Skip to main content
Erschienen in: Diabetologia 3/2007

01.03.2007 | For debate

C-peptide is a bioactive peptide

verfasst von: J. Wahren, K. Ekberg, H. Jörnvall

Erschienen in: Diabetologia | Ausgabe 3/2007

Einloggen, um Zugang zu erhalten

Excerpt

During the past decade, reports from several laboratories have focused on the physiological effects of C-peptide. Experimental data and clinical studies suggest that that C-peptide is a biologically active peptide. Clinical studies show that C-peptide administration in type 1 diabetes patients, who lack the peptide, results in amelioration of diabetes-induced renal and nerve dysfunction. Molecular studies demonstrate binding to cell membranes, activation of intracellular signalling pathways, and specific end effects of importance for vascular endothelial function. These findings have prompted the hypothesis that C-peptide deficiency in type 1 diabetes may contribute to the development of microvascular complications, and that C-peptide replacement, together with regular insulin therapy, may be beneficial in the treatment or prevention of these complications. In the present article we argue the case in favour of C-peptide as a biologically active peptide based on in vivo data and in vitro findings, as summarised in Table 1.
Table 1
Summary of clinical, in vivo animal and in vitro cellular effects of C-peptide
Effect
Reference
In vivo effects
 
 Renal
 
  Functional reserve ↑
[7]
  Glomerular hyperfiltration ↓
[5, 7]
  Urinary albumin excretion ↓
[6]
  Structural abnormalities ↓
[8]
 Nerve
 
  Conduction velocity ↑
[9, 10, 12, 13, 37]
  Vibration perception ↑
[10]
  Blood flow ↑
[13, 20]
  Na+/K+-ATPase activity ↑
[12, 37]
  Hyperalgesia ↓
[14]
  Structural abnormalities ↓
[12, 15]
 Circulation
 
  Muscle blood flow ↑
[16]
  Skin blood flow ↑
[19]
  Myocardial blood flow and contraction rate ↑
[17, 18]
  Myocardial ejection fraction ↑
[17, 18]
  QT interval ↓
 
In vitro effects
 
 Membrane interaction
 
  Specific binding in nanomolar range
[22, 23]
 Intracellular signalling
 
  G-protein involvement
[2529]
  Intracellular Ca2+
[27, 30]
  PKC, MAPK and PI-3Kγ ↑
[26, 28, 31]
  NFκB, PPARγ, Bcl2, c-Fos, ZEB ↑
[29, 36, 46]
 End effects
 
  eNOS activity and protein levels ↑
[30, 33, 34]
  Na+/K+-ATPase activity and protein levels ↑
[25, 31, 36]
  Cell growth ↑
[40]
  Apoptosis ↓
[29, 40]
  Insulinomimetic effects
[32]
  Anti-thrombotic effects
[21]
 Other
 
  Disaggregation of insulin hexamers
[41]
PI-3Kγ, phosphatidylinositol 3-kinase γ; PKC, protein kinase C; ZEB, zinc finger homeodomain enhancer-binding protein
Literatur
1.
Zurück zum Zitat Sjöberg S, Gunnarsson R, Gjötterberg M, Lefvert A, Persson A, Östman J (1987) Residual insulin production, glycemic control and prevalence of microvascular lesions and polyneuropathy in long-term type 1 (insulin-dependent) diabetes mellitus. Diabetologia 30:208–213PubMedCrossRef Sjöberg S, Gunnarsson R, Gjötterberg M, Lefvert A, Persson A, Östman J (1987) Residual insulin production, glycemic control and prevalence of microvascular lesions and polyneuropathy in long-term type 1 (insulin-dependent) diabetes mellitus. Diabetologia 30:208–213PubMedCrossRef
2.
Zurück zum Zitat Zerbini G, Mangili R, Luzi L (1999) Higher post-absorptive C-peptide levels in type 1 diabetic patients without renal complications. Diabet Med 16:1048–1049PubMedCrossRef Zerbini G, Mangili R, Luzi L (1999) Higher post-absorptive C-peptide levels in type 1 diabetic patients without renal complications. Diabet Med 16:1048–1049PubMedCrossRef
3.
Zurück zum Zitat Navarro X, Sutherland D, Kennedy W (1997) Long-term effects of pancreatic transplantation on diabetic neuropathy. Ann Neurol 42:727–736PubMedCrossRef Navarro X, Sutherland D, Kennedy W (1997) Long-term effects of pancreatic transplantation on diabetic neuropathy. Ann Neurol 42:727–736PubMedCrossRef
4.
Zurück zum Zitat Fiorina P, Folli F, Zerbini G et al (2003) Islet transplantation is associated with improvement of renal function among uremic patients with type I diabetes mellitus and kidney transplants. J Am Soc Nephrol 14:2150–2158PubMedCrossRef Fiorina P, Folli F, Zerbini G et al (2003) Islet transplantation is associated with improvement of renal function among uremic patients with type I diabetes mellitus and kidney transplants. J Am Soc Nephrol 14:2150–2158PubMedCrossRef
5.
Zurück zum Zitat Johansson B-L, Sjöberg S, Wahren J (1992) The influence of human C-peptide on renal function and glucose utilization in Type I (insulin-dependent) diabetic patients. Diabetologia 35:121–128PubMedCrossRef Johansson B-L, Sjöberg S, Wahren J (1992) The influence of human C-peptide on renal function and glucose utilization in Type I (insulin-dependent) diabetic patients. Diabetologia 35:121–128PubMedCrossRef
6.
Zurück zum Zitat Johansson B-L, Borg K, Fernqvist-Forbes E, Kernell A, Odergren T, Wahren J (2000) Beneficial effects of C-peptide on incipient nephropathy and neuropathy in patients with type I diabetes. Diabet Med 17:181–189PubMedCrossRef Johansson B-L, Borg K, Fernqvist-Forbes E, Kernell A, Odergren T, Wahren J (2000) Beneficial effects of C-peptide on incipient nephropathy and neuropathy in patients with type I diabetes. Diabet Med 17:181–189PubMedCrossRef
7.
Zurück zum Zitat Sjöquist M, Huang W, Johansson B-L (1998) Effects of C-peptide on renal function at the early stage of experimental diabetes. Kidney Int 54:758–764PubMedCrossRef Sjöquist M, Huang W, Johansson B-L (1998) Effects of C-peptide on renal function at the early stage of experimental diabetes. Kidney Int 54:758–764PubMedCrossRef
8.
Zurück zum Zitat Samnegård B, Jacobson S, Johansson B-L et al (2005) C-peptide prevents glomerular hypertrophy and mesangial matrix expansion in diabetic rats. Nephrol Dial Transplant 20:532–538PubMedCrossRef Samnegård B, Jacobson S, Johansson B-L et al (2005) C-peptide prevents glomerular hypertrophy and mesangial matrix expansion in diabetic rats. Nephrol Dial Transplant 20:532–538PubMedCrossRef
9.
Zurück zum Zitat Ekberg K, Brismar T, Johansson B-L, Jonsson B, Lindström P, Wahren J (2003) Amelioration of sensory nerve dysfunction by C-peptide in patients with type 1 diabetes. Diabetes 52:536–541PubMed Ekberg K, Brismar T, Johansson B-L, Jonsson B, Lindström P, Wahren J (2003) Amelioration of sensory nerve dysfunction by C-peptide in patients with type 1 diabetes. Diabetes 52:536–541PubMed
10.
Zurück zum Zitat Ekberg K, Brismar T, Johansson B-L et al (2007) C-peptide replacement therapy and sensory nerve function in type 1 diabetes neuropathy. Diabetes Care 30:71–76 Ekberg K, Brismar T, Johansson B-L et al (2007) C-peptide replacement therapy and sensory nerve function in type 1 diabetes neuropathy. Diabetes Care 30:71–76
11.
Zurück zum Zitat Johansson B-L, Borg K, Fernqvist-Forbes E, Odergren T, Remahl S, Wahren J (1996) C-peptide improves autonomic nerve function IDDM patients. Diabetologia 39:687–695PubMed Johansson B-L, Borg K, Fernqvist-Forbes E, Odergren T, Remahl S, Wahren J (1996) C-peptide improves autonomic nerve function IDDM patients. Diabetologia 39:687–695PubMed
12.
Zurück zum Zitat Sima AA, Zhang W, Sugimoto K et al (2001) C-peptide prevents and improves chronic type 1 diabetic polyneuropathy in the BB/Wor rat. Diabetologia 44:889–897PubMedCrossRef Sima AA, Zhang W, Sugimoto K et al (2001) C-peptide prevents and improves chronic type 1 diabetic polyneuropathy in the BB/Wor rat. Diabetologia 44:889–897PubMedCrossRef
13.
Zurück zum Zitat Cotter M, Ekberg K, Wahren J, Cameron N (2003) Effects of proinsulin C-peptide in experimental diabetic neuropathy: vascular actions and modulation by nitric oxide synthase inhibition. Diabetes 52:1812–1817PubMed Cotter M, Ekberg K, Wahren J, Cameron N (2003) Effects of proinsulin C-peptide in experimental diabetic neuropathy: vascular actions and modulation by nitric oxide synthase inhibition. Diabetes 52:1812–1817PubMed
14.
Zurück zum Zitat Kamiya H, Zhang W, Sima AA (2004) C-peptide prevents nociceptive sensory neuropathy in type 1 diabetes. Ann Neurol 56:827–835PubMedCrossRef Kamiya H, Zhang W, Sima AA (2004) C-peptide prevents nociceptive sensory neuropathy in type 1 diabetes. Ann Neurol 56:827–835PubMedCrossRef
15.
Zurück zum Zitat Pierson C, Zhang W, Sima A (2003) Proinsulin C-peptide replacement in type 1 diabetic BB/Wor-rats prevents deficits in nerve fiber regeneration. J Neuropathol Exp Neurol 62:765–779PubMed Pierson C, Zhang W, Sima A (2003) Proinsulin C-peptide replacement in type 1 diabetic BB/Wor-rats prevents deficits in nerve fiber regeneration. J Neuropathol Exp Neurol 62:765–779PubMed
16.
Zurück zum Zitat Johansson B-L, Linde B, Wahren J (1992) Effects of C-peptide on blood flow, capillary diffusion capacity and glucose utilization in the exercising forearm of Type I (insulin-dependent) diabetic patients. Diabetologia 35:1151–1158PubMedCrossRef Johansson B-L, Linde B, Wahren J (1992) Effects of C-peptide on blood flow, capillary diffusion capacity and glucose utilization in the exercising forearm of Type I (insulin-dependent) diabetic patients. Diabetologia 35:1151–1158PubMedCrossRef
17.
Zurück zum Zitat Johansson B-L, Sundell J, Ekberg K et al (2004) C-peptide improves adenosine-induced myocardial vasodilation in type 1 diabetes patients. Am J Physiol Endocrinol Metab 286:E14–E19PubMedCrossRef Johansson B-L, Sundell J, Ekberg K et al (2004) C-peptide improves adenosine-induced myocardial vasodilation in type 1 diabetes patients. Am J Physiol Endocrinol Metab 286:E14–E19PubMedCrossRef
18.
Zurück zum Zitat Hansen A, Johansson B-L, Wahren J, von Bibra H (2002) C-peptide exerts beneficial effects on myocardial blood flow and function in patients with type 1 diabetes. Diabetes 51:3077–3082PubMed Hansen A, Johansson B-L, Wahren J, von Bibra H (2002) C-peptide exerts beneficial effects on myocardial blood flow and function in patients with type 1 diabetes. Diabetes 51:3077–3082PubMed
19.
Zurück zum Zitat Forst T, Kunt T, Pohlmann T et al (1998) Biological activity of C-peptide on the skin microcirculation in patients with insulin dependent diabetes mellitus. J Clin Invest 101:2036–2041PubMed Forst T, Kunt T, Pohlmann T et al (1998) Biological activity of C-peptide on the skin microcirculation in patients with insulin dependent diabetes mellitus. J Clin Invest 101:2036–2041PubMed
20.
Zurück zum Zitat Stevens M, Zhang W, Li F, Sima A (2004) C-peptide corrects endoneurial blood flow but not oxidative stress in type 1 BB/Wor rats. Am J Physiol Endocrinol Metab 287:E497–E505PubMedCrossRef Stevens M, Zhang W, Li F, Sima A (2004) C-peptide corrects endoneurial blood flow but not oxidative stress in type 1 BB/Wor rats. Am J Physiol Endocrinol Metab 287:E497–E505PubMedCrossRef
21.
Zurück zum Zitat Lindenblatt N, Braun B, Menger M, Klar E, Vollmar B (2006) C-peptide exerts antithrombotic effects that are repressed by insulin in normal and diabetic mice. Diabetologia 49:792–800PubMedCrossRef Lindenblatt N, Braun B, Menger M, Klar E, Vollmar B (2006) C-peptide exerts antithrombotic effects that are repressed by insulin in normal and diabetic mice. Diabetologia 49:792–800PubMedCrossRef
22.
Zurück zum Zitat Rigler R, Pramanik A, Jonasson P et al (1999) Specific binding of proinsulin C-peptide to human cell membranes. Proc Natl Acad Sci USA 96:13318–13323PubMedCrossRef Rigler R, Pramanik A, Jonasson P et al (1999) Specific binding of proinsulin C-peptide to human cell membranes. Proc Natl Acad Sci USA 96:13318–13323PubMedCrossRef
23.
Zurück zum Zitat Henriksson M, Pramanik A, Shafqat J et al (2001) Specific binding of proinsulin C-peptide to detergent-solubilised human skin fibroblasts. Biochem Biophys Res Commun 280:423–427PubMedCrossRef Henriksson M, Pramanik A, Shafqat J et al (2001) Specific binding of proinsulin C-peptide to detergent-solubilised human skin fibroblasts. Biochem Biophys Res Commun 280:423–427PubMedCrossRef
24.
Zurück zum Zitat Henriksson M, Shafqat J, Liepinsh E et al (2000) Unordered structure of proinsulin C-peptide in aqueous solution and in the presence of lipid vesicles. Cell Mol Life Sci 57:337–342PubMedCrossRef Henriksson M, Shafqat J, Liepinsh E et al (2000) Unordered structure of proinsulin C-peptide in aqueous solution and in the presence of lipid vesicles. Cell Mol Life Sci 57:337–342PubMedCrossRef
25.
Zurück zum Zitat Zhong Z, Kotova O, Davidescu A et al (2004) C-peptide stimulates Na+,K+-ATPase via activation of ERK1/2 MAP kinases in human renal tubular cells. Cell Mol Life Sci 61:2782–2790PubMedCrossRef Zhong Z, Kotova O, Davidescu A et al (2004) C-peptide stimulates Na+,K+-ATPase via activation of ERK1/2 MAP kinases in human renal tubular cells. Cell Mol Life Sci 61:2782–2790PubMedCrossRef
26.
Zurück zum Zitat Zhong Z, Davidescu A, Ehrén I et al (2005) C-peptide stimulates ERK1/2 and JNK MAP-kinases via activation of PKC in human renal tubular cells. Diabetologia 48:187–197PubMedCrossRef Zhong Z, Davidescu A, Ehrén I et al (2005) C-peptide stimulates ERK1/2 and JNK MAP-kinases via activation of PKC in human renal tubular cells. Diabetologia 48:187–197PubMedCrossRef
27.
Zurück zum Zitat Shafqat J, Juntti-Berggren L, Zhong Z et al (2002) Proinsulin C-peptide and its analogues induce intracellular Ca2+ increases in human renal tubular cells. Cell Mol Life Sci 59:1185–1189PubMedCrossRef Shafqat J, Juntti-Berggren L, Zhong Z et al (2002) Proinsulin C-peptide and its analogues induce intracellular Ca2+ increases in human renal tubular cells. Cell Mol Life Sci 59:1185–1189PubMedCrossRef
28.
Zurück zum Zitat Al-Rasheed N, Meakin F, Royal E et al (2004) Potent activation of multiple signalling pathways by C-peptide in oppossum kidney proximal tubular cells. Diabetologia 47:987–997PubMedCrossRef Al-Rasheed N, Meakin F, Royal E et al (2004) Potent activation of multiple signalling pathways by C-peptide in oppossum kidney proximal tubular cells. Diabetologia 47:987–997PubMedCrossRef
29.
Zurück zum Zitat Al-Rasheed N, Willars G, Brunskill N (2006) C-peptide signals via Gαi to protect against TNF-α-mediated apoptosis of opossum kidney proximal tubular cells. J Am Soc Nephrol 17:986–995PubMedCrossRef Al-Rasheed N, Willars G, Brunskill N (2006) C-peptide signals via Gαi to protect against TNF-α-mediated apoptosis of opossum kidney proximal tubular cells. J Am Soc Nephrol 17:986–995PubMedCrossRef
30.
Zurück zum Zitat Wallerath T, Kunt T, Forst T et al (2003) Stimulation of endothelial nitric oxide synthase by proinsulin C-peptide. Nitric Oxide 9:95–102PubMedCrossRef Wallerath T, Kunt T, Forst T et al (2003) Stimulation of endothelial nitric oxide synthase by proinsulin C-peptide. Nitric Oxide 9:95–102PubMedCrossRef
31.
Zurück zum Zitat Tsimaratos M, Roger F, Chabardès D et al (2003) C-peptide stimulates Na,K-ATPase activity via PKC alpha in rat medullary thick ascending limb. Diabetologia 46:124–131PubMed Tsimaratos M, Roger F, Chabardès D et al (2003) C-peptide stimulates Na,K-ATPase activity via PKC alpha in rat medullary thick ascending limb. Diabetologia 46:124–131PubMed
32.
Zurück zum Zitat Grunberger G, Qiang X, Li Z et al (2001) Molecular basis for the insulinomimetic effects of C-peptide. Diabetologia 44:1247–1257PubMedCrossRef Grunberger G, Qiang X, Li Z et al (2001) Molecular basis for the insulinomimetic effects of C-peptide. Diabetologia 44:1247–1257PubMedCrossRef
33.
Zurück zum Zitat Kitamura T, Kimura K, Makondo K et al (2003) Proinsulin C-peptide increases nitric oxide production by enhancing mitogen-activated protein-kinase-dependent transcription of endothelial nitric oxide synthase in aortic endothelial cells of Wistar rats. Diabetologia 46:1698–1705PubMedCrossRef Kitamura T, Kimura K, Makondo K et al (2003) Proinsulin C-peptide increases nitric oxide production by enhancing mitogen-activated protein-kinase-dependent transcription of endothelial nitric oxide synthase in aortic endothelial cells of Wistar rats. Diabetologia 46:1698–1705PubMedCrossRef
34.
Zurück zum Zitat Scalia R, Coyle K, Levine B, Booth G, Lefer A (2000) C-peptide inhibits leukocyte–endothelium interaction in the microcirculation during endothelial dysfunction. FASEB J 14:2357–2364PubMedCrossRef Scalia R, Coyle K, Levine B, Booth G, Lefer A (2000) C-peptide inhibits leukocyte–endothelium interaction in the microcirculation during endothelial dysfunction. FASEB J 14:2357–2364PubMedCrossRef
35.
Zurück zum Zitat Joshua I, Zhang Q, Falcone J, Bratcher A, Rodriguez W, Tyagi S (2005) Mechanisms of endothelial dysfunction with development of type 1 diabetes mellitus: role of insulin and C-peptide. J Cell Biochem 96:1149–1156PubMedCrossRef Joshua I, Zhang Q, Falcone J, Bratcher A, Rodriguez W, Tyagi S (2005) Mechanisms of endothelial dysfunction with development of type 1 diabetes mellitus: role of insulin and C-peptide. J Cell Biochem 96:1149–1156PubMedCrossRef
36.
Zurück zum Zitat Chibalin A, Zhong Z, Kotova O, Ehrén I, Ekberg K, Wahren J (2006) Physiological concentrations of C-peptide increase Na,K-ATPase expression via PKC- and MAP kinase dependent activation of transcription factor ZEB in human renal tubular cells. Diabetologia 49(Suppl 1):A348 Chibalin A, Zhong Z, Kotova O, Ehrén I, Ekberg K, Wahren J (2006) Physiological concentrations of C-peptide increase Na,K-ATPase expression via PKC- and MAP kinase dependent activation of transcription factor ZEB in human renal tubular cells. Diabetologia 49(Suppl 1):A348
37.
Zurück zum Zitat Ido Y, Vindigni A, Chang K et al (1997) Prevention of vascular and neural dysfunction in diabetic rats by C-peptide. Science 277:563–566PubMedCrossRef Ido Y, Vindigni A, Chang K et al (1997) Prevention of vascular and neural dysfunction in diabetic rats by C-peptide. Science 277:563–566PubMedCrossRef
38.
Zurück zum Zitat Forst T, Dufayet De La Tour D, Kunt T et al (2000) Effects of proinsulin C-peptide on nitric oxide, microvascular blood flow and erythrocyte Na+,K+ATPase activity in diabetes mellitus type 1. Clin Sci (Lond) 98:283–290CrossRef Forst T, Dufayet De La Tour D, Kunt T et al (2000) Effects of proinsulin C-peptide on nitric oxide, microvascular blood flow and erythrocyte Na+,K+ATPase activity in diabetes mellitus type 1. Clin Sci (Lond) 98:283–290CrossRef
39.
Zurück zum Zitat Kunt T, Schneider S, Pfützner A et al (1999) The effect of human proinsulin C-peptide on erythrocyte deformability in patients with type 1 diabetes mellitus. Diabetologia 42:465–471PubMedCrossRef Kunt T, Schneider S, Pfützner A et al (1999) The effect of human proinsulin C-peptide on erythrocyte deformability in patients with type 1 diabetes mellitus. Diabetologia 42:465–471PubMedCrossRef
40.
Zurück zum Zitat Li Z, Zhang W, Sima A (2003) C-peptide enhances insulin-mediated cell growth and protection against high glucose-induced apoptosis in SH-SY5Y cells. Diabetes/Metab Res Rev 19:375–385CrossRef Li Z, Zhang W, Sima A (2003) C-peptide enhances insulin-mediated cell growth and protection against high glucose-induced apoptosis in SH-SY5Y cells. Diabetes/Metab Res Rev 19:375–385CrossRef
41.
Zurück zum Zitat Shafqat J, Melles E, Sigmundson K et al (2006) Proinsulin C-peptide elicits disaggregation of insulin resulting in enhanced physiological insulin effects. Cell Mol Life Sci 63:1805–1811PubMedCrossRef Shafqat J, Melles E, Sigmundson K et al (2006) Proinsulin C-peptide elicits disaggregation of insulin resulting in enhanced physiological insulin effects. Cell Mol Life Sci 63:1805–1811PubMedCrossRef
42.
Zurück zum Zitat Henriksson M, Nordling E, Melles E et al (2005) Separate functional features of proinsulin C-peptide. Cell Mol Life Sci 62:1772–1778PubMedCrossRef Henriksson M, Nordling E, Melles E et al (2005) Separate functional features of proinsulin C-peptide. Cell Mol Life Sci 62:1772–1778PubMedCrossRef
43.
Zurück zum Zitat DCCT Group (1995) Effect of intensive diabetes treatment on nerve conduction in the diabetes control and complications trial. Ann Neurol 38:869–880CrossRef DCCT Group (1995) Effect of intensive diabetes treatment on nerve conduction in the diabetes control and complications trial. Ann Neurol 38:869–880CrossRef
44.
Zurück zum Zitat Sima AA, Nathaniel V, Bril V, McEwen T, Green D (1988) Histopathological heterogeneity of neuropathy in insulin-dependent and non-insulin-dependent diabetes, and demonstration of axo-glial dysjunction in human diabetic neuropathy. J Clin Invest 81:349–364PubMedCrossRef Sima AA, Nathaniel V, Bril V, McEwen T, Green D (1988) Histopathological heterogeneity of neuropathy in insulin-dependent and non-insulin-dependent diabetes, and demonstration of axo-glial dysjunction in human diabetic neuropathy. J Clin Invest 81:349–364PubMedCrossRef
45.
Zurück zum Zitat Sima AA (2004) Diabetic neuropathy in type 1 and 2 diabetes and the effect of C-peptide. J Neurol Sci 220:133–136PubMedCrossRef Sima AA (2004) Diabetic neuropathy in type 1 and 2 diabetes and the effect of C-peptide. J Neurol Sci 220:133–136PubMedCrossRef
46.
Zurück zum Zitat Sima A, Zhang W, Li Z, Murakawa Y, Pierson C (2004) Molecular alterations underlie nodal and paranodal degeneration in type 1 diabetic neuropathy and are prevented by C-peptide. Diabetes 53:1556–1563PubMed Sima A, Zhang W, Li Z, Murakawa Y, Pierson C (2004) Molecular alterations underlie nodal and paranodal degeneration in type 1 diabetic neuropathy and are prevented by C-peptide. Diabetes 53:1556–1563PubMed
Metadaten
Titel
C-peptide is a bioactive peptide
verfasst von
J. Wahren
K. Ekberg
H. Jörnvall
Publikationsdatum
01.03.2007
Verlag
Springer-Verlag
Erschienen in
Diabetologia / Ausgabe 3/2007
Print ISSN: 0012-186X
Elektronische ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-006-0559-y

Weitere Artikel der Ausgabe 3/2007

Diabetologia 3/2007 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Battle of Experts: Sport vs. Spritze bei Adipositas und Typ-2-Diabetes

11.05.2024 DDG-Jahrestagung 2024 Kongressbericht

Im Battle of Experts traten zwei Experten auf dem Diabeteskongress gegeneinander an: Die eine vertrat die Auffassung „Sport statt Spritze“ bei Adipositas und Typ-2-Diabetes, der andere forderte „Spritze statt Sport!“ Am Ende waren sie sich aber einig: Die Kombination aus beidem erzielt die besten Ergebnisse.

Triglyzeridsenker schützt nicht nur Hochrisikopatienten

10.05.2024 Hypercholesterinämie Nachrichten

Patienten mit Arteriosklerose-bedingten kardiovaskulären Erkrankungen, die trotz Statineinnahme zu hohe Triglyzeridspiegel haben, profitieren von einer Behandlung mit Icosapent-Ethyl, und zwar unabhängig vom individuellen Risikoprofil.

Gibt es eine Wende bei den bioresorbierbaren Gefäßstützen?

In den USA ist erstmals eine bioresorbierbare Gefäßstütze – auch Scaffold genannt – zur Rekanalisation infrapoplitealer Arterien bei schwerer PAVK zugelassen worden. Das markiert einen Wendepunkt in der Geschichte dieser speziellen Gefäßstützen.

Vorsicht, erhöhte Blutungsgefahr nach PCI!

10.05.2024 Koronare Herzerkrankung Nachrichten

Nach PCI besteht ein erhöhtes Blutungsrisiko, wenn die Behandelten eine verminderte linksventrikuläre Ejektionsfraktion aufweisen. Das Risiko ist umso höher, je stärker die Pumpfunktion eingeschränkt ist.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.