncogene 22(20):3138–3151CrossRefPubMed Soengas MS, Lowe SW (2003) Apoptosis and melanoma chemoresistance. Oncogene 22(20):3138–3151CrossRefPubMed
26.
Zurück zum Zitat Avril MF, Aamdal S, Grob JJ et al (2004) Fotemustine compared with dacarbazine in patients with disseminated malignant melanoma: a phase III study. J Clin Oncol 22(6):1118–1125CrossRefPubMed Avril MF, Aamdal S, Grob JJ et al (2004) Fotemustine compared with dacarbazine in patients with disseminated malignant melanoma: a phase III study. J Clin Oncol 22(6):1118–1125CrossRefPubMed
28.
Zurück zum Zitat Falkson CI, Ibrahim J, Kirkwood JM et al (1998) Phase III trial of dacarbazine versus dacarbazine with interferon alpha-2b versus dacarbazine with tamoxifen versus dacarbazine with interferon alpha-2b and tamoxifen in patients with metastatic malignant melanoma: an Eastern Cooperative Oncology Group study. J Clin Oncol 16(5):1743–1751CrossRefPubMed Falkson CI, Ibrahim J, Kirkwood JM et al (1998) Phase III trial of dacarbazine versus dacarbazine with interferon alpha-2b versus dacarbazine with tamoxifen versus dacarbazine with interferon alpha-2b and tamoxifen in patients with metastatic malignant melanoma: an Eastern Cooperative Oncology Group study. J Clin Oncol 16(5):1743–1751CrossRefPubMed
29.
Zurück zum Zitat Middleton MR, Grob JJ, Aaronson N et al (2000) Randomized phase III study of temozolomide versus dacarbazine in the treatment of patients with advanced metastatic malignant melanoma. J Clin Oncol 18(1):158–166CrossRefPubMed Middleton MR, Grob JJ, Aaronson N et al (2000) Randomized phase III study of temozolomide versus dacarbazine in the treatment of patients with advanced metastatic malignant melanoma. J Clin Oncol 18(1):158–166CrossRefPubMed
30.
Zurück zum Zitat Mocellin S, Pasquali S, Rossi CR et al (2010) Interferon alpha adjuvant therapy in patients with high-risk melanoma: a systematic review and meta-analysis. J Natl Cancer Inst 102(7):493–501CrossRefPubMed Mocellin S, Pasquali S, Rossi CR et al (2010) Interferon alpha adjuvant therapy in patients with high-risk melanoma: a systematic review and meta-analysis. J Natl Cancer Inst 102(7):493–501CrossRefPubMed
31.
Zurück zum Zitat Theofilopoulos AN, Baccala R, Beutler B et al (2005) Type I interferons (alpha/beta) in immunity and autoimmunity. Annu Rev Immunol 23:307–336CrossRefPubMed Theofilopoulos AN, Baccala R, Beutler B et al (2005) Type I interferons (alpha/beta) in immunity and autoimmunity. Annu Rev Immunol 23:307–336CrossRefPubMed
32.
Zurück zum Zitat Schwartzentruber DJ, Lawson DH, Richards JM et al (2011) gp100 peptide vaccine and interleukin-2 in patients with advanced melanoma. N Engl J Med 364(22):2119–2127CrossRefPubMedPubMedCentral Schwartzentruber DJ, Lawson DH, Richards JM et al (2011) gp100 peptide vaccine and interleukin-2 in patients with advanced melanoma. N Engl J Med 364(22):2119–2127CrossRefPubMedPubMedCentral
33.
Zurück zum Zitat Hodi FS, O’Day SJ, McDermott DF et al (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363(8):711–723CrossRefPubMedPubMedCentral Hodi FS, O’Day SJ, McDermott DF et al (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363(8):711–723CrossRefPubMedPubMedCentral
34.
Zurück zum Zitat Robert C, Schachter J, Long GV et al (2015) Pembrolizumab versus ipilimumab in advanced melanoma. N Engl J Med 372(26):2521–2532CrossRefPubMed Robert C, Schachter J, Long GV et al (2015) Pembrolizumab versus ipilimumab in advanced melanoma. N Engl J Med 372(26):2521–2532CrossRefPubMed
35.
Zurück zum Zitat Hassel JC (2016) Ipilimumab plus nivolumab for advanced melanoma. Lancet Oncol 17(11):1471–1472CrossRefPubMed Hassel JC (2016) Ipilimumab plus nivolumab for advanced melanoma. Lancet Oncol 17(11):1471–1472CrossRefPubMed
37.
Zurück zum Zitat Schadendorf D, Hodi FS, Robert C et al (2015) Pooled analysis of long-term survival data from phase II and phase III trials of ipilimumab in unresectable or metastatic melanoma. J Clin Oncol 33(17):1889–1894CrossRefPubMedPubMedCentral Schadendorf D, Hodi FS, Robert C et al (2015) Pooled analysis of long-term survival data from phase II and phase III trials of ipilimumab in unresectable or metastatic melanoma. J Clin Oncol 33(17):1889–1894CrossRefPubMedPubMedCentral
38.
Zurück zum Zitat Topalian SL, Taube JM, Anders RA et al (2016) Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nat Rev Cancer 16(5):275–287CrossRefPubMedPubMedCentral Topalian SL, Taube JM, Anders RA et al (2016) Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nat Rev Cancer 16(5):275–287CrossRefPubMedPubMedCentral
39.
Zurück zum Zitat Miao L, Guo S, Lin CM et al (2017) Nanoformulations for combination or cascade anticancer therapy. Adv Drug Deliv Rev 115:3–22CrossRefPubMed Miao L, Guo S, Lin CM et al (2017) Nanoformulations for combination or cascade anticancer therapy. Adv Drug Deliv Rev 115:3–22CrossRefPubMed
40.
Zurück zum Zitat Nelson CM, Bissell MJ (2006) Of extracellular matrix, scaffolds, and signaling: tissue architecture regulates development, homeostasis, and cancer. Annu Rev Cell Dev Biol 22:287–309CrossRefPubMedPubMedCentral Nelson CM, Bissell MJ (2006) Of extracellular matrix, scaffolds, and signaling: tissue architecture regulates development, homeostasis, and cancer. Annu Rev Cell Dev Biol 22:287–309CrossRefPubMedPubMedCentral
41.
Zurück zum Zitat Conniot J, Silva JM, Fernandes JG et al (2014) Cancer immunotherapy: nanodelivery approaches for immune cell targeting and tracking. Front Chem 2:105CrossRefPubMedPubMedCentral Conniot J, Silva JM, Fernandes JG et al (2014) Cancer immunotherapy: nanodelivery approaches for immune cell targeting and tracking. Front Chem 2:105CrossRefPubMedPubMedCentral
42.
Zurück zum Zitat Miao L, Liu Q, Lin CM et al (2017) Targeting tumor-associated fibroblasts for therapeutic delivery in desmoplastic tumors. Cancer Res 77(3):719–731CrossRefPubMed Miao L, Liu Q, Lin CM et al (2017) Targeting tumor-associated fibroblasts for therapeutic delivery in desmoplastic tumors. Cancer Res 77(3):719–731CrossRefPubMed
43.
Zurück zum Zitat Hu K, Miao L, Goodwin TJ et al (2017) Quercetin remodels the tumor microenvironment to improve the permeation, retention, and antitumor effects of nanoparticles. ACS Nano 11(5):4916–4925CrossRefPubMed Hu K, Miao L, Goodwin TJ et al (2017) Quercetin remodels the tumor microenvironment to improve the permeation, retention, and antitumor effects of nanoparticles. ACS Nano 11(5):4916–4925CrossRefPubMed
44.
Zurück zum Zitat Andreatta M, Nielsen M (2016) Gapped sequence alignment using artificial neural networks: application to the MHC class I system. Bioinformatics 32(4):511–517CrossRefPubMed Andreatta M, Nielsen M (2016) Gapped sequence alignment using artificial neural networks: application to the MHC class I system. Bioinformatics 32(4):511–517CrossRefPubMed
45.
Zurück zum Zitat Nielsen M, Lundegaard C, Worning P et al (2003) Reliable prediction of T-cell epitopes using neural networks with novel sequence representations. Protein Sci 12(5):1007–1017CrossRefPubMedPubMedCentral Nielsen M, Lundegaard C, Worning P et al (2003) Reliable prediction of T-cell epitopes using neural networks with novel sequence representations. Protein Sci 12(5):1007–1017CrossRefPubMedPubMedCentral
46.
Zurück zum Zitat Tseng YC, Xu Z, Guley K et al (2014) Lipid-calcium phosphate nanoparticles for delivery to the lymphatic system and SPECT/CT imaging of lymph node metastases. Biomaterials 35(16):4688–4698CrossRefPubMedPubMedCentral Tseng YC, Xu Z, Guley K et al (2014) Lipid-calcium phosphate nanoparticles for delivery to the lymphatic system and SPECT/CT imaging of lymph node metastases. Biomaterials 35(16):4688–4698CrossRefPubMedPubMedCentral
47.
Zurück zum Zitat Medzhitov R, Janeway CA Jr (2002) Decoding the patterns of self and nonself by the innate immune system. Science 296(5566):298–300CrossRefPubMed Medzhitov R, Janeway CA Jr (2002) Decoding the patterns of self and nonself by the innate immune system. Science 296(5566):298–300CrossRefPubMed
48.
Zurück zum Zitat Umansky V, Sevko A (2013) Tumor microenvironment and myeloid-derived suppressor cells. Cancer Microenviron 6(2):169–177CrossRefPubMed Umansky V, Sevko A (2013) Tumor microenvironment and myeloid-derived suppressor cells. Cancer Microenviron 6(2):169–177CrossRefPubMed
49.
Zurück zum Zitat Lo A, Wang LC, Scholler J et al (2015) Tumor-promoting desmoplasia is disrupted by depleting FAP-expressing stromal cells. Cancer Res 75(14):2800–2810CrossRefPubMedPubMedCentral Lo A, Wang LC, Scholler J et al (2015) Tumor-promoting desmoplasia is disrupted by depleting FAP-expressing stromal cells. Cancer Res 75(14):2800–2810CrossRefPubMedPubMedCentral
50.
Zurück zum Zitat Rigel DS, Carucci JA (2005) Malignant melanoma: prevention, early detection, and treatment in the 21st century. CA Cancer J Clin 50(4):215–236 quiz 237-40 CrossRef Rigel DS, Carucci JA (2005) Malignant melanoma: prevention, early detection, and treatment in the 21st century. CA Cancer J Clin 50(4):215–236 quiz 237-40 CrossRef
51.
Zurück zum Zitat Restifo NP, Dudley ME, Rosenberg SA (2012) Adoptive immunotherapy for cancer: harnessing the T cell response. Nat Rev Immunol 12(4):269–281CrossRefPubMed Restifo NP, Dudley ME, Rosenberg SA (2012) Adoptive immunotherapy for cancer: harnessing the T cell response. Nat Rev Immunol 12(4):269–281CrossRefPubMed
52.
Zurück zum Zitat Porter DL, Levine BL, Kalos M et al (2011) Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N Engl J Med 365(8):725–733CrossRefPubMedPubMedCentral Porter DL, Levine BL, Kalos M et al (2011) Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N Engl J Med 365(8):725–733CrossRefPubMedPubMedCentral
53.
Zurück zum Zitat Allen TM, Cullis PR (2004) Drug delivery systems: entering the mainstream. Science 303(5665):1818–1822CrossRefPubMed Allen TM, Cullis PR (2004) Drug delivery systems: entering the mainstream. Science 303(5665):1818–1822CrossRefPubMed
Metadaten
Titel
BRAF peptide vaccine facilitates therapy of murine BRAF-mutant melanoma
verfasst von
Qi Liu
Hongda Zhu
Yun Liu
Sara Musetti
Leaf Huang
Publikationsdatum
01.11.2017
Verlag
Springer Berlin Heidelberg
Erschienen in
Cancer Immunology, Immunotherapy / Ausgabe 2/2018
Print ISSN: 0340-7004
Elektronische ISSN: 1432-0851
DOI
https://doi.org/10.1007/s00262-017-2079-7

Weitere Artikel der Ausgabe 2/2018

Cancer Immunology, Immunotherapy 2/2018 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.