Skip to main content
Erschienen in: BMC Infectious Diseases 1/2022

Open Access 01.12.2022 | Case report

Case report of Salmonella derby septicemia complicated with co-occurrence of disseminated intravascular coagulation and thrombotic microangiopathy

verfasst von: Yingxin Lin, Lei Huang, Yunliang Tu, Bin Huang, Sheng Zhang, Yingqun Chen, Weijia Li

Erschienen in: BMC Infectious Diseases | Ausgabe 1/2022

Abstract

Background

Both disseminated intravascular coagulation and thrombotic microangiopathy are complications of sepsis as Salmonella septicemia, respectively. They are related and have similar clinical characteristics as thrombopenia and organ dysfunctions. They rarely co-occur in some specific cases, which requires a clear distinction.

Case presentation

A 22-year-old woman had just undergone intracranial surgery and suffered from Salmonella derby septicemia with multiorgan involvement in the hospital. Laboratory workup demonstrated coagulation disorder, hemolytic anemia, thrombocytopenia, and acute kidney injury, leading to the co-occurrence of disseminated intravascular coagulation and secondary thrombotic microangiopathy. She received antibiotics, plasma exchange therapy, dialysis, mechanical ventilation, fluids, and vasopressors and gained full recovery without complications.

Conclusion

Disseminated intravascular coagulation and secondary thrombotic microangiopathy can co-occur in Salmonella derby septicemia. They should be treated cautiously in diagnosis and differential diagnosis. Thrombotic microangiopathy should not be missed just because of the diagnosis of disseminated intravascular coagulation. Proper and timely identification of thrombotic microangiopathy with a diagnostic algorithm is essential for appropriate treatment and better outcomes.
Hinweise

Supplementary Information

The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s12879-022-07913-2.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
DIC
Disseminated intravascular coagulation
TMA
Thrombotic microangiopathy
FRMs
Fibrin-related markers
ICU
Intensive care unit
MAHA
Microangiopathic hemolytic anemia
STEC-HUS
Shiga toxin-associated hemolytic uremic syndrome
aHUS
Atypical hemolytic uremic syndrome
TTP
Thrombotic thrombocytopenic purpura
ADAMTS13
A disintegrin-like and metalloprotease with thrombospondin type 1 motifs 13
AKI
Acute kidney injury
FDPs
Fibrinogen and fibrin degradation products
LDH
Lactate dehydrogenase
iNTS
Invasive non-typhoidal salmonella infections
vWF
von Willebrand factor

Background

Both thrombotic microangiopathy (TMA) and disseminated intravascular coagulation (DIC) are acute life-threatening conditions. They share similar clinical presentations as a bleeding tendency, thrombocytopenia, and organ failure, which makes it challenging to distinguish one from the other [1].
DIC is typically featured by the simultaneous occurrence of widespread vascular clot deposition, compromising blood supply to various organs and contributing to organ failure [26]. The characteristic of DIC is systemic activation of the coagulation system, followed by consumption of platelets and clotting factors and secondary fibrinolysis arising from both inflammatory and non-inflammatory causes [7]. The generation of fibrin-related markers (FRMs) in DIC reflects microvascular changes [1]. Though there is no gold standard and no specific biomarker for diagnosing DIC, a reliable diagnosis of DIC can be made through simple scoring algorithms based on readily available routine hemostatic parameters [6]. About 35% of cases of severe sepsis with Gram-negative and Gram-positive microorganisms may be complicated by DIC [6, 810].
TMA is not as common as DIC. According to the experts’ experience, physicians encounter an average of three cases of TMA per year in the intensive care unit (ICU) [11]. TMA is a pathological term describing small vessel (arterioles and capillaries) injury and microvascular thrombosis. It is defined by microangiopathic hemolytic anemia (MAHA), thrombocytopenia, and organ failure of the kidney, central nervous system, and other organs [1, 12, 13]. It includes Shiga toxin-associated hemolytic uremic syndrome (STEC-HUS), atypical hemolytic uremic syndrome (aHUS), and thrombotic thrombocytopenic purpura (TTP), as well as secondary TMA with a coexisting diseases/condition (e.g., infection, malignancy, autoimmune disease, pregnancy, transplantation, or drug) [11, 14, 15]. Core processes of TMA is the remarkable activation, aggregation, and consumption of platelet originating from widespread inflammation and vascular endothelial cell injuries [11, 14, 15].
Prompt identification and accurate etiological diagnosis are crucial for early therapeutic approaches to minimize organ damage and improve patient survival. For differential diagnosis, the elevation of FRMs is required in DIC [15], deficiency of A disintegrin-like and metalloprotease with thrombospondin type 1 motifs 13(ADAMTS13) activity (< 10%) is required in TTP, Shiga toxin is required in STEC-HUS, abnormalities of the complement system are necessary for aHUS [10, 13, 14]. Several diagnostic algorithms that aid rapid differential diagnosis have been published [1619]. Only a few have been tailored to intensivists [11, 20], and none have mentioned the co-occurrence of DIC and TMA.
The co-occurrence of DIC and TMA in the sepsis population is extremely rare and should raise our attention. Herein we first report a Salmonella derby septicemia complicated with DIC and secondary TMA in a 22-year-old woman. Comprehensive management with antibiotics, plasma exchange, and supportive therapies resulted in good outcomes without chronic sequelae.

Case presentation

A 22-year-old female patient underwent craniopharyngioma surgery in our hospital. She developed panhypopituitarism postoperatively, supplemented with desmopressin, hydrocortisone, and L-thyroxine. She was otherwise healthy, and her familial medical histories were negative for renal and thrombotic diseases.
On the 20th postoperative day, she developed a fever(38.2℃), vomiting, and non-bloody diarrhea with exposure to undercook seafood in the neurosurgical ward. She was transferred to ICU for respiratory distress the next day.
On the 21st postoperative day, her condition deteriorated. She presented tachycardia (145/min), hypotension (80/65 mmHg), tachypnea (40/min) on a high-flow nasal cannula, and anuric acute kidney injury (AKI). Physical examination revealed non-palpable skin petechiae, subcutaneous hematoma in the right inguinal area, and diffuse bilateral lung crackles.
Laboratory test results in ICU were as follows (Table 1). Her hematology revealed anemia (68 g/L) and thrombocytopenia (6 × 109/L). Coagulation suggested prolonged activated partial thromboplastin time (50.2 s, reference 28.0–43.0 s) and prothrombin time (21.0 s, reference 11.0–15.0 s), elevated fibrinogen and fibrin degradation products (FDPs) (70.84 mg/L, reference 0–5.00 mg/L). Urinalysis showed proteinuria. Urinary sediment contained 3–5 white blood cells and > 60 red blood cells per high-power field. Procalcitonin was 96.33 ng/mL. The renal function test showed increased urea nitrogen (10.9 mmol/L) and serum creatinine (161 umol/L). Chest computed tomography revealed bilateral pulmonary filtrations and pleural effusions. Cardiac echography revealed moderate tricuspid regurgitation with estimated pulmonary systolic pressure of 43 mmHg.
Table 1
Laboratory parameters
Variables
On presentation of DIC
On presentation of TMA
Reference range
WBC (×109/L)
10.60
10.22
3.5–9.5
Hb(g/L)
68
60
115–150
PLT(×109/L)
6
5
125–350
RET (%)
2.42
0.5–2.00
Schistocytes (%)
5
 
LDH (IU/L)
2794
120–246
ALT(IU/L)
28
107
9–66
Indirect bilirubin(umol/L)
20.9
29.6
3.1–23
Creatinine (umol/L)
116
155*
42–96
BUN (umol/L)
8.87
12.11*
2.5–7.1
PT(s)
21.0
14.6
11.00–15.00
PT–INR
1.82
1.09
0.80–1.20
APTT (s)
50.20
35.5
28.0–43.0
FDPs (g/L)
70.84
0–5.00
Fibrinogen (g/L)
2.54
5.20
2.00–4.00
PCT (ng/mL)
> 100
> 100
< 0.05
WBC white blood cell, Hb hemoglobin, PLT platelet, RET reticulocyte count, LDH lactate dehydrogenase, ALT alanine aminotransferase, BUN blood urea nitrogen, PT prothrombin time, s second, PT-INR prothrombin time-international normalized ratio, APTT activated partial thromboplastin time, FDP fibrinogen and fibrin degradation products, PCT procalcitonin
*The patient was on continuous veno-venous hemodialysis
Her blood pressure coagulation disorder returned to normal on the 23rd postoperative day. She was still anuric. She was anemic despite transfusions of 10.5 U packed red blood cells in 3 days. Her hemoglobin was 60 g/L. Her platelet count was 21 × 109/L. Lactate dehydrogenase (LDH) was 2794 IU/L. The reticulocyte count was 2.42%; The percentage of schistocytes was 5%. All the above revealed Coombs’ negative microangiopathic hemolytic anemia with thrombocytopenia, indicating TMA.
The results of the etiological workup were as follows (Table 2; Additional file 1: Table S1). Complement factors (C3, C4, CH50), immunoglobulins, autoimmune, anti-phospholipid, and vasculitis antibodies all tested normal, except for a mild decrease of immunoglobulin G (6.68 g/L, reference 8.60–17.40 g/L). Further hematological tests returned negative, including CD59 of red blood cells and white blood cells, anti-platelet antibodies, and levels of ferritin, folic acid, and vitamin B12. Salmonella derby was isolated from blood cultures, while Escherichia coli and Enterococcus faecalis were isolated from urine cultures. Neither O-157 Escherichia coli nor Salmonella was isolated from stool and urine cultures. Mildly reduced ADAMTS13 activity was reported (46%; reference 70–120%). Complement Factor H was 517.4 ug/ml (reference 247.0–1010.8 ug/ml). Factor H autoantibody and inhibitor of ADAMTS13 were both negative.
Table 2
Laboratory workup of TMA etiology
Variables
Result
Reference range
C3 (g/L)
0.83
0.70–1.40
C4 (g/L)
0.11
0.10–0.40
CH50(U/mL)
30.3
23.0–46.0
ADAMTS13 activity–before plasma exchange (%)
46
70–120
ADAMTS13 activity–after plasma exchange (%)
86
70–120
ADAMTS13 inhibitor (BU)
0
0–0.6
Complement factor H antibody
Negative
Negative
Complement factor H (ug/ml)
517.4
247.0–1010.8
CH50 50% hemolytic unit of complement, ADAMTS13 Plasma A disintegrin-like and metalloprotease with thrombospondin type 1 motifs 13
Her overt DIC score was 6, and her sepsis-induced coagulopathy score was 6. A diagnosis of septic shock due to Salmonella derby, with complications of DIC and TMA, was established. The Antibiotic was adjusted from ceftriaxone to meropenem on the arrival day to ICU. She received fluid resuscitation, vasopressor, mechanical ventilation, dialysis, and hydrocortisone for septic shock (200–300 mg/d increase from 100 mg/d). She received transfusions of 10.5U packed red blood cells, 800 ml fresh frozen plasma, and four packs of platelets from the 21st to the 23rd postoperative day. On the 24th postoperative day, plasma exchange therapy (fresh frozen plasma 2–2.4 L/d) started immediately. She underwent seven consecutive plasma exchange therapies in total (Fig. 1).
She made a rather good recovery, fortunately. She was extubated on the 31st postoperative day. As she regained her platelet count of 63 × 109/L on the 32nd postoperative day, plasma exchange therapy ceased. Continuous veno-venous hemodialysis stopped the next day as she was able to urinate 868 ml/day. Her plasma ADAMTS13 activity raised to 86% (Table 2). During the whole course of the illness, her neurological status stayed alert. She was discharged from ICU on the 38th postoperative day with renal dysfunction (urea nitrogen, 24.07 mmol/L; creatinine, 344 umol/L).
She was discharged from the hospital with normal renal function (urea nitrogen, 7.17 mmol/L; creatinine, 73 umol/L) on the 68th postoperative day.

Discussion and conclusions

Salmonella derby was one serovar out of over 2500 recognized serovars of Salmonella causing invasive non-typhoidal salmonella infections(iNTS), presenting as septicemia with and without a secondary extra-intestinal focus of infection. iNTS has a lower prevalence yet a greater severity and case fatality than Salmonella enteritidis or typhoid fever [21]. Salmonella derby was one of the top five causes of iNTS in China [22, 23]. At the same time, it rated behind 30 in the United States [24]. Corticosteroid use increases the risk of non-typhoidal salmonella septicemia [25, 26].
Our case highlights one significant finding: an uncommon secondary TMA in the context of Salmonella septicemia-induced DIC. It is the first report of the co-occurrence of DIC and TMA in Salmonella septicemia.
Most cases of Salmonella septicemia have been diagnosed with DIC based on the overt DIC criteria [27]. Our patient fulfilled both overt DIC (score 6) and sepsis-induced coagulopathy criteria (score 6) for diagnosis of DIC [27, 28]. She manifested with cutaneous and mucosal bleeding and subcutaneous hematoma, abnormal coagulation, thrombocytopenia, elevated FRMs, and multiorgan dysfunction. However, later during her resolution of sepsis, the elevation of indirect bilirubin, and persistent severe anemia, which was not consistent with the severity of bleeding, indicated hemolytic anemia. The increased LDH and reticulocyte percentage, with peripheral schistocytes, demonstrated MAHA. Measurement of haptoglobin is not available in our hospital. MAHA also presents in DIC, but TMA is a more appropriate diagnosis when atypical MAHA appears. ADAMTS13 activity (before initiation of plasma exchange therapy), microbiological testing, and complement factor testing helped us rule out TTP, STEC-HUS, and aHUS. Our patient was diagnosed with an infection-associated TMA. Thereby co-occurrence of DIC and TMA complicated septicemia had been finally established. Salmonella septicemia triggered overt DIC and TMA simultaneously and incidentally from clues in the timeline of coagulation and hemolysis.
DIC and TMA occasionally co-occurred in previous literature [1, 29]. Most cases were patients with sepsis as Entero-hemorrhagic Escherichia coli, Proteus mirabilis, Group A Streptococcus, and Capnocytophaga canimorsus [1, 3037]. Other cases were patients with bone marrow metastasis from gastric cancer and liver failure [1, 38]. From the Oklahoma Thrombotic Thrombocytopenic Purpura-Hemolytic Uremic Syndrome registry, 32.3% (10/31) of patients with TTP manifested coagulation disorders, indicating DIC development [39]. Up to 14% of patients in one STEC-HUS cohort experienced DIC during the disease [40]. Multicentric studies are needed to determine the actual risk of co-occurrence of DIC and TMA.
It remains unclear whether these were the co-morbid state of DIC and TMA or TMA progression mediated by coagulopathy due to DIC [15] or, in fact, misdiagnosed cases. These findings propose that TMA should not be overlooked in patients with DIC. Signs of MAHA and thrombocytopenia would be a critical clue for TMA diagnosis. In suspicious TMA cases in the context of DIC, further investigations of Shiga-toxins, complements, ADAMTS13 activity, and inhibitors are recommended [11]. Renal biopsy, if feasible, also played a vital part in TMA diagnosis. Detection of microvascular thrombosis, especially platelet thrombosis on biopsy, usually indicates TMA. Fibrinolysis may dissolve micro-thrombosis in patients with DIC [1]. As classic pathological entities in TMA and DIC have been identified, renal biopsy contributes to better differentiation [15]. Nevertheless, our patient had rejected renal biopsy.
Regarding treatment, the keystone in managing DIC and TMA is the adequate treatment of the etiology. In the present case, it would be the antibiotics targeting Salmonella septicemia.
In DIC, platelet transfusion is advised in patients with bleeding tendencies due to thrombocytopenia [41, 42]. Anti-coagulation or anti-fibrinolytic therapy is indicated according to DIC’s hypercoagulative or hyperfibrinolytic state [41, 42]. Antithrombin concentrate and recombinant thrombomodulin for DIC are frequently used in Japan [43, 44].On the contrary, platelet transfusion is contraindicated in TMA [1]. In our case, recognition of TMA prevented the patient from deterioration as we stopped further transfusion of platelet, which might be the reason for persistent MAHA and thrombocytopenia.
Different therapeutic intervention according to specific etiology is advised. Plasma exchange therapy is recommended in TTP, eculizumab is useful for aHUS, and rituximab is effective for acquired TTP [4547]. Plasma exchange therapy is necessary to start empirically in adult patients with TMA of unclear etiology to avoid delaying TTP treatment [11, 13, 48, 49]. Plasma exchange therapy in TMA is considered helpful in replenishing ADAMTS13, eliminating antibodies to ADAMTS13, replacing normal-sized von Willebrand factor (vWF), and eliminating ultra vWF multimers and excess cytokines. Plasma exchange therapy also had a role in sepsis or septic shock with DIC, TMA, and multiple organ dysfunction [5053]. Plasma exchange therapy also benefited septic patients with decreased ADAMTS13 activity [54]. The possible underlying mechanism of plasma exchange therapy was via repairing endothelial function in sepsis and DIC. Evidence for therapeutic interventions beneficial in sepsis complicated with DIC and TMA is lacking. Therapeutic interventions were adopted empirically and varied from case to case in previous reports. A specific treatment according to the etiology of TMA could be a reasonable strategy for a better outcome.
However, the relationship between ADAMTS13 activity and severity, organ failure and outcome in sepsis, and sepsis-associated DIC remained controversial [37, 5558]. One hypothesis is that severe endothelial injury in sepsis-associated TMA leads to the release of a massive number of vWF multimers and the consumption of ADAMTS13, contributing to a mild decrease in ADAMTS13 activity [59]. Another hypothesis is that damage to endothelium and activation of the complement system in systemic inflammation in sepsis and DIC followed by the formation of neutrophil extracellular traps, which affects the change of ADAMTS13 structure and reduces the activity of ADAMTS13 [5961]. Both endothelial injuries and neutrophil extracellular traps might contribute to the pathogenesis of the co-occurrence of TMA and DIC.
In conclusion, constant vigilance is necessary to avoid missing TMA in patients with sepsis-associated DIC. DIC itself should not be an exclusion for TMA diagnosis. An atypical clinical course for sepsis-associated DIC with atypical MAHA and thrombocytopenia often implies the clue for TMA. A throughout workup, including microbiological testing, ADAMTS13 activity, and complement factor testing, is necessary for the diagnosis of TMA etiologies. Proper and timely recognition of TMA is vital for appropriate decisions regarding the use of plasma exchange therapy and restriction of platelet transfusion in patients with co-occurrence of DIC and TMA.

Acknowledgements

The authors would like to acknowledge the patient for her kind participation and permission to use the data. The authors would like to acknowledge all the Department of Intensive Care staff for their collaboration. The authors would like to thank Huilin Yang for his microbiological identification and Zibo Xiong for his participation.

Declarations

Not applicable.
Written informed consent was obtained from the patients involved to publish this case report. On request, a copy of the written consent is available for review by the Editor-in-Chief of this journal.

Competing interests

The authors declare that they have no competing interests.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Wada H, Matsumoto T, Suzuki K, Imai H, Katayama N, Iba T, et al. Differences and similarities between disseminated intravascular coagulation and thrombotic microangiopathy. Thromb J. 2018;16:14.CrossRef Wada H, Matsumoto T, Suzuki K, Imai H, Katayama N, Iba T, et al. Differences and similarities between disseminated intravascular coagulation and thrombotic microangiopathy. Thromb J. 2018;16:14.CrossRef
2.
Zurück zum Zitat Gando S, Levi M, Toh CH. Disseminated intravascular coagulation. Nat Rev Dis Primers. 2016;2:16037.CrossRef Gando S, Levi M, Toh CH. Disseminated intravascular coagulation. Nat Rev Dis Primers. 2016;2:16037.CrossRef
3.
Zurück zum Zitat Levi M. Disseminated intravascular coagulation. Crit Care Med. 2007;35(9):2191–5.CrossRef Levi M. Disseminated intravascular coagulation. Crit Care Med. 2007;35(9):2191–5.CrossRef
4.
Zurück zum Zitat Schmaier AH. Disseminated intravascular coagulation. N Engl J Med. 1999;341(25):1937–8.CrossRef Schmaier AH. Disseminated intravascular coagulation. N Engl J Med. 1999;341(25):1937–8.CrossRef
5.
Zurück zum Zitat Boral BM, Williams DJ, Boral LI. Disseminated intravascular coagulation. Am J Clin Pathol. 2016;146(6):670–80.CrossRef Boral BM, Williams DJ, Boral LI. Disseminated intravascular coagulation. Am J Clin Pathol. 2016;146(6):670–80.CrossRef
6.
Zurück zum Zitat Levi M, Scully M. How I treat disseminated intravascular coagulation. Blood. 2018;131(8):845–54.CrossRef Levi M, Scully M. How I treat disseminated intravascular coagulation. Blood. 2018;131(8):845–54.CrossRef
7.
Zurück zum Zitat Popescu NI, Lupu C, Lupu F. Disseminated intravascular coagulation and its immune mechanisms. Blood. 2022;139(13):1973–86.CrossRef Popescu NI, Lupu C, Lupu F. Disseminated intravascular coagulation and its immune mechanisms. Blood. 2022;139(13):1973–86.CrossRef
8.
Zurück zum Zitat Levi M, van der Poll T. Coagulation and sepsis. Thromb Res. 2017;149:38–44.CrossRef Levi M, van der Poll T. Coagulation and sepsis. Thromb Res. 2017;149:38–44.CrossRef
9.
Zurück zum Zitat Kinasewitz GT, Yan SB, Basson B, Comp P, Russell JA, Cariou A, et al. Universal changes in biomarkers of coagulation and inflammation occur in patients with severe sepsis, regardless of causative micro-organism [ISRCTN74215569]. Crit Care. 2004;8(2):R82–90.CrossRef Kinasewitz GT, Yan SB, Basson B, Comp P, Russell JA, Cariou A, et al. Universal changes in biomarkers of coagulation and inflammation occur in patients with severe sepsis, regardless of causative micro-organism [ISRCTN74215569]. Crit Care. 2004;8(2):R82–90.CrossRef
10.
Zurück zum Zitat Angus DC, van der Poll T. Severe sepsis and septic shock. N Engl J Med. 2013;369(9):840–51.CrossRef Angus DC, van der Poll T. Severe sepsis and septic shock. N Engl J Med. 2013;369(9):840–51.CrossRef
11.
Zurück zum Zitat Azoulay E, Knoebl P, Garnacho-Montero J, Rusinova K, Galstian G, Eggimann P, et al. Expert statements on the Standard of Care in critically ill adult patients with atypical hemolytic uremic syndrome. Chest. 2017;152(2):424–34.CrossRef Azoulay E, Knoebl P, Garnacho-Montero J, Rusinova K, Galstian G, Eggimann P, et al. Expert statements on the Standard of Care in critically ill adult patients with atypical hemolytic uremic syndrome. Chest. 2017;152(2):424–34.CrossRef
12.
Zurück zum Zitat Wada H, Matsumoto T, Yamashita Y. Natural history of thrombotic thrombocytopenic purpura and hemolytic uremic syndrome. Semin Thromb Hemost. 2014;40(8):866–73.CrossRef Wada H, Matsumoto T, Yamashita Y. Natural history of thrombotic thrombocytopenic purpura and hemolytic uremic syndrome. Semin Thromb Hemost. 2014;40(8):866–73.CrossRef
13.
Zurück zum Zitat Matsumoto M, Fujimura Y, Wada H, Kokame K, Miyakawa Y, Ueda Y, et al. Diagnostic and treatment guidelines for thrombotic thrombocytopenic purpura (TTP) 2017 in Japan. Int J Hematol. 2017;106(1):3–15.CrossRef Matsumoto M, Fujimura Y, Wada H, Kokame K, Miyakawa Y, Ueda Y, et al. Diagnostic and treatment guidelines for thrombotic thrombocytopenic purpura (TTP) 2017 in Japan. Int J Hematol. 2017;106(1):3–15.CrossRef
14.
15.
Zurück zum Zitat Scully M, Cataland S, Coppo P, de la Rubia J, Friedman KD, Kremer Hovinga J, et al. Consensus on the standardization of terminology in thrombotic thrombocytopenic purpura and related thrombotic microangiopathies. J Thromb Haemost. 2017;15(2):312–22.CrossRef Scully M, Cataland S, Coppo P, de la Rubia J, Friedman KD, Kremer Hovinga J, et al. Consensus on the standardization of terminology in thrombotic thrombocytopenic purpura and related thrombotic microangiopathies. J Thromb Haemost. 2017;15(2):312–22.CrossRef
16.
Zurück zum Zitat Campistol JM, Arias M, Ariceta G, Blasco M, Espinosa L, Espinosa M, et al. An update for atypical haemolytic uraemic syndrome: diagnosis and treatment. A consensus document. Nefrologia. 2015;35(5):421–47.CrossRef Campistol JM, Arias M, Ariceta G, Blasco M, Espinosa L, Espinosa M, et al. An update for atypical haemolytic uraemic syndrome: diagnosis and treatment. A consensus document. Nefrologia. 2015;35(5):421–47.CrossRef
17.
Zurück zum Zitat Coppo P, Schwarzinger M, Buffet M, Wynckel A, Clabault K, Presne C, et al. Predictive features of severe acquired ADAMTS13 deficiency in idiopathic thrombotic microangiopathies: the french TMA reference center experience. PLoS ONE. 2010;5(4):e10208.CrossRef Coppo P, Schwarzinger M, Buffet M, Wynckel A, Clabault K, Presne C, et al. Predictive features of severe acquired ADAMTS13 deficiency in idiopathic thrombotic microangiopathies: the french TMA reference center experience. PLoS ONE. 2010;5(4):e10208.CrossRef
18.
Zurück zum Zitat Laurence J, Haller H, Mannucci PM, Nangaku M, Praga M, Rodriguez de Cordoba S. Atypical hemolytic uremic syndrome (aHUS): essential aspects of an accurate diagnosis. Clin Adv Hematol Oncol. 2016;14(Suppl 11(11):2–15. Laurence J, Haller H, Mannucci PM, Nangaku M, Praga M, Rodriguez de Cordoba S. Atypical hemolytic uremic syndrome (aHUS): essential aspects of an accurate diagnosis. Clin Adv Hematol Oncol. 2016;14(Suppl 11(11):2–15.
19.
Zurück zum Zitat Bendapudi PK, Hurwitz S, Fry A, Marques MB, Waldo SW, Li A, et al. Derivation and external validation of the PLASMIC score for rapid assessment of adults with thrombotic microangiopathies: a cohort study. Lancet Haematol. 2017;4(4):e157-e64.CrossRef Bendapudi PK, Hurwitz S, Fry A, Marques MB, Waldo SW, Li A, et al. Derivation and external validation of the PLASMIC score for rapid assessment of adults with thrombotic microangiopathies: a cohort study. Lancet Haematol. 2017;4(4):e157-e64.CrossRef
20.
Zurück zum Zitat Vincent JL, Castro P, Hunt BJ, Jorres A, Praga M, Rojas-Suarez J, et al. Thrombocytopenia in the ICU: disseminated intravascular coagulation and thrombotic microangiopathies-what intensivists need to know. Crit Care. 2018;22(1):158.CrossRef Vincent JL, Castro P, Hunt BJ, Jorres A, Praga M, Rojas-Suarez J, et al. Thrombocytopenia in the ICU: disseminated intravascular coagulation and thrombotic microangiopathies-what intensivists need to know. Crit Care. 2018;22(1):158.CrossRef
21.
Zurück zum Zitat Marchello CS, Birkhold M, Crump JA. Vacc-i NTScc. Complications and mortality of non-typhoidal salmonella invasive disease: a global systematic review and meta-analysis. Lancet Infect Dis. 2022;22(5):692–705.CrossRef Marchello CS, Birkhold M, Crump JA. Vacc-i NTScc. Complications and mortality of non-typhoidal salmonella invasive disease: a global systematic review and meta-analysis. Lancet Infect Dis. 2022;22(5):692–705.CrossRef
22.
Zurück zum Zitat Liu J, Bai L, Li W, Han H, Fu P, Ma X, et al. Trends of foodborne diseases in China: lessons from laboratory-based surveillance since 2011. Front Med. 2018;12(1):48–57.CrossRef Liu J, Bai L, Li W, Han H, Fu P, Ma X, et al. Trends of foodborne diseases in China: lessons from laboratory-based surveillance since 2011. Front Med. 2018;12(1):48–57.CrossRef
23.
Zurück zum Zitat Zhan Z, Xu X, Gu Z, Meng J, Wufuer X, Wang M, et al. Molecular epidemiology and antimicrobial resistance of invasive non-typhoidal Salmonella in China, 2007–2016. Infect Drug Resist. 2019;12:2885–97.CrossRef Zhan Z, Xu X, Gu Z, Meng J, Wufuer X, Wang M, et al. Molecular epidemiology and antimicrobial resistance of invasive non-typhoidal Salmonella in China, 2007–2016. Infect Drug Resist. 2019;12:2885–97.CrossRef
24.
Zurück zum Zitat (CDC) CfDCaP. National Salmonella Surveillance Annual Report. 2016. Atlanta: US Department of Health and Human Services, CDC, 2018. (CDC) CfDCaP. National Salmonella Surveillance Annual Report. 2016. Atlanta: US Department of Health and Human Services, CDC, 2018.
25.
Zurück zum Zitat Katz D, Ben-Chetrit E, Sherer SS, Cohen D, Muhsen K. Correlates of non-typhoidal Salmonella bacteraemia: a case-control study. Int J Infect Dis. 2019;81:170–5.CrossRef Katz D, Ben-Chetrit E, Sherer SS, Cohen D, Muhsen K. Correlates of non-typhoidal Salmonella bacteraemia: a case-control study. Int J Infect Dis. 2019;81:170–5.CrossRef
26.
Zurück zum Zitat Fierer J. Invasive non-typhoidal Salmonella (iNTS) infections. Clin Infect Dis. 2022;75(4):732–8.CrossRef Fierer J. Invasive non-typhoidal Salmonella (iNTS) infections. Clin Infect Dis. 2022;75(4):732–8.CrossRef
27.
Zurück zum Zitat Taylor FB Jr, Toh CH, Hoots WK, Wada H, Levi M, Scientific Subcommittee on Disseminated Intravascular Coagulation of the International Society on T, et al. Towards definition, clinical and laboratory criteria, and a scoring system for disseminated intravascular coagulation. Thromb Haemost. 2001;86(5):1327–30.CrossRef Taylor FB Jr, Toh CH, Hoots WK, Wada H, Levi M, Scientific Subcommittee on Disseminated Intravascular Coagulation of the International Society on T, et al. Towards definition, clinical and laboratory criteria, and a scoring system for disseminated intravascular coagulation. Thromb Haemost. 2001;86(5):1327–30.CrossRef
28.
Zurück zum Zitat Iba T, Levy JH, Warkentin TE, Thachil J, van der Poll T, Levi M, et al. Diagnosis and management of sepsis-induced coagulopathy and disseminated intravascular coagulation. J Thromb Haemost. 2019;17(11):1989–94.CrossRef Iba T, Levy JH, Warkentin TE, Thachil J, van der Poll T, Levi M, et al. Diagnosis and management of sepsis-induced coagulopathy and disseminated intravascular coagulation. J Thromb Haemost. 2019;17(11):1989–94.CrossRef
29.
Zurück zum Zitat Schwameis M, Schorgenhofer C, Assinger A, Steiner MM, Jilma B. VWF excess and ADAMTS13 deficiency: a unifying pathomechanism linking inflammation to thrombosis in DIC, malaria, and TTP. Thromb Haemost. 2015;113(4):708–18.CrossRef Schwameis M, Schorgenhofer C, Assinger A, Steiner MM, Jilma B. VWF excess and ADAMTS13 deficiency: a unifying pathomechanism linking inflammation to thrombosis in DIC, malaria, and TTP. Thromb Haemost. 2015;113(4):708–18.CrossRef
30.
Zurück zum Zitat Sakamaki Y, Konishi K, Hayashi K, Hashiguchi A, Hayashi M, Kubota E, et al. Renal thrombotic microangiopathy in a patient with septic disseminated intravascular coagulation. BMC Nephrol. 2013;14:260.CrossRef Sakamaki Y, Konishi K, Hayashi K, Hashiguchi A, Hayashi M, Kubota E, et al. Renal thrombotic microangiopathy in a patient with septic disseminated intravascular coagulation. BMC Nephrol. 2013;14:260.CrossRef
31.
Zurück zum Zitat Tani N, Nakamura K, Sumida K, Suzuki M, Imaoka K, Shimono N. An Immunocompetent Case of Capnocytophaga canimorsus infection complicated by secondary thrombotic microangiopathy and disseminated intravascular coagulation. Intern Med. 2019;58(23):3479–82.CrossRef Tani N, Nakamura K, Sumida K, Suzuki M, Imaoka K, Shimono N. An Immunocompetent Case of Capnocytophaga canimorsus infection complicated by secondary thrombotic microangiopathy and disseminated intravascular coagulation. Intern Med. 2019;58(23):3479–82.CrossRef
32.
Zurück zum Zitat Wang Z, Yu Z, Su J, Cao L, Zhao X, Ruan C. Sepsis-induced disseminated intravascular coagulation with features of thrombotic thrombocytopenic purpura: a fatal fulminant syndrome. Clin Appl Thromb Hemost. 2011;17(3):251–3.CrossRef Wang Z, Yu Z, Su J, Cao L, Zhao X, Ruan C. Sepsis-induced disseminated intravascular coagulation with features of thrombotic thrombocytopenic purpura: a fatal fulminant syndrome. Clin Appl Thromb Hemost. 2011;17(3):251–3.CrossRef
33.
Zurück zum Zitat Abe T, Sasaki A, Ueda T, Miyakawa Y, Ochiai H. Complement-mediated thrombotic microangiopathy secondary to sepsis-induced disseminated intravascular coagulation successfully treated with eculizumab: a case report. Med (Baltim). 2017;96(6):e6056.CrossRef Abe T, Sasaki A, Ueda T, Miyakawa Y, Ochiai H. Complement-mediated thrombotic microangiopathy secondary to sepsis-induced disseminated intravascular coagulation successfully treated with eculizumab: a case report. Med (Baltim). 2017;96(6):e6056.CrossRef
34.
Zurück zum Zitat Badami KG, Srivastava RN, Kumar R, Saraya AK. Disseminated intravascular coagulation in post-dysenteric haemolytic uraemic syndrome. Acta Paediatr Scand. 1987;76(6):919–22.CrossRef Badami KG, Srivastava RN, Kumar R, Saraya AK. Disseminated intravascular coagulation in post-dysenteric haemolytic uraemic syndrome. Acta Paediatr Scand. 1987;76(6):919–22.CrossRef
35.
Zurück zum Zitat Kawasaki Y, Suyama K, Ono A, Oikawa T, Ohara S, Suzuki Y, et al. Efficacy of recombinant human soluble thrombomodulin for childhood hemolytic uremic syndrome. Pediatr Int. 2013;55(5):e139-42.CrossRef Kawasaki Y, Suyama K, Ono A, Oikawa T, Ohara S, Suzuki Y, et al. Efficacy of recombinant human soluble thrombomodulin for childhood hemolytic uremic syndrome. Pediatr Int. 2013;55(5):e139-42.CrossRef
36.
Zurück zum Zitat Matano S, Inamura K, Konishi M, Okumura T, Kawai H, Okamura T, et al. Encephalopathy, disseminated intravascular coagulation, and hemolytic-uremic syndrome after infection with enterohemorrhagic Escherichia coli O111. J Infect Chemother. 2012;18(4):558–64.CrossRef Matano S, Inamura K, Konishi M, Okumura T, Kawai H, Okamura T, et al. Encephalopathy, disseminated intravascular coagulation, and hemolytic-uremic syndrome after infection with enterohemorrhagic Escherichia coli O111. J Infect Chemother. 2012;18(4):558–64.CrossRef
37.
Zurück zum Zitat Ono T, Mimuro J, Madoiwa S, Soejima K, Kashiwakura Y, Ishiwata A, et al. Severe secondary deficiency of von Willebrand factor-cleaving protease (ADAMTS13) in patients with sepsis-induced disseminated intravascular coagulation: its correlation with development of renal failure. Blood. 2006;107(2):528–34.CrossRef Ono T, Mimuro J, Madoiwa S, Soejima K, Kashiwakura Y, Ishiwata A, et al. Severe secondary deficiency of von Willebrand factor-cleaving protease (ADAMTS13) in patients with sepsis-induced disseminated intravascular coagulation: its correlation with development of renal failure. Blood. 2006;107(2):528–34.CrossRef
38.
Zurück zum Zitat Seki Y, Wakaki K. Pathological findings in a case of bone marrow carcinosis due to gastric cancer complicated by disseminated intravascular coagulation and thrombotic microangiopathy. Int J Hematol. 2016;104(4):506–11.CrossRef Seki Y, Wakaki K. Pathological findings in a case of bone marrow carcinosis due to gastric cancer complicated by disseminated intravascular coagulation and thrombotic microangiopathy. Int J Hematol. 2016;104(4):506–11.CrossRef
39.
Zurück zum Zitat Booth KK, Terrell DR, Vesely SK, George JN. Systemic infections mimicking thrombotic thrombocytopenic purpura. Am J Hematol. 2011;86(9):743–51.CrossRef Booth KK, Terrell DR, Vesely SK, George JN. Systemic infections mimicking thrombotic thrombocytopenic purpura. Am J Hematol. 2011;86(9):743–51.CrossRef
40.
Zurück zum Zitat Vashakidze E, Megrelishvili T, Pachkoria E, Tevzadze L, Lashkarashvili M. Enterohemorrhagic E. coli and hemolytic uremic syndrome in Georgia. Georgian Med News. 2010;186:38–41. Vashakidze E, Megrelishvili T, Pachkoria E, Tevzadze L, Lashkarashvili M. Enterohemorrhagic E. coli and hemolytic uremic syndrome in Georgia. Georgian Med News. 2010;186:38–41.
41.
Zurück zum Zitat Wada H, Asakura H, Okamoto K, Iba T, Uchiyama T, Kawasugi K, et al. Expert consensus for the treatment of disseminated intravascular coagulation in Japan. Thromb Res. 2010;125(1):6–11.CrossRef Wada H, Asakura H, Okamoto K, Iba T, Uchiyama T, Kawasugi K, et al. Expert consensus for the treatment of disseminated intravascular coagulation in Japan. Thromb Res. 2010;125(1):6–11.CrossRef
43.
Zurück zum Zitat Hayakawa M, Yamakawa K, Saito S, Uchino S, Kudo D, Iizuka Y, et al. Recombinant human soluble thrombomodulin and mortality in sepsis-induced disseminated intravascular coagulation. A multicentre retrospective study. Thromb Haemost. 2016;115(6):1157–66.CrossRef Hayakawa M, Yamakawa K, Saito S, Uchino S, Kudo D, Iizuka Y, et al. Recombinant human soluble thrombomodulin and mortality in sepsis-induced disseminated intravascular coagulation. A multicentre retrospective study. Thromb Haemost. 2016;115(6):1157–66.CrossRef
44.
Zurück zum Zitat Iba T, Gando S, Saitoh D, Wada H, Di Nisio M, Thachil J. Antithrombin supplementation and risk of bleeding in patients with sepsis-associated disseminated intravascular coagulation. Thromb Res. 2016;145:46–50.CrossRef Iba T, Gando S, Saitoh D, Wada H, Di Nisio M, Thachil J. Antithrombin supplementation and risk of bleeding in patients with sepsis-associated disseminated intravascular coagulation. Thromb Res. 2016;145:46–50.CrossRef
45.
Zurück zum Zitat Rock GA, Shumak KH, Buskard NA, Blanchette VS, Kelton JG, Nair RC, et al. Comparison of plasma exchange with plasma infusion in the treatment of thrombotic thrombocytopenic purpura. Canadian apheresis Study Group. N Engl J Med. 1991;325(6):393–7.CrossRef Rock GA, Shumak KH, Buskard NA, Blanchette VS, Kelton JG, Nair RC, et al. Comparison of plasma exchange with plasma infusion in the treatment of thrombotic thrombocytopenic purpura. Canadian apheresis Study Group. N Engl J Med. 1991;325(6):393–7.CrossRef
46.
Zurück zum Zitat Legendre CM, Licht C, Muus P, Greenbaum LA, Babu S, Bedrosian C, et al. Terminal complement inhibitor eculizumab in atypical hemolytic-uremic syndrome. N Engl J Med. 2013;368(23):2169–81.CrossRef Legendre CM, Licht C, Muus P, Greenbaum LA, Babu S, Bedrosian C, et al. Terminal complement inhibitor eculizumab in atypical hemolytic-uremic syndrome. N Engl J Med. 2013;368(23):2169–81.CrossRef
47.
Zurück zum Zitat George JN, Woodson RD, Kiss JE, Kojouri K, Vesely SK. Rituximab therapy for thrombotic thrombocytopenic purpura: a proposed study of the Transfusion Medicine/Hemostasis clinical trials network with a systematic review of rituximab therapy for immune-mediated disorders. J Clin Apher. 2006;21(1):49–56.CrossRef George JN, Woodson RD, Kiss JE, Kojouri K, Vesely SK. Rituximab therapy for thrombotic thrombocytopenic purpura: a proposed study of the Transfusion Medicine/Hemostasis clinical trials network with a systematic review of rituximab therapy for immune-mediated disorders. J Clin Apher. 2006;21(1):49–56.CrossRef
48.
Zurück zum Zitat Zheng XL, Vesely SK, Cataland SR, Coppo P, Geldziler B, Iorio A, et al. ISTH guidelines for the diagnosis of thrombotic thrombocytopenic purpura. J Thromb Haemost. 2020;18(10):2486–95.CrossRef Zheng XL, Vesely SK, Cataland SR, Coppo P, Geldziler B, Iorio A, et al. ISTH guidelines for the diagnosis of thrombotic thrombocytopenic purpura. J Thromb Haemost. 2020;18(10):2486–95.CrossRef
49.
Zurück zum Zitat Scully M, Hunt BJ, Benjamin S, Liesner R, Rose P, Peyvandi F, et al. Guidelines on the diagnosis and management of thrombotic thrombocytopenic purpura and other thrombotic microangiopathies. Br J Haematol. 2012;158(3):323–35.CrossRef Scully M, Hunt BJ, Benjamin S, Liesner R, Rose P, Peyvandi F, et al. Guidelines on the diagnosis and management of thrombotic thrombocytopenic purpura and other thrombotic microangiopathies. Br J Haematol. 2012;158(3):323–35.CrossRef
50.
Zurück zum Zitat Upadhya SR, Mahabala C, Kamat JG, Jeganathan J, Kumar S, Prabhu MV. Plasmapheresis in Sepsis-induced thrombotic microangiopathy: a Case Series. Indian J Crit Care Med. 2020;24(3):195–9.CrossRef Upadhya SR, Mahabala C, Kamat JG, Jeganathan J, Kumar S, Prabhu MV. Plasmapheresis in Sepsis-induced thrombotic microangiopathy: a Case Series. Indian J Crit Care Med. 2020;24(3):195–9.CrossRef
51.
Zurück zum Zitat Stegmayr BG. Apheresis as therapy for patients with severe sepsis and multiorgan dysfunction syndrome. Ther Apher. 2001;5(2):123–7.CrossRef Stegmayr BG. Apheresis as therapy for patients with severe sepsis and multiorgan dysfunction syndrome. Ther Apher. 2001;5(2):123–7.CrossRef
52.
Zurück zum Zitat Qu L, Kiss JE, Dargo G, Carcillo JA. Outcomes of previously healthy pediatric patients with fulminant sepsis-induced multisystem organ failure receiving therapeutic plasma exchange. J Clin Apher. 2011;26(4):208–13.CrossRef Qu L, Kiss JE, Dargo G, Carcillo JA. Outcomes of previously healthy pediatric patients with fulminant sepsis-induced multisystem organ failure receiving therapeutic plasma exchange. J Clin Apher. 2011;26(4):208–13.CrossRef
53.
Zurück zum Zitat Weng J, Chen M, Fang D, Liu D, Guo R, Yang S. Therapeutic plasma Exchange protects patients with Sepsis-Associated disseminated intravascular coagulation by improving endothelial function. Clin Appl Thromb Hemost. 2021;27:10760296211053313.CrossRef Weng J, Chen M, Fang D, Liu D, Guo R, Yang S. Therapeutic plasma Exchange protects patients with Sepsis-Associated disseminated intravascular coagulation by improving endothelial function. Clin Appl Thromb Hemost. 2021;27:10760296211053313.CrossRef
54.
Zurück zum Zitat Nguyen TC, Han YY, Kiss JE, Hall MW, Hassett AC, Jaffe R, et al. Intensive plasma exchange increases a disintegrin and metalloprotease with thrombospondin motifs-13 activity and reverses organ dysfunction in children with thrombocytopenia-associated multiple organ failure. Crit Care Med. 2008;36(10):2878–87.CrossRef Nguyen TC, Han YY, Kiss JE, Hall MW, Hassett AC, Jaffe R, et al. Intensive plasma exchange increases a disintegrin and metalloprotease with thrombospondin motifs-13 activity and reverses organ dysfunction in children with thrombocytopenia-associated multiple organ failure. Crit Care Med. 2008;36(10):2878–87.CrossRef
55.
Zurück zum Zitat Martin K, Borgel D, Lerolle N, Feys HB, Trinquart L, Vanhoorelbeke K, et al. Decreased ADAMTS-13 (a disintegrin-like and metalloprotease with thrombospondin type 1 repeats) is associated with a poor prognosis in sepsis-induced organ failure. Crit Care Med. 2007;35(10):2375–82.CrossRef Martin K, Borgel D, Lerolle N, Feys HB, Trinquart L, Vanhoorelbeke K, et al. Decreased ADAMTS-13 (a disintegrin-like and metalloprotease with thrombospondin type 1 repeats) is associated with a poor prognosis in sepsis-induced organ failure. Crit Care Med. 2007;35(10):2375–82.CrossRef
56.
Zurück zum Zitat Peigne V, Azoulay E, Coquet I, Mariotte E, Darmon M, Legendre P, et al. The prognostic value of ADAMTS13 (a disintegrin and metalloprotease with thrombospondin type 1 repeats, member 13) deficiency in septic shock patients involves interleukin-6 and is not dependent on disseminated intravascular coagulation. Crit Care. 2013;17(6):R273.CrossRef Peigne V, Azoulay E, Coquet I, Mariotte E, Darmon M, Legendre P, et al. The prognostic value of ADAMTS13 (a disintegrin and metalloprotease with thrombospondin type 1 repeats, member 13) deficiency in septic shock patients involves interleukin-6 and is not dependent on disseminated intravascular coagulation. Crit Care. 2013;17(6):R273.CrossRef
57.
Zurück zum Zitat Kremer Hovinga JA, Zeerleder S, Kessler P, Romani de Wit T, van Mourik JA, Hack CE, et al. ADAMTS-13, von Willebrand factor and related parameters in severe sepsis and septic shock. J Thromb Haemost. 2007;5(11):2284–90.CrossRef Kremer Hovinga JA, Zeerleder S, Kessler P, Romani de Wit T, van Mourik JA, Hack CE, et al. ADAMTS-13, von Willebrand factor and related parameters in severe sepsis and septic shock. J Thromb Haemost. 2007;5(11):2284–90.CrossRef
58.
Zurück zum Zitat Semeraro N, Ammollo CT, Semeraro F, Colucci M. Coagulopathy of acute sepsis. Semin Thromb Hemost. 2015;41(6):650–8.CrossRef Semeraro N, Ammollo CT, Semeraro F, Colucci M. Coagulopathy of acute sepsis. Semin Thromb Hemost. 2015;41(6):650–8.CrossRef
59.
Zurück zum Zitat Makatsariya AD, Slukhanchuk EV, Bitsadze VO, Khizroeva JKH, Tretyakova MV, Tsibizova VI, et al. Thrombotic microangiopathy, DIC-syndrome and COVID-19: link with pregnancy prothrombotic state. J Matern Fetal Neonatal Med. 2022;35(13):2536–44.CrossRef Makatsariya AD, Slukhanchuk EV, Bitsadze VO, Khizroeva JKH, Tretyakova MV, Tsibizova VI, et al. Thrombotic microangiopathy, DIC-syndrome and COVID-19: link with pregnancy prothrombotic state. J Matern Fetal Neonatal Med. 2022;35(13):2536–44.CrossRef
60.
Zurück zum Zitat Chang JC. Sepsis and septic shock: endothelial molecular pathogenesis associated with vascular microthrombotic disease. Thromb J. 2019;17:10.CrossRef Chang JC. Sepsis and septic shock: endothelial molecular pathogenesis associated with vascular microthrombotic disease. Thromb J. 2019;17:10.CrossRef
61.
Zurück zum Zitat Morrell CN, Hilt ZT, Pariser DN, Maurya P. PAD4 and von willebrand factor link inflammation and thrombosis. Circ Res. 2019;125(5):520–2.CrossRef Morrell CN, Hilt ZT, Pariser DN, Maurya P. PAD4 and von willebrand factor link inflammation and thrombosis. Circ Res. 2019;125(5):520–2.CrossRef
Metadaten
Titel
Case report of Salmonella derby septicemia complicated with co-occurrence of disseminated intravascular coagulation and thrombotic microangiopathy
verfasst von
Yingxin Lin
Lei Huang
Yunliang Tu
Bin Huang
Sheng Zhang
Yingqun Chen
Weijia Li
Publikationsdatum
01.12.2022
Verlag
BioMed Central
Erschienen in
BMC Infectious Diseases / Ausgabe 1/2022
Elektronische ISSN: 1471-2334
DOI
https://doi.org/10.1186/s12879-022-07913-2

Weitere Artikel der Ausgabe 1/2022

BMC Infectious Diseases 1/2022 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Echinokokkose medikamentös behandeln oder operieren?

06.05.2024 DCK 2024 Kongressbericht

Die Therapie von Echinokokkosen sollte immer in spezialisierten Zentren erfolgen. Eine symptomlose Echinokokkose kann – egal ob von Hunde- oder Fuchsbandwurm ausgelöst – konservativ erfolgen. Wenn eine Op. nötig ist, kann es sinnvoll sein, vorher Zysten zu leeren und zu desinfizieren. 

Wo hapert es noch bei der Umsetzung der POMGAT-Leitlinie?

03.05.2024 DCK 2024 Kongressbericht

Seit November 2023 gibt es evidenzbasierte Empfehlungen zum perioperativen Management bei gastrointestinalen Tumoren (POMGAT) auf S3-Niveau. Vieles wird schon entsprechend der Empfehlungen durchgeführt. Wo es im Alltag noch hapert, zeigt eine Umfrage in einem Klinikverbund.

Das Risiko für Vorhofflimmern in der Bevölkerung steigt

02.05.2024 Vorhofflimmern Nachrichten

Das Risiko, im Lauf des Lebens an Vorhofflimmern zu erkranken, ist in den vergangenen 20 Jahren gestiegen: Laut dänischen Zahlen wird es drei von zehn Personen treffen. Das hat Folgen weit über die Schlaganfallgefährdung hinaus.

VHF-Ablation nützt wohl nur bei reduzierter Auswurfleistung

02.05.2024 Ablationstherapie Nachrichten

Ob die Katheterablation von Vorhofflimmern bei Patienten mit Herzinsuffizienz die Komplikationsraten senkt, scheint davon abzuhängen, ob die Auswurfleistung erhalten ist oder nicht. Das legen die Ergebnisse einer Metaanalyse nahe.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.