Skip to main content
Erschienen in: Molecular Cancer 1/2018

Open Access 01.12.2018 | Letter to the Editor

Brain-derived neurotrophic factor, a new soluble biomarker for malignant pleural mesothelioma involved in angiogenesis

verfasst von: Patrick Smeele, Sènan Mickaël d’Almeida, Clément Meiller, Anne-Laure Chéné, Charly Liddell, Laurent Cellerin, François Montagne, Sophie Deshayes, Sarah Benziane, Marie-Christine Copin, Paul Hofman, Françoise Le Pimpec-Barthes, Henri Porte, Arnaud Scherpereel, Marc Grégoire, Didier Jean, Christophe Blanquart

Erschienen in: Molecular Cancer | Ausgabe 1/2018

Abstract

Malignant pleural mesothelioma (MPM) is a rare and aggressive cancer related to asbestos exposure. The discovery of soluble biomarkers with diagnostic/prognostic and/or therapeutic properties would improve therapeutic care of MPM patients. Currently, soluble biomarkers described present weaknesses preventing their use in clinic. This study aimed at evaluating brain-derived neurotrophic factor (BDNF), we previously identified using transcriptomic approach, in MPM. We observed that high BDNF expression, at the mRNA level in tumors or at the protein level in pleural effusions (PE), was a specific hallmark of MPM samples. This protein presented significant but limited diagnostic properties (area under the curve (AUC) = 0.6972, p < 0.0001). Interestingly, high BDNF gene expression and PE concentration were predictive of shorter MPM patient survival (13.0 vs 8.3 months, p < 0.0001, in PE). Finally, BDNF did not affect MPM cell oncogenic properties but was implicated in PE-induced angiogenesis. In conclusion, BDNF appears to be a new interesting biomarker for MPM and could also be a new therapeutic target regarding its implication in angiogenesis.
Begleitmaterial
Hinweise

Electronic supplementary material

The online version of this article (https://​doi.​org/​10.​1186/​s12943-018-0891-0) contains supplementary material, which is available to authorized users.
Abkürzungen
ADCA
Adenocarcinoma
AUC
Area under the curve
BDNF
Brain-derived neurotrophic factor
BM
Biphasic MPM
BPE
Benign pleural effusion
CCS
Cell culture supernatant
DM
Desmoplastic MPM
ELISA
Enzyme-linked immunosorbent assay
EM
Epithelioid MPM
FCS
Fetal calf serum
HUVEC
Human umbilical vein endothelial cell
LUAD
Lung adenocarcinoma
LUSC
Lung squamous cell carcinoma
MC
Mesothelial cells
MPM
Malignant pleural mesothelioma
PCR
Polymerase chain reaction
PE
Pleural effusions
ROC
Receiver operating characteristic
RPMI
Roswell Park Memorial Institute medium
RSEM values
RNA-seq by Expectation Maximization values
SM
Sarcomatoid MPM
SMRP
Soluble mesothelin-related peptide
TCGA
The Cancer Genome Atlas
TrkB
Tropomyosin-related kinase receptors B
VEGF
Vascular endothelial growth factor
Malignant pleural mesothelioma (MPM) is a rare and aggressive cancer related to asbestos exposure. The first line regimen for MPM, consisting of a combination of cisplatin and the anti-metabolite pemetrexed, only increases patient survival by 3 months [1]. The late diagnosis of the disease is partly responsible for the poor outcome in MPM. Thus, the identification of new biomarkers with diagnostic/prognostic and/or therapeutic properties would be useful to improve the therapeutic care of patients and the outcome of the disease. Soluble biomarkers have the advantage of being easily measured in fluid samples without the need to resort to invasive procedures and also to be targetable using antibodies. Previously identified MPM soluble biomarkers, soluble mesothelin-related peptide (SMRP) and fibulin-3, are too limited to be used routinely in clinic and are not identified as therapeutic target [2]. Therefore, the identification of new soluble biomarkers with improved or complementary properties is required.
In a previous study, we identified BDNF, a neurotrophin, as an interesting biomarker for MPM [3]. In this work, we aimed at examining this potential using collections of MPM samples. We also studied the implication of BDNF in MPM pathology.

Results and discussion

BDNF mRNA expression in MPM tumors and prognostic value

Previous transcriptomic data show an overexpression of BDNF gene expression in MPM cell lines compared to lung adenocarcinoma cell lines (Additional file 1: Figure S1) [3]. To confirm these results, BDNF expression was measured in 179 MPM tumor samples and 26 normal pleura (Additional file 2: Table S1.1). Figure 1a confirms the significant higher expression of BDNF in MPM tumors compared to normal pleura (p = 0.0006). BDNF showed differential expression between MPM subtypes (p = 0.0011) with a lower expression in epithelioid MPM (EM) than in sarcomatoid (SM) and desmoplastic (DM) MPM (Additional file 3: Figure S2A).
BDNF expression and overall survival of patients were related (Fig. 1b and Additional file 4: Table S2). Indeed, patients with high BDNF had a lower survival than patients with low BDNF (15.9 versus 21.1 months, p = 0.0736) and this survival difference is significant at 3 years (p = 0.0401).
These observations were confirmed using TCGA database (Additional file 2: Table S1.2). Expression of BDNF was significantly higher in MPM than in lung squamous carcinoma and lung adenocarcinoma (Fig. 1c). As previously observed, high BDNF was associated with low survival compared to low BDNF (12.4 versus 27.5 months, p < 0.0001) (Fig. 1d and Additional file 4: Table S2). BDNF was already described as overexpressed in several other cancers [4]. In TCGA cohort, we observed that MPM has the highest BDNF expression among 37 tumor types indicating that BDNF gene overexpression is a hallmark of MPM (Fig. 1e and Additional file 5: Table S3). These results were confirmed at the mRNA level and using Immunofluorescence on cancer cell lines and commercial primary mesothelial cells (MC) (Additional file 6: Figure S3A-B).

Expression of BDNF in pleural effusions from patients

In our collection of pleural effusions (PE) (Additional file 2: Table S1.3), a significant higher BDNF level was observed in MPM samples (median, 95.26 pg/ml) compared to other neoplasia or benign samples (BPE) (median, 28.08 pg/ml and 8.87 pg/ml) (Fig. 2a) and also to all PE (malignant and non-malignant) (median, 23.33 pg/ml) (Fig. 2b) according to the mRNA results. No significant difference in BDNF level was observed between the MPM subgroups (Additional file 3: Figure S2B).
These results confirmed a preliminary observation by Duysinx and colleagues performed on only 10 MPM PE [4] and can be explained, in part, by the ability of MPM cells to produce high level of BDNF (Additional file 6: Figure S3C). This growth factor can also be produced by a large variety of cells [5] explaining its presence in other PE, but at a lower amount.
Area under the curve (AUC) of BDNF to differentiate MPM from other neoplasia or all PE were similar (AUC = 0.6710 ± 0.04 and AUC = 0.6972 ± 0.038) (Fig. 2c and Additional file 7: Table S4.1). The best specificity and sensitivity for BDNF were ~ 86.05% and ~ 49.51% (Additional file 7: Table S4.2).
The diagnostic value of BDNF (AUC = 0.69) seems slightly lower than the one of SMRP (AUC = 0.76 to 0.87) [6], the best MPM soluble biomarker to date. However, BDNF is expressed by all subtypes of MPM unlike SMRP which is not expressed by SM [2]. Then, an association of these two biomarkers has a strong potential to improve the sensitivity and the specificity of MPM diagnosis. Comparison of BDNF diagnostic value with fibulin-3 is currently complicated due to heterogeneity in the results obtained with this biomarker [2].

Prognostic value of BDNF in pleural effusions from patients

In several cancers, BDNF was described as overexpressed in the tumor environment [4, 7] and can be associated with poor survival [8]. Then, we evaluated the prognosis value of BDNF in MPM PE. Interestingly, as in mRNA study, patients with BDNF above median presented a significantly lower survival than the others (8.3 versus 13 months; p = 0.0061) (Fig. 2d and Additional file 4: Table S2). This association between high BDNF and poor survival suggests an implication of this protein in the development of the pathology.
Whereas prognostic value of SMRP remains inconclusive [2], patients with high BDNF have a shorter survival than patients with low BDNF. In PE, this observation is not related to MPM subtype. Indeed, in this cohort, SM, the most aggressive subtype of mesothelioma, only represent 7% of the cases and therefore cannot be responsible for this result. In PE, these characteristics are similar to the prognostic value of Fibulin-3 [2].

Evaluation of BDNF on angiogenesis

Several studies have demonstrated a pro-tumoral autocrine action of BDNF on cancer cells [8]. To evaluate this activity on MPM cells, expressions of BDNF receptors (TrkB and p75NTR) were measured first. Additional file 8: Figure S4A showed a heterogeneous and significant reduced expression of TrkB in MPM cells compared with MC. p75NTR expression was also heterogeneous in MPM cells and similar to MC (Additional file 8: Figure S4B). Figure 3a and b show that BDNF had no effect on MPM cell growth and sensitivity to cisplatin. These results suggest that BDNF has no autocrine action on MPM cells.
BDNF was also described as involved on angiogenesis in different cancer types [9]. We thus studied this property by measuring the induction of HUVEC proliferation. First, we showed that MPM PE induced angiogenesis by leading to an increase of HUVEC tube formation and proliferation (Additional file 9: Figure S5A-B). Figure 3c shows that an anti-BDNF blocking antibody (from rabbit, Abcam) reduced significantly by ~ 31% the MPM PE-induced HUVEC proliferation. A detailed analysis of the results led to the segregation of the MPM PE in a sensitive group to BDNF blocking (n = 11) and in a resistant group (n = 3) (Fig. 3d). These results were confirmed using another anti-BDNF blocking antibody (from chicken, Abcam) (Additional file 9: Figure S5C).
These observations demonstrate the strong implication of BDNF in the PE-induced angiogenesis. However, the resistance of some PE to the blocking antibody demonstrates that BDNF is not the only player participating to this process. This is also supported by the observation that the activity of the blocking antibody is not correlated to BDNF concentrations in PE (Additional file 10: Figure S6). Previous works have shown that, in some cancers, BDNF can induce expression of the vascular endothelial growth factor (VEGF), well known to induce angiogenesis, [9]. Thus, we measured VEGF in MPM PE. No evident correlation between BDNF and VEGF was observed (Additional file 11: Figure S7A). However, we did not observe samples with high BDNF and low VEGF. Moreover, in PE with BDNF higher than median value, a positive correlation with VEGF was observed (Additional file 11: Figure S7B). This suggests that VEGF can be dependent of BDNF in some PE. As observed for BDNF, the activity of the blocking antibody was not correlated to VEGF concentrations (Additional file 11: Figure S7C). These results show that VEGF cannot explain anti-angiogenic effect of the BDNF blocking antibody.
Recently, in the MAPS study, it was shown that the combination pemetrexed/cisplatin in association with bevacizumab (anti-VEGF) improves overall survival of MPM patients [10]. This clinical trial demonstrates the interest of targeting angiogenesis in MPM. Regarding our results, this suggests that BDNF could be an interesting target in MPM due to its implication in this process.

Conclusion

Our work identifies BDNF as new interesting MPM biomarker. Moreover, due to its implication in angiogenesis, BDNF could also be a new potential therapeutic target.

Acknowledgements

The authors want to thank the ‘attachées de recherche clinique’ Megguy Bernard and Régine Valéro for management of sample collection and update of biocollection database, the staff of Laënnec hospital and the MicroPiCell core facility for microscopy experiments.

Funding

This work was supported by INSERM, CNRS, the ‘Institut de recherche en santé respiratoire des Pays de la Loire’, the ‘Ligue Contre le Cancer (committees of Morbihan, Sarthe, Vendée et Loire-Atlantique) and ARSMESO44.

Availability of data and materials

The datasets used and analyzed during the current study are available from the corresponding author. Materials and methods are provided as Additional file 12.
All recruited patients gave signed, informed consent. All the collected samples and the associated clinical information were registered in database (DC-2011-1399 and DC-2013-1963) validated by the French research ministry.
Not applicable.

Competing interests

The authors declare that they have no competing interest.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.
Anhänge

Additional files

Literatur
1.
Zurück zum Zitat Vogelzang NJ, Rusthoven JJ, Symanowski J, Denham C, Kaukel E, Ruffie P, et al. Phase III study of pemetrexed in combination with cisplatin versus cisplatin alone in patients with malignant pleural mesothelioma. J Clin Oncol. 2003;21:2636–44.CrossRef Vogelzang NJ, Rusthoven JJ, Symanowski J, Denham C, Kaukel E, Ruffie P, et al. Phase III study of pemetrexed in combination with cisplatin versus cisplatin alone in patients with malignant pleural mesothelioma. J Clin Oncol. 2003;21:2636–44.CrossRef
2.
Zurück zum Zitat Sun HH, Vaynblat A, Pass HI. Diagnosis and prognosis-review of biomarkers for mesothelioma. Ann Transl Med. 2017;5:244.CrossRef Sun HH, Vaynblat A, Pass HI. Diagnosis and prognosis-review of biomarkers for mesothelioma. Ann Transl Med. 2017;5:244.CrossRef
3.
Zurück zum Zitat Gueugnon F, Leclercq S, Blanquart C, Sagan C, Cellerin L, Padieu M, et al. Identification of novel markers for the diagnosis of malignant pleural mesothelioma. Am J Pathol. 2011;178:1033–42.CrossRef Gueugnon F, Leclercq S, Blanquart C, Sagan C, Cellerin L, Padieu M, et al. Identification of novel markers for the diagnosis of malignant pleural mesothelioma. Am J Pathol. 2011;178:1033–42.CrossRef
4.
Zurück zum Zitat Duysinx BC, Paulus A, Heinen V, Nguyen D, Henket M, Corhay JL, et al. Diagnostic value of neurotrophin expression in malignant pleural effusions. Exp Ther Med. 2011;2:941–6.CrossRef Duysinx BC, Paulus A, Heinen V, Nguyen D, Henket M, Corhay JL, et al. Diagnostic value of neurotrophin expression in malignant pleural effusions. Exp Ther Med. 2011;2:941–6.CrossRef
5.
Zurück zum Zitat Nockher WA, Renz H. Neurotrophins in clinical diagnostics: pathophysiology and laboratory investigation. Clin Chim Acta. 2005;352:49–74.CrossRef Nockher WA, Renz H. Neurotrophins in clinical diagnostics: pathophysiology and laboratory investigation. Clin Chim Acta. 2005;352:49–74.CrossRef
6.
Zurück zum Zitat Pantazopoulos I, Boura P, Xanthos T, Syrigos K. Effectiveness of mesothelin family proteins and osteopontin for malignant mesothelioma. Eur Respir J. 2013;41:706–15.CrossRef Pantazopoulos I, Boura P, Xanthos T, Syrigos K. Effectiveness of mesothelin family proteins and osteopontin for malignant mesothelioma. Eur Respir J. 2013;41:706–15.CrossRef
7.
Zurück zum Zitat Ricci A, Mariotta S, Pompili E, Mancini R, Bronzetti E, De Vitis C, et al. Neurotrophin system activation in pleural effusions. Growth Factors. 2010;28:221–31.CrossRef Ricci A, Mariotta S, Pompili E, Mancini R, Bronzetti E, De Vitis C, et al. Neurotrophin system activation in pleural effusions. Growth Factors. 2010;28:221–31.CrossRef
8.
Zurück zum Zitat Radin DP, Patel P. BDNF: an oncogene or tumor suppressor? Anticancer Res. 2017;37:3983–90.PubMed Radin DP, Patel P. BDNF: an oncogene or tumor suppressor? Anticancer Res. 2017;37:3983–90.PubMed
9.
Zurück zum Zitat Tajbakhsh A, Mokhtari-Zaer A, Rezaee M, Afzaljavan F, Rivandi M, Hassanian SM, et al. Therapeutic potentials of BDNF/TrkB in breast Cancer; current status and perspectives. J Cell Biochem. 2017;118:2502–15.CrossRef Tajbakhsh A, Mokhtari-Zaer A, Rezaee M, Afzaljavan F, Rivandi M, Hassanian SM, et al. Therapeutic potentials of BDNF/TrkB in breast Cancer; current status and perspectives. J Cell Biochem. 2017;118:2502–15.CrossRef
10.
Zurück zum Zitat Zalcman G, Mazieres J, Margery J, Greillier L, Audigier-Valette C, Moro-Sibilot D, et al. Bevacizumab for newly diagnosed pleural mesothelioma in the mesothelioma Avastin cisplatin Pemetrexed study (MAPS): a randomised, controlled, open-label, phase 3 trial. Lancet. 2016;387:1405–14.CrossRef Zalcman G, Mazieres J, Margery J, Greillier L, Audigier-Valette C, Moro-Sibilot D, et al. Bevacizumab for newly diagnosed pleural mesothelioma in the mesothelioma Avastin cisplatin Pemetrexed study (MAPS): a randomised, controlled, open-label, phase 3 trial. Lancet. 2016;387:1405–14.CrossRef
Metadaten
Titel
Brain-derived neurotrophic factor, a new soluble biomarker for malignant pleural mesothelioma involved in angiogenesis
verfasst von
Patrick Smeele
Sènan Mickaël d’Almeida
Clément Meiller
Anne-Laure Chéné
Charly Liddell
Laurent Cellerin
François Montagne
Sophie Deshayes
Sarah Benziane
Marie-Christine Copin
Paul Hofman
Françoise Le Pimpec-Barthes
Henri Porte
Arnaud Scherpereel
Marc Grégoire
Didier Jean
Christophe Blanquart
Publikationsdatum
01.12.2018
Verlag
BioMed Central
Erschienen in
Molecular Cancer / Ausgabe 1/2018
Elektronische ISSN: 1476-4598
DOI
https://doi.org/10.1186/s12943-018-0891-0

Weitere Artikel der Ausgabe 1/2018

Molecular Cancer 1/2018 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.