Skip to main content
Erschienen in: BMC Cardiovascular Disorders 1/2022

Open Access 01.12.2022 | Case report

Case series of coronary artery aneurysms after Everolimus eluting stent implantation and comparison with Sirolimus eluting stents

verfasst von: Raghav Sharma, Aditya Vikram Ruia, Tek Singh Mahant

Erschienen in: BMC Cardiovascular Disorders | Ausgabe 1/2022

Abstract

Background

Coronary artery aneurysms after drug eluting stents are rare. We present a case series of type II coronary aneurysms after implantation of Everolimus eluting stents including patients developing giant aneurysms with a toxic course.

Case presentation

Over a span of 3.5 years at our center 2572 patients were implanted Everolimus eluting stents out of which 4 patients developed coronary type II aneurysms an incidence of 0.00156 whereas 5838 patients were implanted Sirolimus eluting 2nd generation stents out of which 2 patients developed similar aneurysms with an incidence of 0.00034. The slight increase in incidence in Everolimus stents does not reach statistical significance (p = 0.054) and is limited by single centre non randomized study. We also propose a hypothesis that the slight increase in the incidence maybe due to allergy to Methacrylate present in Everolimus eluting Xience stent’s primer which is absent in other Sirolimus eluting stents used at our center but that needs to be further investigated. We also found some patients who developed giant aneurysms including Left main aneurysms. In our series operative repair of these patients had better outcomes than covered stent deployment but larger trials maybe needed to confirm the same.

Conclusions

Coronary artery aneurysms after stent implantation are rare but occasionally giant aneurysms are formed with a toxic course. The incidence and morphology of aneurysms after Everolimus and Sirolimus eluting stent deployment do not differ much.
Begleitmaterial
Additional file 1: Video S1. Angiogram of Patient A showing coronary aneurysm.
Additional file 2: Video S2. Angiogram of Patient A showing coronary aneurysm.
Additional file 3: Video S3. Intravascular ultrasound of Patient A showing coronary aneurysm.
Additional file 4: Video S4. Patient B—Coronary angiogram showing giant aneurysm.
Additional file 5: Video S5. Patient B—Coronary angiogram showing giant aneurysm.
Additional file 6: Video S6. Patient C—Coronary angiogram showing small aneurysms.
Additional file 7: Video S7. Patient D—Coronary angiogram showing giant aneurysm involving left main coronary artery.
Hinweise

Supplementary Information

The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s12872-022-02503-1.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
IVUS
Intravascular ultrasound
LVEF
Left ventricle ejection fraction
DES
Drug eluting stent
BMS
Bare-metal stent
RCA
Right coronary artery
LAD
Left anterior descending
PCI
Percutaneous coronary intervention
ISR
In stent restenosis
CAG
Coronary angiogram

Background

Coronary artery aneurysms are rare, found in 0.3 to 4.9% of patients undergoing coronary angiography. While Kawasaki disease is the most common cause of coronary aneurysm in children, atherosclerosis is the cause in > 90% of adults [1]. The incidence of coronary artery aneurysm after drug eluting stent (DES) deployment varies between 0.2–2.3% and is similar to bare-metal stent (BMS) [2]. Cases have been reported to occur after 3 days to 4 years post percutaneous intervention (PCI). Here we present a case series of coronary aneurysms related to Everolimus eluting second generation stents and compare it with Sirolimus eluting second generation stents at our centre.

Case presentation

Initial scheme of treatment at our centre

See Fig. 1.

Case series of aneurysms after Everolimus eluting 2nd generation stents

Case 1—patient A

A 68 year hypertensive male presented with an anterior wall myocardial infarction and was lysed with Streptokinase on Oct 9th, 20. Coronary angiogram (CAG) done (Fig. 2A) showed mid left anterior descending (LAD) artery 100% occluded with thrombus. Subsequently PCI to mid LAD was done using Xience V-2.75 × 28 mm DES (Fig. 2B). The lesion was post dilated with a 3 mm balloon at 15 atm. Subsequently patient presented to us again after 5 months with unstable angina. There was no history of fever during the interim period and total leukocyte count (TLC) on admission was 6600/µL. Echocardiogram (Echo) showed left ventricle ejection fraction (LVEF) of 30%. CAG with intravascular ultrasound (IVUS) was done which showed a large aneurysm in mid LAD (Additional file 1: Video S1, Additional file 2: Video S2, Additional file 3: Video S3) with complete in stent occlusion (Fig. 2C–E). PCI was done with a covered stent 3.5 × 26 mm (Graft master) to ostio-proximal LAD and from proximal to mid LAD with 2.75 × 23 mm Xience V DES (Fig. 2F, G). Subsequently the patient expired after 1.5 months due to diarrhea and sepsis complicating heart failure at an outside hospital.

Case 2—patient B

69 year male with diabetes and hypertension presented with chest pain outside where CAG was done (Fig. 3A) which showed mid LAD 90–95% stenosis, and non-critical lesions in other vessels. Echo showed LVEF 35–40%. Proximal LAD was stented with 2.75 × 33 mm Xience Prime LL deployed at 12 atm (Fig. 3B). Post dilatation was done with 3 × 12 mm NC Traveler balloon at 13 atm. Subsequently the patient presented after 3.5 months with recurrent angina. Echo showed LVEF 35% and TLC was 7900/µL. Repeat CAG showed complete occlusion of LAD stent and three large aneurysms including one giant aneurysm adjacent to the entire length of the stent segment (Fig. 3C, D, Additional file 4: Video S4, Additional file 5: Video S5). So using a covered stent 3.5 × 19 mm (Graft master) the giant aneurysm was approximately safely (Fig. 3E, F) and the patient was scheduled for a staged PCI. Subsequently the patient was lost to follow up and expired after 10 days due to heart failure at an outside hospital.

Case 3—patient C

71 year hypertensive female presented to our hospital with unstable angina. CAG (Fig. 4A) showed 70–80% lesion in mid and distal RCA. PCI to mid to distal RCA was done using 2.5 × 38 mm Xience Prime DES (Fig. 4B). The lesion was post dilated using 2.75 × 12 mm NC balloon. Patient was re admitted after 3 months with unstable angina and TLC of 9700/µL. Re-CAG showed proximal RCA 70–80% lesion. The stented segment had multiple small aneurysms seen (Fig. 4C, Additional file 6: Video S6). Distal end of stent had around 98% ISR noted. The RCA proximal lesion was stented with 2.75 × 33 mm Xience Prime DES deployed at 10 atm (Fig. 4D). The distal RCA lesion including the ISR segment was stented with 2.75 × 23 mm Xience V (DES) deployed at 10 atm (Fig. 4E). Post dilatation was done with 3.5 × 12 mm NC Traveler balloon at 15 atm. The final angiogram showed complete resolution of the aneurysms (Fig. 4F). Patient is currently asymptomatic.

Case 4—patient D

54 year diabetic hypertensive male presented to us with unstable angina. CAG done on Oct 9th, 20 showed proximal LAD 99% plaque (Fig. 5A). PCI to LAD was done using 3 × 28 mm Xience V drug eluting stent (Fig. 5B). The lesion was post dilated with 3.5 × 12 mm NC balloon at 15 atm. Patient was re admitted after 8 months with chest pain, LVEF 35% and TLC 8200/µL. CAG repeated showed proximal end of stent in LAD 100% ISR. A giant aneurysm was seen in Left main and one in proximal LAD (Fig. 5C, D, Additional file 7: Video S7). Patient was treated successfully with operative aneurysmal repair and grafting. Intra operatively there was no pus in situ and cultures from the sac were negative. Currently patient is asymptomatic.

Discussion and conclusions

The mechanism of stent induced aneurysm has been classified by Aoki et al. into 3 types [2]. Type I Aneurysms are formed due to injury to the arterial wall during dissections or high pressure balloon dilatations. These are more often pseudo-aneurysms. IVUS in these cases may demonstrate a contained rupture with thrombus in the aneurysmal sac with only the outer tunica adventitia. These patients present within one month of the index procedure with rapidly enlarging aneurysm and sometimes pericarditis. It is seen more in chronic total occlusions (CTO) and long diffuse lesions where there is inadvertent injury to the sub intimal space.
Type II stent induced aneurysms present sub acutely due to hypersensitivity reaction to either the stent metal/alloy, the drug polymer or due to the anti-proliferative action of the drug which prevents proper endothelialization. The cobalt chromium stents contain 9–11% nickel compared with stainless steel stents containing 10–14% nickel [3]. Both of them can cause allergy and ISR in patients with comparable rates (2). Here both Xience–Everolimus eluting stents and Treat-Sirolimus eluting stents were used comparably and their baseline characteristics and outcomes have been depicted in Table 1 and Fig. 7. The Xience V/Prime-LL stents used here as has a two layer coating composed of primer layer of PBMA (Poly N Butyl Methacrylate) and a drug reservoir made of poly-vinylidene fluoride-co-hexafluoropropylene (PVDF-HFP) [3]. Fluorinated polymers are bio-compatible as they preferentially adsorb albumin to fibrinogen preventing platelet activation [3]. On the contrary the primer layer containing Methacrylate is known to cause allergic hypersensitivity [58]. They have been shown to induce a marked inflammatory reaction consisting primarily of eosinophils and lymphocytes. Sirolimus and Everolimus both prevent neo-intimal proliferation but also delay re endothelialization. This has been a proposing mechanism for abetting aneurysm formation. While both of them are mTORC1 inhibitors, Sirolimus is more protein bound with a longer terminal half-life. Here we also had two patients who developed stent induced aneurysm formation after implantation of 2nd generation Sirolimus eluting stents whose morphology (Fig. 6A, B) were similar to Everolimus eluting 2nd generation stents.
Table 1
Properties of Everolimus eluting Xience stents versus Sirolimus eluting Treat stents
 
Xience stent (Xience V, Xience Prime LL) [3]
Treat stent [4]
Drug eluted
Everolimus eluting
Sirolimus eluting
Terminal half-life of drug eluted
26–30 h
46–72 h
Generation stent
2nd generation
2nd generation
Stent thickness
81µ
65µ
Stent material
L605 cobalt–chromium alloy
L605 cobalt–chromium alloy
Biocompatibility of stent material
Contains 9–11% nickel, chromium. Can occasionally cause metal allergy
Contains 9–11% nickel, chromium. Can occasionally cause metal allergy
Drug carrier/polymer
Primer layer of PBMA (Poly N Butyl Methacrylate) and a drug reservoir made of poly-vinylidene fluoride-co-hexafluoropropylene (PVDF-HFP)
Biocompatible lactide and glycolide family of biodegradable polymer
Biocompatibility of drug carrier/polymer
Primer Methacrylate known to cause hypersensitivity reaction and aneurysm formation
Reservoir PVDF-HFP is bio compatible
Biocompatible
Figure 7 depicts that the incidence of stent induced aneurysm formation was slightly more with Everolimus eluting Xience stents as compared to Sirolimus eluting 2nd Generation stents (Treat and Nostrum). But by using chi square analysis it does not reach statistical significance (p = 0.054).
Type III stent induced coronary aneurysm are infection related mycotic aneurysms. Patients are toxic with bacteremia and have a high blood leukocyte count. In our series none of the patients presented within 1 month of angioplasty with fever or raised TLC and most of them presented with angina. In addition patient D who had operative repair done, no pus was found in the aneurysmal sac. Hence in our series infective etiology was ruled out.
In our case series as depicted in Table 2, most patients were old (average age of 65.5 years), male (75%) and all of them were hypertensive. Possibly hypertension was associated with more arterial shear stress. The native lesions were long segment lesions with near complete occlusion predisposing to intimal injury. LAD was the most common artery involved as it is exposed to higher wall stress during systole and twice the torsion of other arteries. Second generation Everolimus eluting stents were used in this series and the morphology of aneurysms were similar to two patients with Sirolimus eluting 2nd generation stents. There was significant ISR in all of them. In an aneurysm there is slow flow of blood which predisposes to thrombus formation, but IVUS of patient A did not reveal any thrombus. The patients were followed with standard dual anti platelet drugs to minimize stent thrombosis. In patient C the small aneurysms formed were healed after opening the distal ISR segment.
Table 2
Baseline characteristics and treatment profile of all patients who developed aneurysms after Everolimus eluting Xience stents
 
Patient A
Patient B
Patient C
Patient D
Patient characteristics
 Age
68 years
69 years
71 years
54 years
 Sex
Male
Male
Female
Male
 Hypertension
Yes
Yes
Yes
Yes
 Diabetes mellitus
No
Yes
No
No
Lesion characteristic
 Long/diffuse lesion (> 20 mm)
Yes
Yes
Yes
Yes
 % Stenosis
100%
90–95%
80%
99%
 Artery involved
LAD
LAD
RCA
LAD
Initial angioplasty details
 Stent size deployed
2.75 × 28 mm
2.75 × 33 mm
2.5 × 38 mm
3 × 28 mm
 Stent type
Xience V
Xience Prime LL
Xience Prime LL
Xience V
 Metal alloy in stent
L605 cobalt chromium
L605 cobalt chromium
L605 cobalt chromium
L605 cobalt chromium
 Drug polymer
Acrylate primer and a fluorinated copolymer
Acrylate primer and a fluorinated copolymer
Acrylate primer and a fluorinated copolymer
Acrylate primer and a fluorinated copolymer
 Drug eluting
Everolimus
Everolimus
Everolimus
Everolimus
 Post dilatation
3 mm at 15 atm
3 mm at 13 atm
2.75 mm at 16 atm
3.5 mm at 15 atm
 Dual anti-platelet drugs
Ticagrelor + ecospirin
Clopidogrel + ecospirin
Clopidogrel + ecospirin
Ticagrelor + ecospirin
Patient re admission presentation
 Fever
Nil
Nil
Nil
Nil
 Unstable angina
Yes
Yes
Yes
Yes
 Days after initial angioplasty
4 months
3.5 months
2.5 months
7 months
 TLC during re-admission
6600/µL
7900/µL
9700/µL
8200/µL
 Eosinophil count
600/µL
800/µL
1500/µL
800/µL
 Aneurysm details
One large saccular aneurysm
Three large saccular aneurysms
Two–three small fusiform aneurysms
Two large saccular aneurysms
 Arterial segment involved
Proximal LAD
Proximal LAD
Distal RCA
Left main and proximal LAD
Second admission treatment
 Angioplasty
Covered stent (3.5 × 26 mm)
Covered stent (3.5 × 19 mm)
Drug eluting stent (2.75 × 23 mm)
Operative repair and grafting
 Outcome
Expired
Expired
Alive
Alive
Coronary aneurysm after stent implantation is a grey area and the exact etiology is difficult to define. In our case series mycotic aneurysms are ruled out. There was no instance of dissection or high pressure balloon dilatation moreover we saw more sub-acute diffuse aneurysms including one extending to Left main artery. Therefore type I aneurysms are unlikely. Within type II aneurysm both the stent metal and more commonly the drug polymer causes hypersensitive coronary vasculitis according to various pathological studies. Also patient C had elevated IgE on follow up. While the cobalt chromium alloy can occasionally cause allergy in patients it is commoner in females [9]. In our series patients were predominantly male (75%). Moreover metal allergy predominantly presents as recurrent ISR rather than aneurysm formation [9]. The primer in Xience stents contains Methacrylate (previously used in Cypher stents and also a component of bone cement) which has been known to cause allergic reactions including coronary aneurysm formation in a number of studies [58] and we hypothesize that it can be an additional causal agent. Treatment of coronary aneurysms may vary [10]. Small chronic aneurysms can be followed up vigilantly. Whereas giant, enlarging, infected aneurysms presenting acutely should be emergently treated with operative repair [11, 12], covered stent [1315] or coil. In our study operative aneurysmal repair with grafting had better results especially for giant stent induced type II aneurysms over percutaneous covered stenting.

Limitations

The major limitations of our study was an absence of histopathological examination of aneurysmal segments to clearly delineate the cause, the use of regionally available stents and limitations related to single centre non randomized study. Also patient A and B had low LVEF and died at an outside hospital so the death was due to heart failure or a possible complication of covered stent deployment cannot be ascertained.

Conclusion

Our case series highlight two valuable research areas. One is the possibility of methacrylate promoting a hypersensitivity reaction and contributing to formation of Type II stent induced coronary aneurysms. Second is identifying the right patient with giant stent induced type II aneurysm who will benefit from operative repair versus covered stent placement. Both needs to be substantiated by further studies.

Acknowledgements

There is no special acknowledgement regarding this article.

Declarations

Since this is a retrospective case series without any change in the treatment protocol of any of the patients and only involves observation therefore ethical committee clearance was not required. All data of patient identification has been hidden from the final dataset of the article and there was no involvement of any animal in this case series. The study was conducted according to the Helsinki Declarations. The authors attest they are in compliance with human studies committees and animal welfare regulations of the authors’ institutions and Food and Drug Administration guidelines, including patient consent where appropriate.
Written consent for submission and publication of this case series including the personal or clinical details along-with identifying images or associated movie if any has been obtained by the patients or relatives of the deceased whichever was applicable.

Competing interests

The authors declare that they have no competing interests. The authors have reported that they have no relationships relevant to the contents of this paper to disclose.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Anhänge

Supplementary Information

Additional file 1: Video S1. Angiogram of Patient A showing coronary aneurysm.
Additional file 2: Video S2. Angiogram of Patient A showing coronary aneurysm.
Additional file 3: Video S3. Intravascular ultrasound of Patient A showing coronary aneurysm.
Additional file 4: Video S4. Patient B—Coronary angiogram showing giant aneurysm.
Additional file 5: Video S5. Patient B—Coronary angiogram showing giant aneurysm.
Additional file 6: Video S6. Patient C—Coronary angiogram showing small aneurysms.
Additional file 7: Video S7. Patient D—Coronary angiogram showing giant aneurysm involving left main coronary artery.
Literatur
1.
Zurück zum Zitat Sheikh AS, Hailan A, Kinnaird T, Choudhury A, Smith D. Coronary artery aneurysm: evaluation, prognosis, and proposed treatment strategies. Heart Views Off J Gulf Heart Assoc. 2019;20(3):101–8.CrossRef Sheikh AS, Hailan A, Kinnaird T, Choudhury A, Smith D. Coronary artery aneurysm: evaluation, prognosis, and proposed treatment strategies. Heart Views Off J Gulf Heart Assoc. 2019;20(3):101–8.CrossRef
2.
Zurück zum Zitat Aoki J, Kirtane A, Leon MB, Dangas G. Coronary artery aneurysms after drug-eluting stent implantation. JACC Cardiovasc Interv. 2008;1(1):14–21.CrossRef Aoki J, Kirtane A, Leon MB, Dangas G. Coronary artery aneurysms after drug-eluting stent implantation. JACC Cardiovasc Interv. 2008;1(1):14–21.CrossRef
3.
Zurück zum Zitat Ding N, Pacetti S, Tang F-W, Gada M, Roorda W. XIENCE VTM stent design and rationale. J Interv Cardiol. 2009;22:S18-27.CrossRef Ding N, Pacetti S, Tang F-W, Gada M, Roorda W. XIENCE VTM stent design and rationale. J Interv Cardiol. 2009;22:S18-27.CrossRef
5.
Zurück zum Zitat Virmani R, Guagliumi G, Farb A, Musumeci G, Grieco N, Motta T, et al. Localized hypersensitivity and late coronary thrombosis secondary to a sirolimus-eluting stent: should we be cautious? Circulation. 2004;109(6):701–5.CrossRef Virmani R, Guagliumi G, Farb A, Musumeci G, Grieco N, Motta T, et al. Localized hypersensitivity and late coronary thrombosis secondary to a sirolimus-eluting stent: should we be cautious? Circulation. 2004;109(6):701–5.CrossRef
6.
Zurück zum Zitat Leggat PA, Kedjarune U. Toxicity of methyl methacrylate in dentistry. Int Dent J. 2003;53(3):126–31.CrossRef Leggat PA, Kedjarune U. Toxicity of methyl methacrylate in dentistry. Int Dent J. 2003;53(3):126–31.CrossRef
7.
Zurück zum Zitat Ahmed DDF, Sobczak SC, Yunginger JW. Occupational allergies caused by latex. Immunol Allergy Clin North Am. 2003;23(2):205–19.CrossRef Ahmed DDF, Sobczak SC, Yunginger JW. Occupational allergies caused by latex. Immunol Allergy Clin North Am. 2003;23(2):205–19.CrossRef
8.
Zurück zum Zitat Pretorius E. Allergic reactions caused by dental restorative products. SADJ J South Afr Dent Assoc Tydskr Van Suid-Afr Tandheelkd Ver. 2002;57(9):372–5. Pretorius E. Allergic reactions caused by dental restorative products. SADJ J South Afr Dent Assoc Tydskr Van Suid-Afr Tandheelkd Ver. 2002;57(9):372–5.
9.
Zurück zum Zitat Univers J, Long C, Tonks SA, Freeman MB. Systemic hypersensitivity reaction to endovascular stainless steel stent. J Vasc Surg. 2018;67(2):615–7.CrossRef Univers J, Long C, Tonks SA, Freeman MB. Systemic hypersensitivity reaction to endovascular stainless steel stent. J Vasc Surg. 2018;67(2):615–7.CrossRef
10.
Zurück zum Zitat Kawsara A, Núñez Gil IJ, Alqahtani F, Moreland J, Rihal CS, Alkhouli M. Management of coronary artery aneurysms. JACC Cardiovasc Interv. 2018;11(13):1211–23.CrossRef Kawsara A, Núñez Gil IJ, Alqahtani F, Moreland J, Rihal CS, Alkhouli M. Management of coronary artery aneurysms. JACC Cardiovasc Interv. 2018;11(13):1211–23.CrossRef
11.
Zurück zum Zitat Keyser A, Hilker MK, Husser O, Diez C, Schmid C. Giant coronary aneurysms exceeding 5 cm in size. Interact Cardiovasc Thorac Surg. 2012;15(1):33–6.CrossRef Keyser A, Hilker MK, Husser O, Diez C, Schmid C. Giant coronary aneurysms exceeding 5 cm in size. Interact Cardiovasc Thorac Surg. 2012;15(1):33–6.CrossRef
12.
Zurück zum Zitat Crawley PD, Mahlow WJ, Huntsinger DR, Afiniwala S, Wortham DC. Giant coronary artery aneurysms: review and update. Tex Heart Inst J. 2014;41(6):603–8.CrossRef Crawley PD, Mahlow WJ, Huntsinger DR, Afiniwala S, Wortham DC. Giant coronary artery aneurysms: review and update. Tex Heart Inst J. 2014;41(6):603–8.CrossRef
13.
Zurück zum Zitat Eshtehardi P, Cook S, Moarof I, Triller H-J, Windecker S. Giant coronary artery aneurysm. Circ Cardiovasc Interv. 2008;1(1):85–6.CrossRef Eshtehardi P, Cook S, Moarof I, Triller H-J, Windecker S. Giant coronary artery aneurysm. Circ Cardiovasc Interv. 2008;1(1):85–6.CrossRef
14.
Zurück zum Zitat Bhindi R, Testa L, Ormerod OJ, Banning AP. Rapidly evolving giant coronary aneurysm. J Am Coll Cardiol. 2009;53(4):372.CrossRef Bhindi R, Testa L, Ormerod OJ, Banning AP. Rapidly evolving giant coronary aneurysm. J Am Coll Cardiol. 2009;53(4):372.CrossRef
15.
Zurück zum Zitat Okamura T, Hiro T, Fujii T, Yamada J, Fukumoto Y, Hashimoto G, et al. Late giant coronary aneurysm associated with a fracture of sirolimus eluting stent: a case report. J Cardiol. 2008;51(1):74–9.CrossRef Okamura T, Hiro T, Fujii T, Yamada J, Fukumoto Y, Hashimoto G, et al. Late giant coronary aneurysm associated with a fracture of sirolimus eluting stent: a case report. J Cardiol. 2008;51(1):74–9.CrossRef
Metadaten
Titel
Case series of coronary artery aneurysms after Everolimus eluting stent implantation and comparison with Sirolimus eluting stents
verfasst von
Raghav Sharma
Aditya Vikram Ruia
Tek Singh Mahant
Publikationsdatum
01.12.2022
Verlag
BioMed Central
Erschienen in
BMC Cardiovascular Disorders / Ausgabe 1/2022
Elektronische ISSN: 1471-2261
DOI
https://doi.org/10.1186/s12872-022-02503-1

Weitere Artikel der Ausgabe 1/2022

BMC Cardiovascular Disorders 1/2022 Zur Ausgabe

Ein Drittel der jungen Ärztinnen und Ärzte erwägt abzuwandern

07.05.2024 Medizinstudium Nachrichten

Extreme Arbeitsverdichtung und kaum Supervision: Dr. Andrea Martini, Sprecherin des Bündnisses Junge Ärztinnen und Ärzte (BJÄ) über den Frust des ärztlichen Nachwuchses und die Vorteile des Rucksack-Modells.

Vorhofflimmern bei Jüngeren gefährlicher als gedacht

06.05.2024 Vorhofflimmern Nachrichten

Immer mehr jüngere Menschen leiden unter Vorhofflimmern. Betroffene unter 65 Jahren haben viele Risikofaktoren und ein signifikant erhöhtes Sterberisiko verglichen mit Gleichaltrigen ohne die Erkrankung.

Chronisches Koronarsyndrom: Gefahr von Hospitalisierung wegen Herzinsuffizienz

06.05.2024 Herzinsuffizienz Nachrichten

Obwohl ein rezidivierender Herzinfarkt bei chronischem Koronarsyndrom wahrscheinlich die Hauptsorge sowohl der Patienten als auch der Ärzte ist, sind andere Ereignisse womöglich gefährlicher. Laut einer französischen Studie stellt eine Hospitalisation wegen Herzinsuffizienz eine größere Gefahr dar.

Das Risiko für Vorhofflimmern in der Bevölkerung steigt

02.05.2024 Vorhofflimmern Nachrichten

Das Risiko, im Lauf des Lebens an Vorhofflimmern zu erkranken, ist in den vergangenen 20 Jahren gestiegen: Laut dänischen Zahlen wird es drei von zehn Personen treffen. Das hat Folgen weit über die Schlaganfallgefährdung hinaus.

Update Kardiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.