Skip to main content
Erschienen in: Molecular Cancer 1/2015

Open Access 01.12.2015 | Letter to the Editor

Characterization of 46 patient-specific BCR-ABL1 fusions and detection of SNPs upstream and downstream the breakpoints in chronic myeloid leukemia using next generation sequencing

verfasst von: Jana Linhartova, Lenka Hovorkova, Simona Soverini, Adela Benesova, Monika Jaruskova, Hana Klamova, Jan Zuna, Katerina Machova Polakova

Erschienen in: Molecular Cancer | Ausgabe 1/2015

Abstract

In chronic myeloid leukemia, the identification of individual BCR-ABL1 fusions is required for the development of personalized medicine approach for minimal residual disease monitoring at the DNA level. Next generation sequencing (NGS) of amplicons larger than 1000 bp simplified and accelerated a process of characterization of patient-specific BCR-ABL1 genomic fusions. NGS of large regions upstream and downstream the individual breakpoints in BCR and ABL1 genes, respectively, also provided information about the sequence variants such are single nucleotide polymorphisms.
Hinweise

Competing interests

KMP – Novartis and Bristol Myers-Squibb - research grant and honoraria; SS - Novartis, Bristol Myers-Squibb and Ariad – consultancy; HK - Novartis and Bristol Myers-Squibb - consultancy and honoraria.

Authors’ contributions

JL- has made substantial contributions to analysis and drafting the manuscript; LH- have made substantial contributions to analysis; AB and MJ- have contributed to NGS analysis; SS, JZ and HK - have been involved in drafting the manuscript end revising it critically for important intellectual content; KMP – evaluate and interpreted data, contributed to manuscript drafting, design and coordinate the work. All authors gave final approval for submission.

Background

BCR-ABL1 transcript level monitoring is a crucial part of therapy response evaluation in patients with chronic myeloid leukemia (CML). Molecular response (MR) in CML is expressed in terms of log reduction in BCR-ABL1 transcript levels from a standardized baseline on an international scale [1]. An increasing number of chronic phase CML patients treated with tyrosine kinase inhibitors (TKIs) achieve sustained deep MR, which has led to the initialization of TKI discontinuation studies [2,3]. Although existing results showing that permanent TKI discontinuation is feasible in a proportion of patients, more than half experience molecular relapse. More sensitive MRD detection might allow to more accurately stratifying patients according to the depth of response, hence to the greater or smaller likelihood of relapse after discontinuation. It was recently shown that MRD could be detected at DNA level despite patients were in stable MR with undetectable BCR-ABL1 transcripts [4,5]. It is supposed that quantification of BCR-ABL1 gene would be useful for MRD monitoring in patients with therapy cessation.
At the genomic level the BCR-ABL1 fusion is unique to each CML patient, since breakpoints are scattered within intron 13 (718 bp) or 14 (2128 bp) of BCR and within intron 1 of ABL1 (140 Kbp). The exact genomic sequence of the BCR-ABL1 fusion must therefore be characterized to design a personalized real-time polymerase chain reaction (PCR) assay. The sensitivity of personalized real-time PCR assay quantifying clone-specific fusions was reported to be down to less than 10−5 (depending on the amount of DNA entering the reaction) when nested PCR was used [6,7]. As amplification of large regions (˃1 Kbp) is needed, the characterization of BCR-ABL1 genomic fusions using conventional sequencing has been a challenging task [8-10]. With the aim to characterize patient-specific BCR-ABL1 fusions, we set up a strategy based on the generation of large amplicons by multiplex Long-Range PCR (mLR-PCR) and on subsequent ultra-wide sequencing using NGS technology. NGS provided sequences of large regions upstream and downstream the BCR-ABL1 fusions, allowing us to assess the frequency of annotated single nucleotide polymorphisms (SNPs), which could be associated with the fusion gene formation.

Findings

Next generation sequencing of large amplicons carrying BCR-ABL1 fusions

The patient cohort consisted of 24 males and 22 females with CML. Two BCR-ABL1 positive cell lines K562 and JURL-MK were included as controls of BCR-ABL1 fusion identification. Twelve healthy individuals were used as controls for SNP detection in the BCR region from exon 13 to exon 15.
DNA was isolated from total leukocytes of peripheral blood at the time of diagnosis ensuring high amount of BCR-ABL1 DNA present in the sample. Two-round mLR-PCR was performed with HiFi Accuprime Taq DNA polymerase (Invitrogen) enabling amplification of large regions. The amplification strategy is presented in Figure 1. In the first round PCR with one primer in BCR exon 13 and 10 primers in ABL1 intron 1 [9], the long PCR products of 29 patients were obtained. In the second round PCR with one primer in BCR exon 13 and 20 primers in ABL1 intron 1 [10-12] products were obtained in the remaining cases. Median length of long PCR products was 5 Kbp (range 1-12 Kbp). Subsequently, rapid library was prepared for 454 NGS technology according to the manufacturer’s instructions and was run on a GS Junior instrument (Roche Diagnostics). NextGene software (Softgenetics) and reference sequences NG_009244.1 (BCR) and NG_012034.1 (ABL1) were used for sequence analysis.

Patient-specific BCR-ABL1 fusion characterization

Breakpoints in BCR were located in intron 13 in 8/46 patients, carrying the e13a2 mRNA fusion, and in intron 14 in 38/46 patients and in both cell lines, carrying the e14a2 mRNA fusion (Figure 2A). All ABL1 breakpoints were spread within intron 1 (Figure 2A), which is in accordance with a previous study [7]. Sequences of characterized breakpoints are provided in the NCBI Nucleotide database (Accession numbers – KR091980-KR092025).

SNPs detection upstream and downstream from the BCR-ABL1 fusions

Downstream the individual breakpoints in ABL1, 56 annotated SNPs were detected in 15/46 patients (median 3 SNPs/patient, range 1–11). Only 10 of them recurred in two patients, whereas the remaining 46 were detected only once. This heterogeneity in SNP detection was caused by the extreme length of intron 1 (Figure 1, Figure 2A), where the breakpoints were spread, so that the individual ABL1 regions sequenced could not overlap.
Upstream the individual BCR breakpoints, 17 annotated SNPs and 3 novel variants were found altogether in 27/48 cases (56%) (Figure 2B). The dbSNP assigned accessions of newly detected variants (putative SNPs) are as follows:
  • NG_009244.1:g.114249A > G|rs527236141|ss1227131697;NG_009244.1:g.114278G > T|rs527236142|ss1227132188;NG_009244.1:g.115017 T > A|rs527236143|ss1227132282.
The 300 bp region downstream of primers hybridizing to BCR exon 13 was sequenced in all cases (Figure 2B). Four SNPs were identified within this region altogether in 9% of patients with e13a2 mRNA fusion and in 12% of patients with e14a2 mRNA. Other 16 SNPs were detected almost exclusively in patients with e14a2 mRNA fusion, which is in accordance with the fact, that the BCR region sequenced in these patients was larger than in the patients with e13a2 mRNA. The minor allele frequency among the BCR-ABL1 alleles analyzed corresponds to that found in the 1000 GenomePhase Population and in the cohort, although small, of healthy donors (Figure 2B).

Conclusion

Although increasing number of studies has been published in last few years [6-16], analysis of BCR-ABL1 at the DNA level has been limited and difficult so far. Our mLR-PCR-NGS approach streamlined the laboratory workflow for patient-specific BCR-ABL1 fusion characterization allowing personalizing real-time PCR assays for patients with MRD. The large collection of 46 BCR-ABL1 fusion sequences was obtained in the short time and is at disposal in the NCBI Nucleotide database. Moreover, the NGS enabled to detect SNPs upstream and downstream the patient-specific breakpoints of the BCR-ABL1 gene. NGS of this region in large series of patients has the potential to provide insights on the association between particular SNPs or haplotypes and CML. Although we describe the method on BCR-ABL1 in patients with CML, the strategy can be used in the same manner as a base for DNA-based MRD monitoring in BCR-ABL1 positive acute lymphoblastic leukemia (ALL), where significant differences between MRD levels measured by BCR-ABL1 expression and Ig/TCR DNA-based approach were described [17]. Moreover identical approach can be used for breakpoints localization and sequence features calling in other large fusion genes associated with various cancers, e.g. TEL/ABL1 (atypical CML or ALL) [18], TEL/AML1 (acute lymphoid leukemia) [19], TMPRSS2/ERG (prostate cancer) [20] or EML4/ALK (non-small cell lung cancer) [21].

Acknowledgement

This work has been supported by the Internal Grant Agency of Ministry of Health of the Czech Republic grant number NT11555, the conceptual development of research organization (00023736) from Ministry of Health of the Czech Republic and ERDF OPPK CZ.2.16/3.1.00/28007. The authors thank also the Czech Leukemia Study Group for Life - CELL for support. LH was supported by GAUK 554214.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
The Creative Commons Public Domain Dedication waiver (https://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Competing interests

KMP – Novartis and Bristol Myers-Squibb - research grant and honoraria; SS - Novartis, Bristol Myers-Squibb and Ariad – consultancy; HK - Novartis and Bristol Myers-Squibb - consultancy and honoraria.

Authors’ contributions

JL- has made substantial contributions to analysis and drafting the manuscript; LH- have made substantial contributions to analysis; AB and MJ- have contributed to NGS analysis; SS, JZ and HK - have been involved in drafting the manuscript end revising it critically for important intellectual content; KMP – evaluate and interpreted data, contributed to manuscript drafting, design and coordinate the work. All authors gave final approval for submission.
Literatur
1.
Zurück zum Zitat Cross NC, White HE, Müller MC, Saglio G, Hochhaus A. Standardized definitions of molecular response in chronic myeloid leukemia. Leukemia. 2012;26:2172–5.CrossRefPubMed Cross NC, White HE, Müller MC, Saglio G, Hochhaus A. Standardized definitions of molecular response in chronic myeloid leukemia. Leukemia. 2012;26:2172–5.CrossRefPubMed
2.
Zurück zum Zitat Falchi L, Kantarjian HM, Wang X, Verma D, Quintás-Cardama A, O'Brien S, et al. Significance of deeper molecular responses in patients with chronic myeloid leukemia in early chronic phase treated with tyrosine kinase inhibitors. Am J Hematol. 2013;88:1024–9.CrossRefPubMed Falchi L, Kantarjian HM, Wang X, Verma D, Quintás-Cardama A, O'Brien S, et al. Significance of deeper molecular responses in patients with chronic myeloid leukemia in early chronic phase treated with tyrosine kinase inhibitors. Am J Hematol. 2013;88:1024–9.CrossRefPubMed
3.
Zurück zum Zitat Hehlmann R, Müller MC, Lauseker M, Hanfstein B, Fabarius A, Schreiber A, et al. Deep molecular response is reached by the majority of patients treated with imatinib, predicts survival, and is achieved more quickly by optimized high-dose imatinib: results from the randomized CML-study IV. J Clin Oncol. 2014;32:415–23.CrossRefPubMed Hehlmann R, Müller MC, Lauseker M, Hanfstein B, Fabarius A, Schreiber A, et al. Deep molecular response is reached by the majority of patients treated with imatinib, predicts survival, and is achieved more quickly by optimized high-dose imatinib: results from the randomized CML-study IV. J Clin Oncol. 2014;32:415–23.CrossRefPubMed
4.
Zurück zum Zitat Ross DM, Branford S, Seymour JF, Schwarer AP, Arthur C, Yeung DT, et al. Safety and efficacy of imatinib cessation for CML patients with stable undetectable minimal residual disease: results from the TWISTER study. Blood. 2013;122:515–22.CrossRefPubMed Ross DM, Branford S, Seymour JF, Schwarer AP, Arthur C, Yeung DT, et al. Safety and efficacy of imatinib cessation for CML patients with stable undetectable minimal residual disease: results from the TWISTER study. Blood. 2013;122:515–22.CrossRefPubMed
5.
Zurück zum Zitat Rousselot P, Charbonnier A, Cony-Makhoul P, Agape P, Nicolini FE, Varet B, et al. Loss of major molecular response as a trigger for restarting tyrosine kinase inhibitor therapy in patients with chronic-phase chronic myelogenous leukemia who have stopped imatinib after durable undetectable disease. J Clin Oncol. 2014;32:424–30.CrossRefPubMed Rousselot P, Charbonnier A, Cony-Makhoul P, Agape P, Nicolini FE, Varet B, et al. Loss of major molecular response as a trigger for restarting tyrosine kinase inhibitor therapy in patients with chronic-phase chronic myelogenous leukemia who have stopped imatinib after durable undetectable disease. J Clin Oncol. 2014;32:424–30.CrossRefPubMed
6.
Zurück zum Zitat Bartley PA, Ross DM, Latham S, Martin-Harris MH, Budgen B, Wilczek V, et al. Sensitive detection and quantification of minimal residual disease in chronic myeloid leukaemia using nested quantitative PCR for BCR-ABL DNA. Int J Lab Hematol. 2010;32:e222–228.CrossRefPubMed Bartley PA, Ross DM, Latham S, Martin-Harris MH, Budgen B, Wilczek V, et al. Sensitive detection and quantification of minimal residual disease in chronic myeloid leukaemia using nested quantitative PCR for BCR-ABL DNA. Int J Lab Hematol. 2010;32:e222–228.CrossRefPubMed
7.
Zurück zum Zitat Morley AA, Latham S, Brisco MJ, Sykes PJ, Sutton R, Hughes E, et al. Sensitive and specific measurement of minimal residual disease in acute lymphoblastic leukemia. J Mol Diagn. 2009;11:201–10.CrossRefPubMedCentralPubMed Morley AA, Latham S, Brisco MJ, Sykes PJ, Sutton R, Hughes E, et al. Sensitive and specific measurement of minimal residual disease in acute lymphoblastic leukemia. J Mol Diagn. 2009;11:201–10.CrossRefPubMedCentralPubMed
8.
Zurück zum Zitat Sobrinho-Simões M, Wilczek V, Score J, Cross NC, Apperley JF, Melo JV. In search of the original leukemic clone in chronic myeloid leukemia patients in complete molecular remission after stem cell transplantation or imatinib. Blood. 2010;116:1329–35.CrossRefPubMed Sobrinho-Simões M, Wilczek V, Score J, Cross NC, Apperley JF, Melo JV. In search of the original leukemic clone in chronic myeloid leukemia patients in complete molecular remission after stem cell transplantation or imatinib. Blood. 2010;116:1329–35.CrossRefPubMed
9.
Zurück zum Zitat Waller CF, Dennebaum G, Feldmann C, Lange W. Long-template DNA polymerase chain reaction for the detection of the bcr/abl translocation in patients with chronic myelogenous leukemia. Clin Cancer Res. 1999;5:4146–51.PubMed Waller CF, Dennebaum G, Feldmann C, Lange W. Long-template DNA polymerase chain reaction for the detection of the bcr/abl translocation in patients with chronic myelogenous leukemia. Clin Cancer Res. 1999;5:4146–51.PubMed
10.
Zurück zum Zitat Krumbholz M, Karl M, Tauer JT, Thiede C, Rascher W, Suttorp M, et al. Genomic BCR-ABL1 breakpoints in pediatric chronic myeloid leukemia. Genes Chromosomes Cancer. 2012;51:1045–53.CrossRefPubMed Krumbholz M, Karl M, Tauer JT, Thiede C, Rascher W, Suttorp M, et al. Genomic BCR-ABL1 breakpoints in pediatric chronic myeloid leukemia. Genes Chromosomes Cancer. 2012;51:1045–53.CrossRefPubMed
11.
Zurück zum Zitat Ross DM, Branford S, Seymour JF, Schwarer AP, Arthur C, Bartley PA, et al. Patients with chronic myeloid leukemia who maintain a complete molecular response after stopping imatinib treatment have evidence of persistent leukemia by DNA PCR. Leukemia. 2010;24:1719–24.CrossRefPubMed Ross DM, Branford S, Seymour JF, Schwarer AP, Arthur C, Bartley PA, et al. Patients with chronic myeloid leukemia who maintain a complete molecular response after stopping imatinib treatment have evidence of persistent leukemia by DNA PCR. Leukemia. 2010;24:1719–24.CrossRefPubMed
12.
Zurück zum Zitat Score J, Calasanz MJ, Ottman O, Pane F, Yeh RF, Sobrinho-Simões MA, et al. Analysis of genomic breakpoints in p190 and p210 BCR-ABL indicate distinct mechanisms of formation. Leukemia. 2010;24:1742–50.CrossRefPubMed Score J, Calasanz MJ, Ottman O, Pane F, Yeh RF, Sobrinho-Simões MA, et al. Analysis of genomic breakpoints in p190 and p210 BCR-ABL indicate distinct mechanisms of formation. Leukemia. 2010;24:1742–50.CrossRefPubMed
13.
Zurück zum Zitat Burmeister T, Gröger D, Kühn A, Hoelzer D, Thiel E, Reinhardt R. Fine structure of translocation breakpoints within the major breakpoint region in BCR-ABL1-positive leukemias. DNA Repair (Amst). 2011;10:1131–7.CrossRef Burmeister T, Gröger D, Kühn A, Hoelzer D, Thiel E, Reinhardt R. Fine structure of translocation breakpoints within the major breakpoint region in BCR-ABL1-positive leukemias. DNA Repair (Amst). 2011;10:1131–7.CrossRef
14.
Zurück zum Zitat Mattarucchi E, Spinelli O, Rambaldi A, Pasquali F, Lo Curto F, Campiotti L, et al. Molecular monitoring of residual disease in chronic myeloid leukemia by genomic DNA compared with conventional mRNA analysis. J Mol Diagn. 2009;11:482–7.CrossRefPubMedCentralPubMed Mattarucchi E, Spinelli O, Rambaldi A, Pasquali F, Lo Curto F, Campiotti L, et al. Molecular monitoring of residual disease in chronic myeloid leukemia by genomic DNA compared with conventional mRNA analysis. J Mol Diagn. 2009;11:482–7.CrossRefPubMedCentralPubMed
15.
Zurück zum Zitat Karl M, Krumbholz M, Tauer JT, Jacobs U, Metzler M, Suttorp M. Identification of the genomic BCR-ABL1 fusion sequence from blood specimen stored on filter paper. Leuk Res. 2013;37:117–9.CrossRefPubMed Karl M, Krumbholz M, Tauer JT, Jacobs U, Metzler M, Suttorp M. Identification of the genomic BCR-ABL1 fusion sequence from blood specimen stored on filter paper. Leuk Res. 2013;37:117–9.CrossRefPubMed
16.
Zurück zum Zitat Shibata Y, Malhotra A, Dutta A. Detection of DNA fusion junctions for BCR-ABL translocations by Anchored ChromPET. Genome Med. 2010; doi:10.1186/gm191. Shibata Y, Malhotra A, Dutta A. Detection of DNA fusion junctions for BCR-ABL translocations by Anchored ChromPET. Genome Med. 2010; doi:10.1186/gm191.
17.
Zurück zum Zitat Zaliova M, Fronkova E, Krejcikova K, Muzikova K, Mejstrikova E, Stary J, et al. Quantification of fusion transcript reveals a subgroup with distinct biological properties and predicts relapse in BCR/ABL-positive ALL: implications for residual disease monitoring. Leukemia. 2009;23:944–51.CrossRefPubMed Zaliova M, Fronkova E, Krejcikova K, Muzikova K, Mejstrikova E, Stary J, et al. Quantification of fusion transcript reveals a subgroup with distinct biological properties and predicts relapse in BCR/ABL-positive ALL: implications for residual disease monitoring. Leukemia. 2009;23:944–51.CrossRefPubMed
18.
Zurück zum Zitat Zuna J, Zaliova M, Muzikova K, Meyer C, Lizcova L, Zemanova Z, et al. Acute leukemias with ETV6/ABL1 (TEL/ABL) fusion: poor prognosis and prenatal origin. Genes Chromosomes Cancer. 2010;49:873–84.CrossRefPubMed Zuna J, Zaliova M, Muzikova K, Meyer C, Lizcova L, Zemanova Z, et al. Acute leukemias with ETV6/ABL1 (TEL/ABL) fusion: poor prognosis and prenatal origin. Genes Chromosomes Cancer. 2010;49:873–84.CrossRefPubMed
19.
Zurück zum Zitat Zuna J, Hrusak O, Kalinova M, Muzikova K, Stary J, Trka J. TEL/AML1 positivity in childhood ALL: average or better prognosis? Czech Paediatric Haematology Working Group. Leukemia. 1999;13:22–4.CrossRefPubMed Zuna J, Hrusak O, Kalinova M, Muzikova K, Stary J, Trka J. TEL/AML1 positivity in childhood ALL: average or better prognosis? Czech Paediatric Haematology Working Group. Leukemia. 1999;13:22–4.CrossRefPubMed
20.
Zurück zum Zitat Wang J, Cai Y, Ren C, Ittmann M. Expression of variant TMPRSS2/ERG fusion messenger RNAs is associated with aggressive prostate cancer. Cancer Res. 2006;66:8347–51.CrossRefPubMed Wang J, Cai Y, Ren C, Ittmann M. Expression of variant TMPRSS2/ERG fusion messenger RNAs is associated with aggressive prostate cancer. Cancer Res. 2006;66:8347–51.CrossRefPubMed
21.
Zurück zum Zitat Choi YL, Takeuchi K, Soda M, Inamura K, Togashi Y, Hatano S, et al. Identification of novel isoforms of the EML4-ALK transforming gene in non-small cell lung cancer. Cancer Res. 2008;68:4971–6.CrossRefPubMed Choi YL, Takeuchi K, Soda M, Inamura K, Togashi Y, Hatano S, et al. Identification of novel isoforms of the EML4-ALK transforming gene in non-small cell lung cancer. Cancer Res. 2008;68:4971–6.CrossRefPubMed
Metadaten
Titel
Characterization of 46 patient-specific BCR-ABL1 fusions and detection of SNPs upstream and downstream the breakpoints in chronic myeloid leukemia using next generation sequencing
verfasst von
Jana Linhartova
Lenka Hovorkova
Simona Soverini
Adela Benesova
Monika Jaruskova
Hana Klamova
Jan Zuna
Katerina Machova Polakova
Publikationsdatum
01.12.2015
Verlag
BioMed Central
Erschienen in
Molecular Cancer / Ausgabe 1/2015
Elektronische ISSN: 1476-4598
DOI
https://doi.org/10.1186/s12943-015-0363-8

Weitere Artikel der Ausgabe 1/2015

Molecular Cancer 1/2015 Zur Ausgabe

Adjuvante Immuntherapie verlängert Leben bei RCC

25.04.2024 Nierenkarzinom Nachrichten

Nun gibt es auch Resultate zum Gesamtüberleben: Eine adjuvante Pembrolizumab-Therapie konnte in einer Phase-3-Studie das Leben von Menschen mit Nierenzellkarzinom deutlich verlängern. Die Sterberate war im Vergleich zu Placebo um 38% geringer.

Alectinib verbessert krankheitsfreies Überleben bei ALK-positivem NSCLC

25.04.2024 NSCLC Nachrichten

Das Risiko für Rezidiv oder Tod von Patienten und Patientinnen mit reseziertem ALK-positivem NSCLC ist unter einer adjuvanten Therapie mit dem Tyrosinkinase-Inhibitor Alectinib signifikant geringer als unter platinbasierter Chemotherapie.

Bei Senioren mit Prostatakarzinom auf Anämie achten!

24.04.2024 DGIM 2024 Nachrichten

Patienten, die zur Behandlung ihres Prostatakarzinoms eine Androgendeprivationstherapie erhalten, entwickeln nicht selten eine Anämie. Wer ältere Patienten internistisch mitbetreut, sollte auf diese Nebenwirkung achten.

ICI-Therapie in der Schwangerschaft wird gut toleriert

Müssen sich Schwangere einer Krebstherapie unterziehen, rufen Immuncheckpointinhibitoren offenbar nicht mehr unerwünschte Wirkungen hervor als andere Mittel gegen Krebs.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.