Skip to main content
Erschienen in: Nutrition & Metabolism 1/2006

Open Access 01.12.2006 | Review

Chocolate and Prevention of Cardiovascular Disease: A Systematic Review

verfasst von: Eric L Ding, Susan M Hutfless, Xin Ding, Saket Girotra

Erschienen in: Nutrition & Metabolism | Ausgabe 1/2006

Abstract

Background

Consumption of chocolate has been often hypothesized to reduce the risk of cardiovascular disease (CVD) due to chocolate's high levels of stearic acid and antioxidant flavonoids. However, debate still lingers regarding the true long term beneficial cardiovascular effects of chocolate overall.

Methods

We reviewed English-language MEDLINE publications from 1966 through January 2005 for experimental, observational, and clinical studies of relations between cocoa, cacao, chocolate, stearic acid, flavonoids (including flavonols, flavanols, catechins, epicatechins, and procynadins) and the risk of cardiovascular disease (coronary heart disease (CHD), stroke). A total of 136 publications were selected based on relevance, and quality of design and methods. An updated meta-analysis of flavonoid intake and CHD mortality was also conducted.

Results

The body of short-term randomized feeding trials suggests cocoa and chocolate may exert beneficial effects on cardiovascular risk via effects on lowering blood pressure, anti-inflammation, anti-platelet function, higher HDL, decreased LDL oxidation. Additionally, a large body of trials of stearic acid suggests it is indeed cholesterol-neutral. However, epidemiologic studies of serum and dietary stearic acid are inconclusive due to many methodologic limitations. Meanwhile, the large body of prospective studies of flavonoids suggests the flavonoid content of chocolate may reduce risk of cardiovascular mortality. Our updated meta-analysis indicates that intake of flavonoids may lower risk of CHD mortality, RR = 0.81 (95% CI: 0.71–0.92) comparing highest and lowest tertiles.

Conclusion

Multiple lines of evidence from laboratory experiments and randomized trials suggest stearic acid may be neutral, while flavonoids are likely protective against CHD mortality. The highest priority now is to conduct larger randomized trials to definitively investigate the impact of chocolate consumption on long-term cardiovascular outcomes.
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​1743-7075-3-2) contains supplementary material, which is available to authorized users.

Competing interests

The author(s) declare that they have no competing interests.

Authors' contributions

All authors contributed to systematically reviewing articles. E.L.D. led the drafting of the manuscript, insights into nutritional metabolism, and S.G. provided further insights into clinical disease etiology.
Abkürzungen
CHD
Coronary heart disease
CVD
Cardiovascular disease
CI
Confidence interval
HDL
High-density lipoprotein
IL
Interleukin
LDL
Low-density lipoprotein
NO
Nitric oxide
MI
Myocardial infarction
RR
Relative risk

Introduction

Cardiovascular disease (CVD), as a group, is a leading cause of the death in the United States [1], and worldwide, causing over 16.7 million deaths globally in 2002 [2]. In 1990, greater than 85,000,000 disability-adjusted life-years were lost worldwide due to coronary heart disease (CHD) and stroke; this CVD disease burden is projected to rise to 143,000,000 disability-adjusted life-years by 2020 [2]. Studies suggest cardiovascular diseases may be preventable by lifestyle modifications, such as exercise and nutrition [37]. Additionally, the American Heart Association, American Diabetes Association, and the U.S. Preventive Services Task Force have each indicated the likely importance of diet for the prevention of CVD [810].
In the American diet, fruits, vegetables, tea, wine and chocolate are major sources of antioxidants, which have been shown to have protective effects against CVD [11, 12]. One class of antioxidants, flavonoids, commonly found in such foods, have attracted great interest in potentially lowering risk of CVD. Since cocoa products contain greater antioxidant capacity and greater amounts of flavonoids per serving than all teas and red wines [12, 13], it is important to explore chocolate's potential effects on CVD.
Since ancient times, chocolate has long been used as a medicinal remedy [14] and been proposed in medicine today for preventing various chronic diseases [15, 16]. While chocolate has also sometimes been criticized for its saturated fat content, mostly in the form of long-chain stearic acid, chocolate has also been lauded for its antioxidant potential. However, to this date there are no long-term randomized feeding trials of chocolate to assess effects on actual cardiovascular events. Nevertheless, there have been many short-term trials of cocoa and chocolate examining effects on cardiovascular intermediates, and numerous epidemiology studies of stearic acid and flavonoids exploring associations with cardiovascular outcomes.
This systematic review serves to comprehensively evaluate the experimental and epidemiologic evidence of cocoa and chocolate products. Particularly, we focus on the controversial potential benefits of the chocolate components stearic acid and flavonoids; review their overall effects on CVD risk factor intermediates and CVD endpoints; and conduct a meta-analysis of total flavonoid intake and risk of CHD mortality.

Methods

We reviewed English-language MEDLINE publications from January 1965 through June 2005 for experimental, observational, and clinical studies of relations between the exposure search terms of chocolate, stearic acid, flavonoids (including flavonols, flavanols, catechins, epicatechins, and procynadins) and the outcome search terms of cardiovascular disease (coronary heart disease, ischemic heart disease, stroke), cholesterol, blood pressure, platelet, oxidation, and thrombosis. Approximately 400 papers were reviewed. Based on the relevance, strength, and quality of the design and methods, 136 publications were selected for inclusion.
We mainly focused on studies in humans, particularly randomized trials of either parallel or cross-over design, and prospective observational studies. Since no randomized trials have yet assessed chocolate in relation to definitive CVD outcomes, prospective observational studies evaluating chocolate sub-components and the risk of CVD outcomes were weighted equally in the overall evaluation. For overall objective evaluation, the strength of the evidence was evaluated by the design and quality of individual studies, the consistency of findings across studies, and the biologic plausibility of possible mechanisms. Finally, consistent with methods of the outdated prior analysis [17], an updated meta-analysis was conducted and relative risks estimates pooled using a random-effects model [18].

Review

Stearic acid in chocolate

Saturated fat has long been thought to contribute to atherosclerosis, and thus, adverse for CVD risk. However, stearic acid has been suggested to be a non-atherogenic type of dietary saturated fat. Stearic acid is a long-chain 18:0 saturated fatty acid found commonly in meats and dairy products. Cocoa butter, a fat derived from cocoa plants and predominantly found in dark chocolate [19], contains an average of 33% oleic acid (cis-18:1 monounsaturated), 25% palmitic acid (16:0 saturated), and 33% of stearic acid [20]. Thought it is generally considered that saturated fats overall adversely increase the total cholesterol and LDL levels [2123], early studies have also suggested stearic acid may be non-cholesterolemic [21, 22]. This has been confirmed in a series of studies and a meta-analysis of 60 controlled feeding trials which concludes stearic acid neither lowers HDL, nor increases LDL or total cholesterol [2428]. The meta-analysis also estimates, that per 1% energy isocaloric replacement of stearic acid for carbohydrates, stearic acid intake is predicted to beneficially lower serum triglycerides by -17.0 nmol/L (p < 0.001) [26]. The most recent trial also shows the effects of stearic acid on lipids is even similar to oleic and linoleic acids [29].
Emerging studies have begun to explain how stearic acid in chocolate may be cholesterol-neutral. One suggested mechanism is stearic acid's lower absorption, which has been found in several animal and human studies [3033], though only minimally in others [34, 35]. These discrepancies may be attributed to the relative position of stearate on the triglyceride molecule which may affect its relative absorption rate [36, 37]. This might also explain the suggestion that stearic acid from plants sources, such as cocoa, may be different from animal derived sources of stearic acid [38]. Furthermore, some feeding trials found lower absorption of cocoa buttered compared to corn oil [39], though not in others [40]. However, heterogeneity may be due to the dual-presence of calcium in chocolate, in which other trials found cocoa butter absorption further decreased 13% when supplemented with calcium (1% by weight) [41], as is done in chocolate manufacturing. Finally, another strongly supported protective mechanism relate to the relatively high percent desaturation of stearic acid to monosaturated oleic acid [35, 4245], a fat considered hypocholesterolemic [27, 4648] and protective against coronary heart disease [3, 49].
Two other pathways suggested for potential benefit are stearic acid's potential anti-platelet and blood pressure reductions actions. Feeding trials have shown that stearic acid reduces mean platelet volume [50, 51], an index of platelet activation. However, mixed findings have been observed regarding the relationship between stearic acids and factor VIIc coagulation factor, a predictor of fatal CHD [5254]. Though an early study suggested that stearic acid may increase factor VIIc [55], no effect on levels of factor VIIc by stearic acid was observed in two other trials [56, 57]. Moreover, additional trials have refuted the earlier small study and, in fact, shown that stearic acid lowered the levels of factor VIIc coagulation factor compared to palmitic [50, 58] and other saturated fatty acids [58]. As for the relationship between stearic acid and blood pressure, two feeding trials found stearic acid did not adversely affect systolic blood pressure [28, 59]. Furthermore, cross-sectional analysis within the Multiple Risk Factor Intervention Trial even found stearic acid levels may be inversely associated with diastolic blood pressure [60].
In summary, given the vast majority of studies showing stearic acid has beneficial or neutral effects on blood pressures and clotting parameters, it appears unlikely stearic acid intake would adversely affect CVD risk through these risk factors. Data indicates stearic acid does not adversely affect established traditional lipid risk factors, with even favorable lowering of serum triglycerides if isocalorically replaced for carbohydrates.

Stearic Acid Observational Studies

However, the observational studies of stearic acid's association with CVD are inconclusive. (Table 2) Among retrospective studies, a Japanese case-control study of serum levels reported no association for stenosis [61], a Norwegian study found lower odds of MI [62], while a Costa Rican study of dietary intake found higher risk of MI [63] with higher intake of stearic acid. However, the results from the Costa Rican study should not be given much weight since retrospective self-report of dietary intakes are notoriously inaccurate and susceptible to reporting bias [64]. Nevertheless, higher rates of CHD and CAD progression was found in several prospective studies [6568], while stroke was not increased in another study [69].
Table 1
Summary of Chocolate and Cocoa Feeding Trials
Author
Year
No. Participants
Trial Design
Duration
Intervention
Outcome(s)
Kondo [83]
1996
12
Crossover
1 meal, pre/post-meal measurement
Cocoa (35 g delipidated), vs. none
Decreased LDL oxidation
Rein [138]
2000
30
Parallel
1 meal, 2 & 6 hrs
Cocoa beverage (300 ml, 19 g procyanidin), caffeinated beverage (17 mg caffeine), or water
Decreased platelet activation, decreased platelet function
Wang [79]
2000
20
Crossover
1 meal, 1 week/phase
Procyanidin-rich chocolate (27, 53, 80 g), vs. none
Increased antioxidant capacity, decreased oxidative stress
Osakabe [88]
2001
15
Parallel
daily, 2 weeks
Cocoa powder (36 g/day), vs. sugar
Decreased LDL oxidation (increased lag time)
Wan [85]
2001
23
Crossover
daily, 4 weeks/phase
Cocoa powder (22 g/day) + dark chocolate (12 g/day), vs. average American diet
Decreased LDL oxidation (increased lag time), Increased HDL concentration
Schramm [101]
2001
10
Crossover
1 meal, 2 & 6 hrs, 1 week/phase
Chocolate (35 g, high 4 mg/g vs. low 0.09 mg/g procyanidin)
Increased prostacyclin, decreased leukotriene (likely decreased platelet activation, anti-inflammatory)
Holt [95]
2002
18
Crossover
1 meal, 2 hrs
Chocolate chips (25 g semi-sweet), vs. none
Decrease platelet function
Mathur [86]
2002
25
Crossover
daily, 6 weeks/phase
Dark chocolate (37 g/day), cocoa powder (31 g/day), vs. none
Decreased LDL oxidizability, marginal HDL increase
Pearson [92]
2002
16
Crossover
1 meal, 1 day/phase
Cocoa beverage (300 ml, 19 g flavanol cocoa powder), cocoa beverage + aspirin, or aspirin
Decreased platelet activation, decreased platelet function, all additive of aspirin effects.
Heiss [99]
2003
20
Crossover
1 meal, 1 day/phase
Cocoa beverages (100 ml, high or low flavan-3-ol)
Increased NO bioactivity, improved endothelial function
Innes [97]
2003
30
Parallel
1 meal, 4 hrs
Dark (75% cocoa, highest flavonoid content), milk (20% cocoa), or white chocolate (no flavonoids)
Dark chocolate inhibited collagen-induced platelet aggregation
Murphy [94]
2003
32
Parallel
daily, 28 days
Cocoa flavonoid tablets (234 mg), vs. placebo
Decreased platelet function, no difference oxidation status
Serrafini [76]
2003
12
Crossover
1 meal, 1 day/phase
Dark chocolate (100 g), dark chocolate (100 g) + milk (200 ml), or 200 g milk chocolate
Increase antioxidant capacity, in absence of milk
Taubert [118]
2003
13
Crossover
daily, 14 days/phase
Dark chocolate (100 g, 500 mg polyphenols), vs. white chocolate (90 g, 0 mg polyphenols)
Lower systolic and diastolic blood pressure with dark chocolate
Wiswedel [90]
2004
20
Crossover
1 meal, 1 week washout
High flavanol (1.87 mg/ml) vs. low flavanol (0.14 mg/ml) cocoa beverage
Lower levels of lipid peroxidation indicators with high flavanol cocoa beverage
Engler [98]
2004
21
Parallel
daily, 2 weeks
Chocolate (high vs. low flavonoid)
Improved endothelial function, no difference oxidative stress, lipids with high flavonoid choc.
Mursu [115]
2004
45
Parallel
daily, 3 weeks
Dark chocolate, dark chocolate enriched with cocoa polyphenols, or white chocolate
Increased HDL concentration, no change LDL oxidizability
Grassi [116]
2005
15
Crossover
daily, 15 days/phase
Dark chocolate (100 g, 500 mg polyphenols), vs. white chocolate (90 g, 0 mg polyphenols)
Lower systolic blood pressure, improved insulin sensitivity, lower insulin resistance
Zhu [139]
2005
8
Parallel
1 meal, 1–2–4–8 hrs
Cocoa beverage (high flavonoid); 0.25, 0.38, 0.50 g/kg body weight dose
Reduced susceptibility to free-radical induced hemolysis
Vlachopoulos [140]
2005
17
Crossover
1 meal, 1 day/phase
Dark chocolate (100 g, 2.62 g procyanidin), vs. none
Improved endothelial function, vasodilation of brachial artery, no change in blood pressure
Fraga [119]
2005
28
Parallel
daily, 14 days
High flavanol milk chocolate (105 g, 168 mg flavanols) vs. low flavonoid chocolate (<5 mg flavanols)
Lower mean blood pressure, lower LDL cholesterol, lower oxidative stress markers in high flavanol chocolate group
Table 2
Observational Studies of Stearic Acid and Cardiovascular Outcomes
Author
Year
Study design
N, Population
Stearic acid assessment method
CHD/MI Outcomes
Other
Kromhout [141]
1995
Ecologic
12,763 men, 16 cohorts of 7CS
Dietary intake
↑ CHD mortality
 
Simon [68, 69]
1995
Prospective
96 cases, 96 controls, USA-MRFIT
Serum levels
↑ CHD incidence
Null-stroke incidence
Watts [67]
1996
Prospective
50 men, Australia
Dietary intake
↑ CAD progression
 
Hojo [61]
1998
Case-control
71 cases, 60 controls, Japan
Serum levels
 
Null-stenosis
Hu [65]
1999
Prospective
80,082 women, USA-nurses
Dietary intake
↑ CHD incidence
 
Yli-Jama [62]
2002
Case-control
103 cases, 104 controls, Norway
Serum levels
↓ MI incidence
 
Kabagambe [63]
2003
Case-control
485 cases, 508 controls, Costa Rica
Dietary intake
↑ MI incidence
 
Wang [66]
2003
Prospective
3591 whites, USA
Serum levels
↑ CHD mortality
 
Abbreviations: 7CS, 7 Countries Study; MRFIT, Multiple Risk Factor Intervention Trial;
* High stearic acid level among men from geographic areas of high IHD mortality
On the other hand, several limitations exist for observational studies of stearic acid. First, researchers have cautioned that analyses of dietary stearic acid are very difficult due to high correlations of stearic acid intake with other fatty acids (often r = 0.7 to 0.9), thus impeding optimal study of associations [65]. Additionally, the larger prospective study that found higher risk of CHD also noted chocolate was a very small contributor (5%) of total stearic acid intake, with red meats as primary sources of stearic acid. Finally, since there exists high interconversion of stearic acid to unsaturated fatty acids [35, 4245], studies involving serum levels of stearic acid do not answer the relevant causal question of dietary intake of stearic acid and risk of disease. The associations of long-term serum stearic acid levels represent the effects of post-conversion stearic acid levels after a large proportion of the original dietary stearic acid has already been converted away to monounsaturated fat, which is well-established to exert protective effects against CVD [3, 27, 4649].
Thus, relatively little information can be inferred from observational studies of the association of stearic acid and CHD, and no epidemiologic study has, thus far, appropriately and optimally answered the causal question of the association of dietary stearic acid intake and risk of CVD. However, a sufficient body of strong evidence from short term randomized trials suggests stearic acid components in chocolate may be beneficial for cardiovascular health. However, further research in this area is warranted.

Flavonoids in chocolate

A 100 g bar of milk chocolate contains 170 mg of flavonoid antioxidants, procyanidins and flavanols [12]. It is estimated that chocolate is a leading source of procyanidin intake in Western nations (18–20%) [70, 71]. Flavonoids belong to a class of antioxidants called polyphenols from plants [72]. The basic structure of flavonoids is a C6-C3-C6 backbone with two armomatic rings and varying degrees of hydroxylation differentiating one flavonoid type from another [73]. Flavonoids can be divided into various subclasses, important of which are flavones, flavonols, flavanones, catechins, anthocyanidins and isoflavones. Cocoa, is particularly rich in the flavonoids, epicatechin, catechin, and procyanidins (polymers of catechins and epicatechins) [74]. (Figure 1)
Various studies have compared the content of the flavanoids in cocoa with other food stuffs quantitatively. Figure 2 shows the comparative content of flavonoids in milk chocolate and dark chocolate versus other high-flavonoid foods. Cocoa has been shown to have the highest content of polyphenols (611 mg/serving) and flavanoids (564 mg/serving of epicatechin), greater than even tea and wine [13]. Per serving, dark chocolate contains substantially higher amounts of flavonoids than milk chocolate (951 mg of catechins per 40 g serving compared to 394 mg in white chocolate) [75], and levels of epicatechin in dark chocolate is comparable to red wine and tea [75]. Also of note, dark chocolate contains significantly greater amounts of total phenols as well as catechins than milk chocolate per serving (126+-7.4 μmol/g vs. 52.2+-20.2 μmol/g) [75]. In addition to dark chocolate having higher flavonoid content, the biologic effects of flavonoids may also be greater in dark chocolate because milk in milk chocolate may inhibit the intestinal absorption of flavanoids [76]. Finally, chocolate is also abundant in procyanidin flavonoids, comparable with levels in procyanidin-rich apples [77]. Thus, chocolate is a rich source of flavonoids, particularly catechins, epicatechins and procyanidins.

Mechanisms

Chocolate flavonoids have shown good dose-response bioavailability in humans [11, 78, 79]. There exists several mechanisms of how flavonoids may be protective against CVD; these include: antioxidant, anti-platelet, anti-inflammatory effects, as well as possibly increasing HDL, lowering blood pressure, and improving endothelial function. The body of trials involving chocolate flavonoids is summarized in Table 1.
Central to the pathogenesis of atherosclerosis is the oxidation of low-density lipoprotein (LDL). The chemical structure of flavonoids gives the compound free radical scavenging ability, which means flavonoids may have antioxidant effects [80]. Various studies have confirmed the role of flavanoids as antioxidants in biological systems. Flavanoids in chocolate have been shown to exert potent antioxidant effects in vitro assays under artificial oxidative stress [13, 8184] as well increase antioxidant capacity as part of various chocolate feeding trials [79, 8589]. Additionally, because lipid soluble flavonoids may intercalate into the membranes of lipoprotein particles, studies have shown flavonoids to decrease lipid peroxidation of biological membranes [90]. Furthermore, a randomized trial also demonstrated that flavonoid-rich foods can protect human lymphocytes from oxidative damage in vivo [91].
Additionally, aggregation of platelets at the site of plaque rupture and endothelial dysfunction has been implicated in the pathogenesis of atherosclerosis. Current research has shown that a number of components of chocolate, particularly catechin and epicatechin, have significant antiplatelet effects, quantitatively similar to that of aspirin [92]. Randomized trials studying platelet activation markers, microparticle formation and primary platelet aggregation as end points have found that daily intake of cocoa beverages produces a significant reduction in all these endpoints among healthy volunteers [9396]. There were also significant correlations between the reduction in these end points and the plasma concentrations of catechin and epicatechin [9396]. Another study found a significant reduction in platelet activation in groups consuming 100 g of dark chocolate when compared to those consuming similar amounts of white chocolate and milk chocolate [97]. In addition, randomized trials have also shown that consumption of high-flavanoid dark chocolate is associated with a significant improvement of endothelial function, marked by increase in brachial artery flow mediated dilation [98100], likely mediated by chocolate flavonoids increasing local production of nitric oxide [99, 100].
Chocolate may also influence levels of leukotrienes and prostacyclins. Leukotrienes are potent vasocontrictors, proinflammatory agents and stimulate platelet aggregation, whereas prostacyclin is a vasodilator and inhibits platelet aggregation. Consumption of chocolate with high procyanidin content (147 mg) was shown in a feeding trial to significantly lower the levels of leukotrienes (29%) and increase the levels of prostacyclin (32%) when compared to a group consuming a low procyanidin (3.3 mg) chocolate [101]. In vitro studies have indeed demonstrated chocolate components to inhibit lipoxygenase pathways, which gives rise to proinflammatory leukotrienes [102, 103]. Inflammation is now recognized as another independent mechanism in the pathogenesis of atherosclerosis, with various inflammatory markers having been shown to predict risk of future CVD events [104108]. In addition to anti-inflammatory effects on the lipoxygenase pathway, cocoa polyphenols have also been shown to decrease inflammation via several mechanisms, namely: inhibition of mitogen induced activation of T cells, polyclonal activation of B cells, reduced expression of interleukin-2 (IL-2) messenger RNA, and reduced secretion of IL-2 by T cells[109] Other have also found chocolate procyanidins can modulate of a variety of other cytokines (e.g. IL-5, TNF-α, TGF-β), reducing their inflammatory effects [110114].
Furthermore, multiple cocoa feeding trials have also found chocolate to increase HDL cholesterol [85, 86, 115], and decrease blood pressure [116119]. Finally, there are also suggestive findings in a few trials that indicate high-flavonoid chocolate may also lower LDL cholesterol [119], and improve insulin sensitivity [116].
Thus, the large body of evidence from laboratory findings and randomized trials suggest that high-flavonoid chocolate may protect against LDL oxidation, inhibit platelet aggregation, improve endothelial function, increase HDL, lower blood pressure, and reduce inflammation – thereby protective against risk of CVD.

Flavonoid Observational Studies

Mechanistic studies involving stearic acid and flavonoids have only assessed effects on intermediate cardiovascular endpoints. However, one cannot always assume effects from short term trials effects will necessarily translate into long term effects on CVD outcomes. Therefore, one needs to examine observational studies followed to CVD events. While one small study found moderate consumption of candy and chocolate was associated with lower all-cause mortality [120], this analysis neither isolates chocolate nor CVD events. Thus, in absence of specific studies of chocolate flavonoids and risk of CVD, studies of all flavonoids are the best available evidence to infer risk.
The prospective studies of flavonoids and risk of CVD are summarized in Table 3. The earliest international ecologic study suggested flavonoid intake may be associated with lower rates of CHD mortality [121]. While some studies report flavonoid intake is not associated with CHD incidence [122124], two other prospective studies suggested flavonoids may lower risk of MI [125, 126]. For stroke, the evidence is fairly consistent. Other than one small early study which found a significantly lower risk of stroke with higher total flavonoid intake [127], most studies indicated no association for risk of stroke [124, 128130]. However, most of these studies had insufficient power to adequately study stroke, nor enough power to stratify on various subtypes of stroke with different etiologies.
Table 3
Prospective Studies of Flavonoids and Cardiovascular Outcomes
Author
Year
Study type
N, Population
Follow-up Years
Flavonoid Type
CHD/MI Incidence
CHD/MI Mortality
Stroke Mortality
Comments:
Hertog [125, 142]*, Keli [127]
1993, 1996
Prospective
552 to 806 Men, Dutch
5, then 10*
Total Flavonoids
*Update 1997 analysis finds even stronger CHD association [142]
Knekt [131]
1996
Prospective
5133 M+W, Finland
26
Total Flavonoids
 
  
Rimm [123]
1996
Prospective
34789 Men, USA
6
Total Flavonoids
Null
↓*
 
*marginal significance, if past history of CVD
Hertog [133]
1997
Prospective
1900 Men, UK
14
Total Flavonoids
Null
↑*
 
*marginal significance, *milk consumed w/tea
Yochum [130]
1999
Prospective
34492 PostM women, Iowa
10
Total Flavonoids
 
Null
 
Hirvonen [126, 129]
2000, 2001
Prospective
23596 Men, Finland
6.1
Total Flavonoids
↓ MI
↓*
Null
*suggestive, but non-significant
Arts [143]
2001
Prospective
806 men, Dutch
10
Catechins (Flavonoid)
 
Null
 
Arts [128]
2001
Prospective
34492 PostM women, Iowa
13
Catechins (Flavonoid)
 
  
Geleinjse [122]
2002
Prospective
4807 M+W, Dutch
5.6
Total Tea Flavonoids
Null
  
Knekt [132]
2002
Prospective
10054 M+W Finland
28
Specific flavonoids
 
also ↓ type 2 diabetes
Sesso [124]
2003
Prospective
38445 women, USA
6.9
Total Flavonoids
Null
Null
Null
 
META-ANALYSIS (updated)**
Total Flavonoids → CHD Mortality
RR = 0.81 (95% CI: 0.71–0.92)*
(extreme tertiles)
**Updated meta-analysis includes: all studies of "total flavonoids" and CHD mortality; comparison of top vs. bottom tertile.
However, the most extensively consistent finding is the association between flavonoid intake and CHD mortality. A total of eight cohort studies found risk of lower CHD mortality with total or specific flavonoid intake [71, 121, 123, 125, 126, 128, 130132], with one study finding marginally protective association among men with prior CVD conditions [123]. Only one study reported absolutely no association between flavonoid intake and CHD mortality [133]. However, as noted by the authors of one of the studies, a high background consumption of milk with tea intake may have led to the null finding [133], since milk intake has been shown to prevent the intestinal absorption of flavonoids [76].
A meta-analysis of the 7 prospective studies prior to September 2001 found that, overall, flavonoids may be protective against CHD mortality [17]. However, this meta-analysis did not include a large subsequent cohort study of 38,445 women [124], which found a non-significant inverse association between flavonoid intake and CHD mortality. However, results from our updated meta-analysis still indicate a significant protective association exists between flavonoid intake and risk of CHD mortality, RR = 0.81 (95% CI: 0.71–0.92), comparing highest vs. lowest tertiles.
However, a limitation of inference exists in that flavonoids consists of a wide variety of polyphenol compounds, the variety of which may differ between studies due to varying sources of dietary flavonoids. Nonetheless, dark chocolate does contain substantially more flavanols than tea, apple, onions, and red wine [12]. Additionally, chocolate has all the flavonoids of tea [134], has 4 times the catechins of tea [134], has many flavonoids not found in tea [135], and substantially contributes to the total flavonoid intake in the diet of many countries [136]. However, inference from observational studies on the protective effect of flavonoids in chocolate on CVD risk is somewhat indirect and may need to be examined by further studies.
Overall, these epidemiologic findings, combined with the large body of evidence from short term randomized chocolate feeding trials, suggests flavonoid intake from chocolate is likely protective against CVD, particularly CHD mortality. Additionally, given that dark chocolate has substantially higher levels of flavonoids than milk chocolate, and that milk may inhibit absorption of flavonoids – it would be more prudent to consume high flavonoid dark chocolate rather than milk chocolate.

Conclusion

According to the International Cocoa Organization, production has risen from 1.2 million tons per year in 1960 to 3.2 million tons per year in 2004 [137]. Given the rapidly increasing world consumption of chocolate and rising global rates of CVD, it is important to establish chocolate's association with CVD risk. The projected increase in global consumption could have profound effects if chocolate consumption does have implications for CVD.
Based upon our systematic review, multiple lines of evidence from laboratory experiments and randomized trials suggest stearic acid may be neutral, while flavonoids are likely protective against CVD, the latter of which is well supported by prospective observational studies that suggest flavonoids may lower the risk of CHD mortality. Though it has been approximated that eating 50 g of dark chocolate per day may reduce one's risk of CVD by 10.5% (95% CI: 7.0%–13.5%) [16], such crude estimates were based on results from studies of short duration, extrapolated to long term CVD outcomes. Therefore, the highest priority now is to conduct long-term randomized feeding trials, beyond short term studies of CVD risk factor intermediates, in order to definitively investigate the impact of chocolate consumption on cardiovascular outcomes.

Acknowledgements

We'd like to thank Dr. Eric Rimm for his encouragement and support.
Open Access This article is published under license to BioMed Central Ltd. This is an Open Access article is distributed under the terms of the Creative Commons Attribution License ( https://​creativecommons.​org/​licenses/​by/​2.​0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Competing interests

The author(s) declare that they have no competing interests.

Authors' contributions

All authors contributed to systematically reviewing articles. E.L.D. led the drafting of the manuscript, insights into nutritional metabolism, and S.G. provided further insights into clinical disease etiology.
Anhänge

Authors’ original submitted files for images

Below are the links to the authors’ original submitted files for images.
Literatur
1.
Zurück zum Zitat American Heart Association: Heart Disease and Stroke Statistics: 2004 Update. 2003, Dallas, TX , American Heart Association American Heart Association: Heart Disease and Stroke Statistics: 2004 Update. 2003, Dallas, TX , American Heart Association
3.
Zurück zum Zitat Hu FB, Willett WC: Optimal diets for prevention of coronary heart disease. JAMA. 2002, 288 (20): 2569-2578. 10.1001/jama.288.20.2569. Hu FB, Willett WC: Optimal diets for prevention of coronary heart disease. JAMA. 2002, 288 (20): 2569-2578. 10.1001/jama.288.20.2569.
4.
Zurück zum Zitat Tanasescu M, Leitzmann MF, Rimm EB, Willett WC, Stampfer MJ, Hu FB: Exercise type and intensity in relation to coronary heart disease in men. JAMA. 2002, 288 (16): 1994-2000. 10.1001/jama.288.16.1994. Tanasescu M, Leitzmann MF, Rimm EB, Willett WC, Stampfer MJ, Hu FB: Exercise type and intensity in relation to coronary heart disease in men. JAMA. 2002, 288 (16): 1994-2000. 10.1001/jama.288.16.1994.
5.
Zurück zum Zitat Weisburger JH: Eat to live, not live to eat. Nutrition. 2000, 16 (9): 767-773. 10.1016/S0899-9007(00)00400-7. Weisburger JH: Eat to live, not live to eat. Nutrition. 2000, 16 (9): 767-773. 10.1016/S0899-9007(00)00400-7.
6.
Zurück zum Zitat Ding EL, Mozaffarian D: Optimal Dietary Habits for the Prevention of Stroke. Semin Neurol. 2006, 26 (1): In press Ding EL, Mozaffarian D: Optimal Dietary Habits for the Prevention of Stroke. Semin Neurol. 2006, 26 (1): In press
7.
Zurück zum Zitat Stampfer MJ, Hu FB, Manson JE, Rimm EB, Willett WC: Primary prevention of coronary heart disease in women through diet and lifestyle. N Engl J Med. 2000, 343 (1): 16-22. 10.1056/NEJM200007063430103. Stampfer MJ, Hu FB, Manson JE, Rimm EB, Willett WC: Primary prevention of coronary heart disease in women through diet and lifestyle. N Engl J Med. 2000, 343 (1): 16-22. 10.1056/NEJM200007063430103.
8.
Zurück zum Zitat Eyre H, Kahn R, Robertson RM, Clark NG, Doyle C, Hong Y, Gansler T, Glynn T, Smith RA, Taubert K, Thun MJ: Preventing cancer, cardiovascular disease, and diabetes: a common agenda for the American Cancer Society, the American Diabetes Association, and the American Heart Association. Stroke. 2004, 35 (8): 1999-2010. 10.1161/01.CIR.0000133321.00456.00. Eyre H, Kahn R, Robertson RM, Clark NG, Doyle C, Hong Y, Gansler T, Glynn T, Smith RA, Taubert K, Thun MJ: Preventing cancer, cardiovascular disease, and diabetes: a common agenda for the American Cancer Society, the American Diabetes Association, and the American Heart Association. Stroke. 2004, 35 (8): 1999-2010. 10.1161/01.CIR.0000133321.00456.00.
9.
Zurück zum Zitat Goldstein LB, Adams R, Becker K, Furberg CD, Gorelick PB, Hademenos G, Hill M, Howard G, Howard VJ, Jacobs B, Levine SR, Mosca L, Sacco RL, Sherman DG, Wolf PA, del Zoppo GJ: Primary prevention of ischemic stroke: A statement for healthcare professionals from the Stroke Council of the American Heart Association. Stroke. 2001, 32 (1): 280-299. Goldstein LB, Adams R, Becker K, Furberg CD, Gorelick PB, Hademenos G, Hill M, Howard G, Howard VJ, Jacobs B, Levine SR, Mosca L, Sacco RL, Sherman DG, Wolf PA, del Zoppo GJ: Primary prevention of ischemic stroke: A statement for healthcare professionals from the Stroke Council of the American Heart Association. Stroke. 2001, 32 (1): 280-299.
10.
Zurück zum Zitat U.S. Preventive Services Task Force. Guide to Clinical Preventive Services: Report of the U.S. Preventive Services Task Force. 1996, Baltimore, MD , Williams & Wilkins, xcii: 953- U.S. Preventive Services Task Force. Guide to Clinical Preventive Services: Report of the U.S. Preventive Services Task Force. 1996, Baltimore, MD , Williams & Wilkins, xcii: 953-
11.
Zurück zum Zitat Kris-Etherton PM, Keen CL: Evidence that the antioxidant flavonoids in tea and cocoa are beneficial for cardiovascular health. Curr Opin Lipidol. 2002, 13 (1): 41-49. 10.1097/00041433-200202000-00007. Kris-Etherton PM, Keen CL: Evidence that the antioxidant flavonoids in tea and cocoa are beneficial for cardiovascular health. Curr Opin Lipidol. 2002, 13 (1): 41-49. 10.1097/00041433-200202000-00007.
12.
Zurück zum Zitat Steinberg FM, Bearden MM, Keen CL: Cocoa and chocolate flavonoids: implications for cardiovascular health. J Am Diet Assoc. 2003, 103 (2): 215-223. 10.1053/jada.2003.50028. Steinberg FM, Bearden MM, Keen CL: Cocoa and chocolate flavonoids: implications for cardiovascular health. J Am Diet Assoc. 2003, 103 (2): 215-223. 10.1053/jada.2003.50028.
13.
Zurück zum Zitat Lee KW, Kim YJ, Lee HJ, Lee CY: Cocoa has more phenolic phytochemicals and a higher antioxidant capacity than teas and red wine. J Agric Food Chem. 2003, 51 (25): 7292-7295. 10.1021/jf0344385. Lee KW, Kim YJ, Lee HJ, Lee CY: Cocoa has more phenolic phytochemicals and a higher antioxidant capacity than teas and red wine. J Agric Food Chem. 2003, 51 (25): 7292-7295. 10.1021/jf0344385.
14.
Zurück zum Zitat Dillinger TL, Barriga P, Escarcega S, Jimenez M, Salazar Lowe D, Grivetti LE: Food of the gods: cure for humanity? A cultural history of the medicinal and ritual use of chocolate. J Nutr. 2000, 130 (8S Suppl): 2057S-72S. Dillinger TL, Barriga P, Escarcega S, Jimenez M, Salazar Lowe D, Grivetti LE: Food of the gods: cure for humanity? A cultural history of the medicinal and ritual use of chocolate. J Nutr. 2000, 130 (8S Suppl): 2057S-72S.
15.
Zurück zum Zitat Weisburger JH: Chemopreventive effects of cocoa polyphenols on chronic diseases. Exp Biol Med (Maywood). 2001, 226 (10): 891-897. Weisburger JH: Chemopreventive effects of cocoa polyphenols on chronic diseases. Exp Biol Med (Maywood). 2001, 226 (10): 891-897.
16.
Zurück zum Zitat Franco OH, Bonneux L, de Laet C, Peeters A, Steyerberg EW, Mackenbach JP: The Polymeal: a more natural, safer, and probably tastier (than the Polypill) strategy to reduce cardiovascular disease by more than 75%. Bmj. 2004, 329 (7480): 1447-1450. 10.1136/bmj.329.7480.1447. Franco OH, Bonneux L, de Laet C, Peeters A, Steyerberg EW, Mackenbach JP: The Polymeal: a more natural, safer, and probably tastier (than the Polypill) strategy to reduce cardiovascular disease by more than 75%. Bmj. 2004, 329 (7480): 1447-1450. 10.1136/bmj.329.7480.1447.
17.
Zurück zum Zitat Huxley RR, Neil HA: The relation between dietary flavonol intake and coronary heart disease mortality: a meta-analysis of prospective cohort studies. Eur J Clin Nutr. 2003, 57 (8): 904-908. 10.1038/sj.ejcn.1601624. Huxley RR, Neil HA: The relation between dietary flavonol intake and coronary heart disease mortality: a meta-analysis of prospective cohort studies. Eur J Clin Nutr. 2003, 57 (8): 904-908. 10.1038/sj.ejcn.1601624.
18.
Zurück zum Zitat DerSimonian R, Laird N: Meta-analysis in clinical trials. Control Clin Trials. 1986, 7 (3): 177-188. 10.1016/0197-2456(86)90046-2. DerSimonian R, Laird N: Meta-analysis in clinical trials. Control Clin Trials. 1986, 7 (3): 177-188. 10.1016/0197-2456(86)90046-2.
19.
Zurück zum Zitat Kris-Etherton PM, Mustad V, Derr J: Effects of dietary stearic acid on plasma lipids and thrombosis. Nutrition Today. 1993 Kris-Etherton PM, Mustad V, Derr J: Effects of dietary stearic acid on plasma lipids and thrombosis. Nutrition Today. 1993
21.
Zurück zum Zitat Keys A, Anderson JT, Grande F: Prediction of serum-cholesterol responses of man to changes in fats in the diet. Lancet. 1957, 273 (7003): 959-966. 10.1016/S0140-6736(57)91998-0. Keys A, Anderson JT, Grande F: Prediction of serum-cholesterol responses of man to changes in fats in the diet. Lancet. 1957, 273 (7003): 959-966. 10.1016/S0140-6736(57)91998-0.
22.
Zurück zum Zitat Hegsted DM, McGandy RB, Myers ML, Stare FJ: Quantitative effects of dietary fat on serum cholesterol in man. Am J Clin Nutr. 1965, 17 (5): 281-295. Hegsted DM, McGandy RB, Myers ML, Stare FJ: Quantitative effects of dietary fat on serum cholesterol in man. Am J Clin Nutr. 1965, 17 (5): 281-295.
23.
Zurück zum Zitat Hu FB, Manson JE, Willett WC: Types of dietary fat and risk of coronary heart disease: a critical review. J Am Coll Nutr. 2001, 20 (1): 5-19. Hu FB, Manson JE, Willett WC: Types of dietary fat and risk of coronary heart disease: a critical review. J Am Coll Nutr. 2001, 20 (1): 5-19.
24.
Zurück zum Zitat Bonanome A, Grundy SM: Effect of dietary stearic acid on plasma cholesterol and lipoprotein levels. N Engl J Med. 1988, 318 (19): 1244-1248. Bonanome A, Grundy SM: Effect of dietary stearic acid on plasma cholesterol and lipoprotein levels. N Engl J Med. 1988, 318 (19): 1244-1248.
25.
Zurück zum Zitat Kris-Etherton PM, Mustad VA: Chocolate feeding studies: a novel approach for evaluating the plasma lipid effects of stearic acid. Am J Clin Nutr. 1994, 60 (6 Suppl): 1029S-1036S. Kris-Etherton PM, Mustad VA: Chocolate feeding studies: a novel approach for evaluating the plasma lipid effects of stearic acid. Am J Clin Nutr. 1994, 60 (6 Suppl): 1029S-1036S.
26.
Zurück zum Zitat Mensink RP, Zock PL, Kester AD, Katan MB: Effects of dietary fatty acids and carbohydrates on the ratio of serum total to HDL cholesterol and on serum lipids and apolipoproteins: a meta-analysis of 60 controlled trials. Am J Clin Nutr. 2003, 77 (5): 1146-1155. Mensink RP, Zock PL, Kester AD, Katan MB: Effects of dietary fatty acids and carbohydrates on the ratio of serum total to HDL cholesterol and on serum lipids and apolipoproteins: a meta-analysis of 60 controlled trials. Am J Clin Nutr. 2003, 77 (5): 1146-1155.
27.
Zurück zum Zitat Kris-Etherton PM, Yu S: Individual fatty acid effects on plasma lipids and lipoproteins: human studies. Am J Clin Nutr. 1997, 65 (5 Suppl): 1628S-1644S. Kris-Etherton PM, Yu S: Individual fatty acid effects on plasma lipids and lipoproteins: human studies. Am J Clin Nutr. 1997, 65 (5 Suppl): 1628S-1644S.
28.
Zurück zum Zitat Storm H, Thomsen C, Pedersen E, Rasmussen O, Christiansen C, Hermansen K: Comparison of a carbohydrate-rich diet and diets rich in stearic or palmitic acid in NIDDM patients. Effects on lipids, glycemic control, and diurnal blood pressure. Diabetes Care. 1997, 20 (12): 1807-1813. Storm H, Thomsen C, Pedersen E, Rasmussen O, Christiansen C, Hermansen K: Comparison of a carbohydrate-rich diet and diets rich in stearic or palmitic acid in NIDDM patients. Effects on lipids, glycemic control, and diurnal blood pressure. Diabetes Care. 1997, 20 (12): 1807-1813.
29.
Zurück zum Zitat Thijssen MA, Mensink RP: Small differences in the effects of stearic acid, oleic acid, and linoleic acid on the serum lipoprotein profile of humans. Am J Clin Nutr. 2005, 82 (3): 510-516. Thijssen MA, Mensink RP: Small differences in the effects of stearic acid, oleic acid, and linoleic acid on the serum lipoprotein profile of humans. Am J Clin Nutr. 2005, 82 (3): 510-516.
30.
Zurück zum Zitat Dougherty RM, Allman MA, Iacono JM: Effects of diets containing high or low amounts of stearic acid on plasma lipoprotein fractions and fecal fatty acid excretion of men. Am J Clin Nutr. 1995, 61 (5): 1120-1128. Dougherty RM, Allman MA, Iacono JM: Effects of diets containing high or low amounts of stearic acid on plasma lipoprotein fractions and fecal fatty acid excretion of men. Am J Clin Nutr. 1995, 61 (5): 1120-1128.
31.
Zurück zum Zitat Jones AE, Stolinski M, Smith RD, Murphy JL, Wootton SA: Effect of fatty acid chain length and saturation on the gastrointestinal handling and metabolic disposal of dietary fatty acids in women. Br J Nutr. 1999, 81 (1): 37-43. Jones AE, Stolinski M, Smith RD, Murphy JL, Wootton SA: Effect of fatty acid chain length and saturation on the gastrointestinal handling and metabolic disposal of dietary fatty acids in women. Br J Nutr. 1999, 81 (1): 37-43.
32.
Zurück zum Zitat Baer DJ, Judd JT, Kris-Etherton PM, Zhao G, Emken EA: Stearic acid absorption and its metabolizable energy value are minimally lower than those of other fatty acids in healthy men fed mixed diets. J Nutr. 2003, 133 (12): 4129-4134. Baer DJ, Judd JT, Kris-Etherton PM, Zhao G, Emken EA: Stearic acid absorption and its metabolizable energy value are minimally lower than those of other fatty acids in healthy men fed mixed diets. J Nutr. 2003, 133 (12): 4129-4134.
33.
Zurück zum Zitat Denke MA, Grundy SM: Effects of fats high in stearic acid on lipid and lipoprotein concentrations in men. Am J Clin Nutr. 1991, 54 (6): 1036-1040. Denke MA, Grundy SM: Effects of fats high in stearic acid on lipid and lipoprotein concentrations in men. Am J Clin Nutr. 1991, 54 (6): 1036-1040.
34.
Zurück zum Zitat Bonanome A, Grundy SM: Intestinal absorption of stearic acid after consumption of high fat meals in humans. J Nutr. 1989, 119 (11): 1556-1560. Bonanome A, Grundy SM: Intestinal absorption of stearic acid after consumption of high fat meals in humans. J Nutr. 1989, 119 (11): 1556-1560.
35.
Zurück zum Zitat Emken EA, Adlof RO, Rohwedder WK, Gulley RM: Influence of linoleic acid on desaturation and uptake of deuterium-labeled palmitic and stearic acids in humans. Biochim Biophys Acta. 1993, 1170 (2): 173-181. Emken EA, Adlof RO, Rohwedder WK, Gulley RM: Influence of linoleic acid on desaturation and uptake of deuterium-labeled palmitic and stearic acids in humans. Biochim Biophys Acta. 1993, 1170 (2): 173-181.
36.
Zurück zum Zitat Nestel PJ, Pomeroy S, Kay S, Sasahara T, Yamashita T: Effect of a stearic acid-rich, structured triacylglycerol on plasma lipid concentrations. Am J Clin Nutr. 1998, 68 (6): 1196-1201. Nestel PJ, Pomeroy S, Kay S, Sasahara T, Yamashita T: Effect of a stearic acid-rich, structured triacylglycerol on plasma lipid concentrations. Am J Clin Nutr. 1998, 68 (6): 1196-1201.
37.
Zurück zum Zitat Brink EJ, Haddeman E, de Fouw NJ, Weststrate JA: Positional distribution of stearic acid and oleic acid in a triacylglycerol and dietary calcium concentration determines the apparent absorption of these fatty acids in rats. J Nutr. 1995, 125 (9): 2379-2387. Brink EJ, Haddeman E, de Fouw NJ, Weststrate JA: Positional distribution of stearic acid and oleic acid in a triacylglycerol and dietary calcium concentration determines the apparent absorption of these fatty acids in rats. J Nutr. 1995, 125 (9): 2379-2387.
38.
Zurück zum Zitat Li D: Relationship between the concentrations of plasma phospholipid stearic acid and plasma lipoprotein lipids in healthy men. Clin Sci (Lond). 2001, 100 (1): 25-32. Li D: Relationship between the concentrations of plasma phospholipid stearic acid and plasma lipoprotein lipids in healthy men. Clin Sci (Lond). 2001, 100 (1): 25-32.
39.
Zurück zum Zitat Mitchell DC, McMahon KE, Shively CA, Apgar JL, Kris-Etherton PM: Digestibility of cocoa butter and corn oil in human subjects: a preliminary study. Am J Clin Nutr. 1989, 50 (5): 983-986. Mitchell DC, McMahon KE, Shively CA, Apgar JL, Kris-Etherton PM: Digestibility of cocoa butter and corn oil in human subjects: a preliminary study. Am J Clin Nutr. 1989, 50 (5): 983-986.
40.
Zurück zum Zitat Shahkhalili Y, Duruz E, Acheson K: Digestibility of cocoa butter from chocolate in humans: a comparison with corn-oil. Eur J Clin Nutr. 2000, 54 (2): 120-125. 10.1038/sj.ejcn.1600905. Shahkhalili Y, Duruz E, Acheson K: Digestibility of cocoa butter from chocolate in humans: a comparison with corn-oil. Eur J Clin Nutr. 2000, 54 (2): 120-125. 10.1038/sj.ejcn.1600905.
41.
Zurück zum Zitat Shahkhalili Y, Murset C, Meirim I, Duruz E, Guinchard S, Cavadini C, Acheson K: Calcium supplementation of chocolate: effect on cocoa butter digestibility and blood lipids in humans. Am J Clin Nutr. 2001, 73 (2): 246-252. Shahkhalili Y, Murset C, Meirim I, Duruz E, Guinchard S, Cavadini C, Acheson K: Calcium supplementation of chocolate: effect on cocoa butter digestibility and blood lipids in humans. Am J Clin Nutr. 2001, 73 (2): 246-252.
42.
Zurück zum Zitat Grundy SM: Influence of stearic acid on cholesterol metabolism relative to other long-chain fatty acids. Am J Clin Nutr. 1994, 60 (6 Suppl): 986S-990S. Grundy SM: Influence of stearic acid on cholesterol metabolism relative to other long-chain fatty acids. Am J Clin Nutr. 1994, 60 (6 Suppl): 986S-990S.
43.
Zurück zum Zitat Bonanome A, Bennett M, Grundy SM: Metabolic effects of dietary stearic acid in mice: changes in the fatty acid composition of triglycerides and phospholipids in various tissues. Atherosclerosis. 1992, 94 (2-3): 119-127. 10.1016/0021-9150(92)90236-A. Bonanome A, Bennett M, Grundy SM: Metabolic effects of dietary stearic acid in mice: changes in the fatty acid composition of triglycerides and phospholipids in various tissues. Atherosclerosis. 1992, 94 (2-3): 119-127. 10.1016/0021-9150(92)90236-A.
44.
Zurück zum Zitat Elovson J: Conversions of palmitic and stearic acid in the intact rat. Biochim Biophys Acta. 1965, 106 (2): 291-303. Elovson J: Conversions of palmitic and stearic acid in the intact rat. Biochim Biophys Acta. 1965, 106 (2): 291-303.
45.
Zurück zum Zitat Rhee SK, Kayani AJ, Ciszek A, Brenna JT: Desaturation and interconversion of dietary stearic and palmitic acids in human plasma and lipoproteins. Am J Clin Nutr. 1997, 65 (2): 451-458. Rhee SK, Kayani AJ, Ciszek A, Brenna JT: Desaturation and interconversion of dietary stearic and palmitic acids in human plasma and lipoproteins. Am J Clin Nutr. 1997, 65 (2): 451-458.
46.
Zurück zum Zitat Mattson FH, Grundy SM: Comparison of effects of dietary saturated, monounsaturated, and polyunsaturated fatty acids on plasma lipids and lipoproteins in man. J Lipid Res. 1985, 26 (2): 194-202. Mattson FH, Grundy SM: Comparison of effects of dietary saturated, monounsaturated, and polyunsaturated fatty acids on plasma lipids and lipoproteins in man. J Lipid Res. 1985, 26 (2): 194-202.
47.
Zurück zum Zitat Kris-Etherton PM, Pearson TA, Wan Y, Hargrove RL, Moriarty K, Fishell V, Etherton TD: High-monounsaturated fatty acid diets lower both plasma cholesterol and triacylglycerol concentrations. Am J Clin Nutr. 1999, 70 (6): 1009-1015. Kris-Etherton PM, Pearson TA, Wan Y, Hargrove RL, Moriarty K, Fishell V, Etherton TD: High-monounsaturated fatty acid diets lower both plasma cholesterol and triacylglycerol concentrations. Am J Clin Nutr. 1999, 70 (6): 1009-1015.
48.
Zurück zum Zitat Kris-Etherton PM, Binkoski AE, Zhao G, Coval SM, Clemmer KF, Hecker KD, Jacques H, Etherton TD: Dietary fat: assessing the evidence in support of a moderate-fat diet; the benchmark based on lipoprotein metabolism. Proc Nutr Soc. 2002, 61 (2): 287-298. 10.1079/PNS2002157. Kris-Etherton PM, Binkoski AE, Zhao G, Coval SM, Clemmer KF, Hecker KD, Jacques H, Etherton TD: Dietary fat: assessing the evidence in support of a moderate-fat diet; the benchmark based on lipoprotein metabolism. Proc Nutr Soc. 2002, 61 (2): 287-298. 10.1079/PNS2002157.
49.
Zurück zum Zitat Kris-Etherton P, Daniels SR, Eckel RH, Engler M, Howard BV, Krauss RM, Lichtenstein AH, Sacks F, St Jeor S, Stampfer M, Eckel RH, Grundy SM, Appel LJ, Byers T, Campos H, Cooney G, Denke MA, Howard BV, Kennedy E, Krauss RM, Kris-Etherton P, Lichtenstein AH, Marckmann P, Pearson TA, Riccardi G, Rudel LL, Rudrum M, Sacks F, Stein DT, Tracy RP, Ursin V, Vogel RA, Zock PL, Bazzarre TL, Clark J: Summary of the scientific conference on dietary fatty acids and cardiovascular health: conference summary from the nutrition committee of the American Heart Association. Circulation. 2001, 103 (7): 1034-1039. Kris-Etherton P, Daniels SR, Eckel RH, Engler M, Howard BV, Krauss RM, Lichtenstein AH, Sacks F, St Jeor S, Stampfer M, Eckel RH, Grundy SM, Appel LJ, Byers T, Campos H, Cooney G, Denke MA, Howard BV, Kennedy E, Krauss RM, Kris-Etherton P, Lichtenstein AH, Marckmann P, Pearson TA, Riccardi G, Rudel LL, Rudrum M, Sacks F, Stein DT, Tracy RP, Ursin V, Vogel RA, Zock PL, Bazzarre TL, Clark J: Summary of the scientific conference on dietary fatty acids and cardiovascular health: conference summary from the nutrition committee of the American Heart Association. Circulation. 2001, 103 (7): 1034-1039.
50.
Zurück zum Zitat Kelly FD, Sinclair AJ, Mann NJ, Turner AH, Abedin L, Li D: A stearic acid-rich diet improves thrombogenic and atherogenic risk factor profiles in healthy males. Eur J Clin Nutr. 2001, 55 (2): 88-96. 10.1038/sj.ejcn.1601122. Kelly FD, Sinclair AJ, Mann NJ, Turner AH, Abedin L, Li D: A stearic acid-rich diet improves thrombogenic and atherogenic risk factor profiles in healthy males. Eur J Clin Nutr. 2001, 55 (2): 88-96. 10.1038/sj.ejcn.1601122.
51.
Zurück zum Zitat Kelly FD, Sinclair AJ, Mann NJ, Turner AH, Raffin FL, Blandford MV, Pike MJ: Short-term diets enriched in stearic or palmitic acids do not alter plasma lipids, platelet aggregation or platelet activation status. Eur J Clin Nutr. 2002, 56 (6): 490-499. 10.1038/sj.ejcn.1601332. Kelly FD, Sinclair AJ, Mann NJ, Turner AH, Raffin FL, Blandford MV, Pike MJ: Short-term diets enriched in stearic or palmitic acids do not alter plasma lipids, platelet aggregation or platelet activation status. Eur J Clin Nutr. 2002, 56 (6): 490-499. 10.1038/sj.ejcn.1601332.
52.
Zurück zum Zitat Meade TW, Mellows S, Brozovic M, Miller GJ, Chakrabarti RR, North WR, Haines AP, Stirling Y, Imeson JD, Thompson SG: Haemostatic function and ischaemic heart disease: principal results of the Northwick Park Heart Study. Lancet. 1986, 2 (8506): 533-537. 10.1016/S0140-6736(86)90111-X. Meade TW, Mellows S, Brozovic M, Miller GJ, Chakrabarti RR, North WR, Haines AP, Stirling Y, Imeson JD, Thompson SG: Haemostatic function and ischaemic heart disease: principal results of the Northwick Park Heart Study. Lancet. 1986, 2 (8506): 533-537. 10.1016/S0140-6736(86)90111-X.
53.
Zurück zum Zitat Meade TW, Ruddock V, Stirling Y, Chakrabarti R, Miller GJ: Fibrinolytic activity, clotting factors, and long-term incidence of ischaemic heart disease in the Northwick Park Heart Study. Lancet. 1993, 342 (8879): 1076-1079. 10.1016/0140-6736(93)92062-X. Meade TW, Ruddock V, Stirling Y, Chakrabarti R, Miller GJ: Fibrinolytic activity, clotting factors, and long-term incidence of ischaemic heart disease in the Northwick Park Heart Study. Lancet. 1993, 342 (8879): 1076-1079. 10.1016/0140-6736(93)92062-X.
54.
Zurück zum Zitat Assmann G, Cullen P, Heinrich J, Schulte H: Hemostatic variables in the prediction of coronary risk: results of the 8 year follow-up of healthy men in the Munster Heart Study (PROCAM). Prospective Cardiovascular Munster Study. Isr J Med Sci. 1996, 32 (6): 364-370. Assmann G, Cullen P, Heinrich J, Schulte H: Hemostatic variables in the prediction of coronary risk: results of the 8 year follow-up of healthy men in the Munster Heart Study (PROCAM). Prospective Cardiovascular Munster Study. Isr J Med Sci. 1996, 32 (6): 364-370.
55.
Zurück zum Zitat Mitropoulos KA, Miller GJ, Martin JC, Reeves BE, Cooper J: Dietary fat induces changes in factor VII coagulant activity through effects on plasma free stearic acid concentration. Arterioscler Thromb. 1994, 14 (2): 214-222. Mitropoulos KA, Miller GJ, Martin JC, Reeves BE, Cooper J: Dietary fat induces changes in factor VII coagulant activity through effects on plasma free stearic acid concentration. Arterioscler Thromb. 1994, 14 (2): 214-222.
56.
Zurück zum Zitat Mutanen M, Aro A: Coagulation and fibrinolysis factors in healthy subjects consuming high stearic or trans fatty acid diets. Thromb Haemost. 1997, 77 (1): 99-104. Mutanen M, Aro A: Coagulation and fibrinolysis factors in healthy subjects consuming high stearic or trans fatty acid diets. Thromb Haemost. 1997, 77 (1): 99-104.
57.
Zurück zum Zitat Tholstrup T, Marckmann P, Vessby B, Sandstrom B: Effect of fats high in individual saturated fatty acids on plasma lipoprotein[a] levels in young healthy men. J Lipid Res. 1995, 36 (7): 1447-1452. Tholstrup T, Marckmann P, Vessby B, Sandstrom B: Effect of fats high in individual saturated fatty acids on plasma lipoprotein[a] levels in young healthy men. J Lipid Res. 1995, 36 (7): 1447-1452.
58.
Zurück zum Zitat Tholstrup T, Marckmann P, Jespersen J, Sandstrom B: Fat high in stearic acid favorably affects blood lipids and factor VII coagulant activity in comparison with fats high in palmitic acid or high in myristic and lauric acids. Am J Clin Nutr. 1994, 59 (2): 371-377. Tholstrup T, Marckmann P, Jespersen J, Sandstrom B: Fat high in stearic acid favorably affects blood lipids and factor VII coagulant activity in comparison with fats high in palmitic acid or high in myristic and lauric acids. Am J Clin Nutr. 1994, 59 (2): 371-377.
59.
Zurück zum Zitat Zock PL, Blijlevens RA, de Vries JH, Katan MB: Effects of stearic acid and trans fatty acids versus linoleic acid on blood pressure in normotensive women and men. Eur J Clin Nutr. 1993, 47 (6): 437-444. Zock PL, Blijlevens RA, de Vries JH, Katan MB: Effects of stearic acid and trans fatty acids versus linoleic acid on blood pressure in normotensive women and men. Eur J Clin Nutr. 1993, 47 (6): 437-444.
60.
Zurück zum Zitat Simon JA, Fong J, Bernert JTJ: Serum fatty acids and blood pressure. Hypertension. 1996, 27 (2): 303-307. Simon JA, Fong J, Bernert JTJ: Serum fatty acids and blood pressure. Hypertension. 1996, 27 (2): 303-307.
61.
Zurück zum Zitat Hojo N, Fukushima T, Isobe A, Gao T, Shiwaku K, Ishida K, Ohta N, Yamane Y: Effect of serum fatty acid composition on coronary atherosclerosis in Japan. Int J Cardiol. 1998, 66 (1): 31-38. 10.1016/S0167-5273(98)00199-5. Hojo N, Fukushima T, Isobe A, Gao T, Shiwaku K, Ishida K, Ohta N, Yamane Y: Effect of serum fatty acid composition on coronary atherosclerosis in Japan. Int J Cardiol. 1998, 66 (1): 31-38. 10.1016/S0167-5273(98)00199-5.
62.
Zurück zum Zitat Yli-Jama P, Meyer HE, Ringstad J, Pedersen JI: Serum free fatty acid pattern and risk of myocardial infarction: a case-control study. J Intern Med. 2002, 251 (1): 19-28. 10.1046/j.1365-2796.2002.00922.x. Yli-Jama P, Meyer HE, Ringstad J, Pedersen JI: Serum free fatty acid pattern and risk of myocardial infarction: a case-control study. J Intern Med. 2002, 251 (1): 19-28. 10.1046/j.1365-2796.2002.00922.x.
63.
Zurück zum Zitat Kabagambe EK, Baylin A, Siles X, Campos H: Individual saturated fatty acids and nonfatal acute myocardial infarction in Costa Rica. Eur J Clin Nutr. 2003, 57 (11): 1447-1457. 10.1038/sj.ejcn.1601709. Kabagambe EK, Baylin A, Siles X, Campos H: Individual saturated fatty acids and nonfatal acute myocardial infarction in Costa Rica. Eur J Clin Nutr. 2003, 57 (11): 1447-1457. 10.1038/sj.ejcn.1601709.
64.
Zurück zum Zitat Willett WC: Nutritional Epidemiology. 1998, Oxford , Oxford University Press, 2nd Edition Willett WC: Nutritional Epidemiology. 1998, Oxford , Oxford University Press, 2nd Edition
65.
Zurück zum Zitat Hu FB, Stampfer MJ, Manson JE, Ascherio A, Colditz GA, Speizer FE, Hennekens CH, Willett WC: Dietary saturated fats and their food sources in relation to the risk of coronary heart disease in women. Am J Clin Nutr. 1999, 70 (6): 1001-1008. Hu FB, Stampfer MJ, Manson JE, Ascherio A, Colditz GA, Speizer FE, Hennekens CH, Willett WC: Dietary saturated fats and their food sources in relation to the risk of coronary heart disease in women. Am J Clin Nutr. 1999, 70 (6): 1001-1008.
66.
Zurück zum Zitat Wang L, Folsom AR, Eckfeldt JH: Plasma fatty acid composition and incidence of coronary heart disease in middle aged adults: the Atherosclerosis Risk in Communities (ARIC) Study. Nutr Metab Cardiovasc Dis. 2003, 13 (5): 256-266. 10.1016/S0939-4753(03)80029-7. Wang L, Folsom AR, Eckfeldt JH: Plasma fatty acid composition and incidence of coronary heart disease in middle aged adults: the Atherosclerosis Risk in Communities (ARIC) Study. Nutr Metab Cardiovasc Dis. 2003, 13 (5): 256-266. 10.1016/S0939-4753(03)80029-7.
67.
Zurück zum Zitat Watts GF, Jackson P, Burke V, Lewis B: Dietary fatty acids and progression of coronary artery disease in men. Am J Clin Nutr. 1996, 64 (2): 202-209. Watts GF, Jackson P, Burke V, Lewis B: Dietary fatty acids and progression of coronary artery disease in men. Am J Clin Nutr. 1996, 64 (2): 202-209.
68.
Zurück zum Zitat Simon JA, Hodgkins ML, Browner WS, Neuhaus JM, Bernert JTJ, Hulley SB: Serum fatty acids and the risk of coronary heart disease. Am J Epidemiol. 1995, 142 (5): 469-476. Simon JA, Hodgkins ML, Browner WS, Neuhaus JM, Bernert JTJ, Hulley SB: Serum fatty acids and the risk of coronary heart disease. Am J Epidemiol. 1995, 142 (5): 469-476.
69.
Zurück zum Zitat Simon JA, Fong J, Bernert JTJ, Browner WS: Serum fatty acids and the risk of stroke. Stroke. 1995, 26 (5): 778-782. Simon JA, Fong J, Bernert JTJ, Browner WS: Serum fatty acids and the risk of stroke. Stroke. 1995, 26 (5): 778-782.
70.
Zurück zum Zitat Gu L, Kelm MA, Hammerstone JF, Beecher G, Holden J, Haytowitz D, Gebhardt S, Prior RL: Concentrations of proanthocyanidins in common foods and estimations of normal consumption. J Nutr. 2004, 134 (3): 613-617. Gu L, Kelm MA, Hammerstone JF, Beecher G, Holden J, Haytowitz D, Gebhardt S, Prior RL: Concentrations of proanthocyanidins in common foods and estimations of normal consumption. J Nutr. 2004, 134 (3): 613-617.
71.
Zurück zum Zitat Arts IC, Hollman PC, Feskens EJ, Bueno de Mesquita HB, Kromhout D: Catechin intake and associated dietary and lifestyle factors in a representative sample of Dutch men and women. Eur J Clin Nutr. 2001, 55 (2): 76-81. 10.1038/sj.ejcn.1601115. Arts IC, Hollman PC, Feskens EJ, Bueno de Mesquita HB, Kromhout D: Catechin intake and associated dietary and lifestyle factors in a representative sample of Dutch men and women. Eur J Clin Nutr. 2001, 55 (2): 76-81. 10.1038/sj.ejcn.1601115.
72.
Zurück zum Zitat Ross JA, Kasum CM: Dietary flavonoids: bioavailability, metabolic effects, and safety. Annu Rev Nutr. 2002, 22: 19-34. 10.1146/annurev.nutr.22.111401.144957. Ross JA, Kasum CM: Dietary flavonoids: bioavailability, metabolic effects, and safety. Annu Rev Nutr. 2002, 22: 19-34. 10.1146/annurev.nutr.22.111401.144957.
73.
Zurück zum Zitat Tapiero H, Tew KD, Ba GN, Mathe G: Polyphenols: do they play a role in the prevention of human pathologies?. Biomed Pharmacother. 2002, 56 (4): 200-207. 10.1016/S0753-3322(02)00178-6. Tapiero H, Tew KD, Ba GN, Mathe G: Polyphenols: do they play a role in the prevention of human pathologies?. Biomed Pharmacother. 2002, 56 (4): 200-207. 10.1016/S0753-3322(02)00178-6.
74.
Zurück zum Zitat Natsume M, Osakabe N, Yamagishi M, Takizawa T, Nakamura T, Miyatake H, Hatano T, Yoshida T: Analyses of polyphenols in cacao liquor, cocoa, and chocolate by normal-phase and reversed-phase HPLC. Biosci Biotechnol Biochem. 2000, 64 (12): 2581-2587. 10.1271/bbb.64.2581. Natsume M, Osakabe N, Yamagishi M, Takizawa T, Nakamura T, Miyatake H, Hatano T, Yoshida T: Analyses of polyphenols in cacao liquor, cocoa, and chocolate by normal-phase and reversed-phase HPLC. Biosci Biotechnol Biochem. 2000, 64 (12): 2581-2587. 10.1271/bbb.64.2581.
75.
Zurück zum Zitat Vinson JA, Proch J, Zubik L: Phenol antioxidant quantity and quality in foods: cocoa, dark chocolate, and milk chocolate. J Agric Food Chem. 1999, 47 (12): 4821-4824. 10.1021/jf990312p. Vinson JA, Proch J, Zubik L: Phenol antioxidant quantity and quality in foods: cocoa, dark chocolate, and milk chocolate. J Agric Food Chem. 1999, 47 (12): 4821-4824. 10.1021/jf990312p.
76.
Zurück zum Zitat Serafini M, Bugianesi R, Maiani G, Valtuena S, De Santis S, Crozier A: Plasma antioxidants from chocolate. Nature. 2003, 424 (6952): 1013-10.1038/4241013a. Serafini M, Bugianesi R, Maiani G, Valtuena S, De Santis S, Crozier A: Plasma antioxidants from chocolate. Nature. 2003, 424 (6952): 1013-10.1038/4241013a.
77.
Zurück zum Zitat Hammerstone JF, Lazarus SA, Schmitz HH: Procyanidin content and variation in some commonly consumed foods. J Nutr. 2000, 130 (8S Suppl): 2086S-92S. Hammerstone JF, Lazarus SA, Schmitz HH: Procyanidin content and variation in some commonly consumed foods. J Nutr. 2000, 130 (8S Suppl): 2086S-92S.
78.
Zurück zum Zitat Richelle M, Tavazzi I, Enslen M, Offord EA: Plasma kinetics in man of epicatechin from black chocolate. Eur J Clin Nutr. 1999, 53 (1): 22-26. 10.1038/sj.ejcn.1600673. Richelle M, Tavazzi I, Enslen M, Offord EA: Plasma kinetics in man of epicatechin from black chocolate. Eur J Clin Nutr. 1999, 53 (1): 22-26. 10.1038/sj.ejcn.1600673.
79.
Zurück zum Zitat Wang JF, Schramm DD, Holt RR, Ensunsa JL, Fraga CG, Schmitz HH, Keen CL: A dose-response effect from chocolate consumption on plasma epicatechin and oxidative damage. J Nutr. 2000, 130 (8S Suppl): 2115S-9S. Wang JF, Schramm DD, Holt RR, Ensunsa JL, Fraga CG, Schmitz HH, Keen CL: A dose-response effect from chocolate consumption on plasma epicatechin and oxidative damage. J Nutr. 2000, 130 (8S Suppl): 2115S-9S.
80.
Zurück zum Zitat Rice-Evans CA, Miller NJ, Paganga G: Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic Biol Med. 1996, 20 (7): 933-956. 10.1016/0891-5849(95)02227-9. Rice-Evans CA, Miller NJ, Paganga G: Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic Biol Med. 1996, 20 (7): 933-956. 10.1016/0891-5849(95)02227-9.
81.
Zurück zum Zitat Osakabe N, Natsume M, Adachi T, Yamagishi M, Hirano R, Takizawa T, Itakura H, Kondo K: Effects of cacao liquor polyphenols on the susceptibility of low-density lipoprotein to oxidation in hypercholesterolemic rabbits. J Atheroscler Thromb. 2000, 7 (3): 164-168. Osakabe N, Natsume M, Adachi T, Yamagishi M, Hirano R, Takizawa T, Itakura H, Kondo K: Effects of cacao liquor polyphenols on the susceptibility of low-density lipoprotein to oxidation in hypercholesterolemic rabbits. J Atheroscler Thromb. 2000, 7 (3): 164-168.
82.
Zurück zum Zitat Osakabe N, Yasuda A, Natsume M, Takizawa T, Terao J, Kondo K: Catechins and their oligomers linked by C4 --> C8 bonds are major cacao polyphenols and protect low-density lipoprotein from oxidation in vitro. Exp Biol Med (Maywood). 2002, 227 (1): 51-56. Osakabe N, Yasuda A, Natsume M, Takizawa T, Terao J, Kondo K: Catechins and their oligomers linked by C4 --> C8 bonds are major cacao polyphenols and protect low-density lipoprotein from oxidation in vitro. Exp Biol Med (Maywood). 2002, 227 (1): 51-56.
83.
Zurück zum Zitat Kondo K, Hirano R, Matsumoto A, Igarashi O, Itakura H: Inhibition of LDL oxidation by cocoa. Lancet. 1996, 348 (9040): 1514-10.1016/S0140-6736(05)65927-2. Kondo K, Hirano R, Matsumoto A, Igarashi O, Itakura H: Inhibition of LDL oxidation by cocoa. Lancet. 1996, 348 (9040): 1514-10.1016/S0140-6736(05)65927-2.
84.
Zurück zum Zitat Waterhouse AL, Shirley JR, Donovan JL: Antioxidants in chocolate. Lancet. 1996, 348 (9030): 834-10.1016/S0140-6736(05)65262-2. Waterhouse AL, Shirley JR, Donovan JL: Antioxidants in chocolate. Lancet. 1996, 348 (9030): 834-10.1016/S0140-6736(05)65262-2.
85.
Zurück zum Zitat Wan Y, Vinson JA, Etherton TD, Proch J, Lazarus SA, Kris-Etherton PM: Effects of cocoa powder and dark chocolate on LDL oxidative susceptibility and prostaglandin concentrations in humans. Am J Clin Nutr. 2001, 74 (5): 596-602. Wan Y, Vinson JA, Etherton TD, Proch J, Lazarus SA, Kris-Etherton PM: Effects of cocoa powder and dark chocolate on LDL oxidative susceptibility and prostaglandin concentrations in humans. Am J Clin Nutr. 2001, 74 (5): 596-602.
86.
Zurück zum Zitat Mathur S, Devaraj S, Grundy SM, Jialal I: Cocoa products decrease low density lipoprotein oxidative susceptibility but do not affect biomarkers of inflammation in humans. J Nutr. 2002, 132 (12): 3663-3667. Mathur S, Devaraj S, Grundy SM, Jialal I: Cocoa products decrease low density lipoprotein oxidative susceptibility but do not affect biomarkers of inflammation in humans. J Nutr. 2002, 132 (12): 3663-3667.
87.
Zurück zum Zitat Rein D, Lotito S, Holt RR, Keen CL, Schmitz HH, Fraga CG: Epicatechin in human plasma: in vivo determination and effect of chocolate consumption on plasma oxidation status. J Nutr. 2000, 130 (8S Suppl): 2109S-14S. Rein D, Lotito S, Holt RR, Keen CL, Schmitz HH, Fraga CG: Epicatechin in human plasma: in vivo determination and effect of chocolate consumption on plasma oxidation status. J Nutr. 2000, 130 (8S Suppl): 2109S-14S.
88.
Zurück zum Zitat Osakabe N, Baba S, Yasuda A, Iwamoto T, Kamiyama M, Takizawa T, Itakura H, Kondo K: Daily cocoa intake reduces the susceptibility of low-density lipoprotein to oxidation as demonstrated in healthy human volunteers. Free Radic Res. 2001, 34 (1): 93-99. Osakabe N, Baba S, Yasuda A, Iwamoto T, Kamiyama M, Takizawa T, Itakura H, Kondo K: Daily cocoa intake reduces the susceptibility of low-density lipoprotein to oxidation as demonstrated in healthy human volunteers. Free Radic Res. 2001, 34 (1): 93-99.
89.
Zurück zum Zitat Adamson GE, Lazarus SA, Mitchell AE, Prior RL, Cao G, Jacobs PH, Kremers BG, Hammerstone JF, Rucker RB, Ritter KA, Schmitz HH: HPLC method for the quantification of procyanidins in cocoa and chocolate samples and correlation to total antioxidant capacity. J Agric Food Chem. 1999, 47 (10): 4184-4188. 10.1021/jf990317m. Adamson GE, Lazarus SA, Mitchell AE, Prior RL, Cao G, Jacobs PH, Kremers BG, Hammerstone JF, Rucker RB, Ritter KA, Schmitz HH: HPLC method for the quantification of procyanidins in cocoa and chocolate samples and correlation to total antioxidant capacity. J Agric Food Chem. 1999, 47 (10): 4184-4188. 10.1021/jf990317m.
90.
Zurück zum Zitat Wiswedel I, Hirsch D, Kropf S, Gruening M, Pfister E, Schewe T, Sies H: Flavanol-rich cocoa drink lowers plasma F(2)-isoprostane concentrations in humans. Free Radic Biol Med. 2004, 37 (3): 411-421. 10.1016/j.freeradbiomed.2004.05.013. Wiswedel I, Hirsch D, Kropf S, Gruening M, Pfister E, Schewe T, Sies H: Flavanol-rich cocoa drink lowers plasma F(2)-isoprostane concentrations in humans. Free Radic Biol Med. 2004, 37 (3): 411-421. 10.1016/j.freeradbiomed.2004.05.013.
91.
Zurück zum Zitat Lean ME, Noroozi M, Kelly I, Burns J, Talwar D, Sattar N, Crozier A: Dietary flavonols protect diabetic human lymphocytes against oxidative damage to DNA. Diabetes. 1999, 48 (1): 176-181. Lean ME, Noroozi M, Kelly I, Burns J, Talwar D, Sattar N, Crozier A: Dietary flavonols protect diabetic human lymphocytes against oxidative damage to DNA. Diabetes. 1999, 48 (1): 176-181.
92.
Zurück zum Zitat Pearson DA, Paglieroni TG, Rein D, Wun T, Schramm DD, Wang JF, Holt RR, Gosselin R, Schmitz HH, Keen CL: The effects of flavanol-rich cocoa and aspirin on ex vivo platelet function. Thromb Res. 2002, 106 (4-5): 191-197. 10.1016/S0049-3848(02)00128-7. Pearson DA, Paglieroni TG, Rein D, Wun T, Schramm DD, Wang JF, Holt RR, Gosselin R, Schmitz HH, Keen CL: The effects of flavanol-rich cocoa and aspirin on ex vivo platelet function. Thromb Res. 2002, 106 (4-5): 191-197. 10.1016/S0049-3848(02)00128-7.
93.
Zurück zum Zitat Rein D, Paglieroni TG, Pearson DA, Wun T, Schmitz HH, Gosselin R, Keen CL: Cocoa and wine polyphenols modulate platelet activation and function. J Nutr. 2000, 130 (8S Suppl): 2120S-6S. Rein D, Paglieroni TG, Pearson DA, Wun T, Schmitz HH, Gosselin R, Keen CL: Cocoa and wine polyphenols modulate platelet activation and function. J Nutr. 2000, 130 (8S Suppl): 2120S-6S.
94.
Zurück zum Zitat Murphy KJ, Chronopoulos AK, Singh I, Francis MA, Moriarty H, Pike MJ, Turner AH, Mann NJ, Sinclair AJ: Dietary flavanols and procyanidin oligomers from cocoa (Theobroma cacao) inhibit platelet function. Am J Clin Nutr. 2003, 77 (6): 1466-1473. Murphy KJ, Chronopoulos AK, Singh I, Francis MA, Moriarty H, Pike MJ, Turner AH, Mann NJ, Sinclair AJ: Dietary flavanols and procyanidin oligomers from cocoa (Theobroma cacao) inhibit platelet function. Am J Clin Nutr. 2003, 77 (6): 1466-1473.
95.
Zurück zum Zitat Holt RR, Schramm DD, Keen CL, Lazarus SA, Schmitz HH: Chocolate consumption and platelet function. Jama. 2002, 287 (17): 2212-2213. 10.1001/jama.287.17.2212. Holt RR, Schramm DD, Keen CL, Lazarus SA, Schmitz HH: Chocolate consumption and platelet function. Jama. 2002, 287 (17): 2212-2213. 10.1001/jama.287.17.2212.
96.
Zurück zum Zitat Rein D, Paglieroni TG, Wun T, Pearson DA, Schmitz HH, Gosselin R, Keen CL: Cocoa inhibits platelet activation and function. Am J Clin Nutr. 2000, 72 (1): 30-35. Rein D, Paglieroni TG, Wun T, Pearson DA, Schmitz HH, Gosselin R, Keen CL: Cocoa inhibits platelet activation and function. Am J Clin Nutr. 2000, 72 (1): 30-35.
97.
Zurück zum Zitat Innes AJ, Kennedy G, McLaren M, Bancroft AJ, Belch JJ: Dark chocolate inhibits platelet aggregation in healthy volunteers. Platelets. 2003, 14 (5): 325-327. 10.1080/0953710031000123681. Innes AJ, Kennedy G, McLaren M, Bancroft AJ, Belch JJ: Dark chocolate inhibits platelet aggregation in healthy volunteers. Platelets. 2003, 14 (5): 325-327. 10.1080/0953710031000123681.
98.
Zurück zum Zitat Engler MB, Engler MM, Chen CY, Malloy MJ, Browne A, Chiu EY, Kwak HK, Milbury P, Paul SM, Blumberg J, Mietus-Snyder ML: Flavonoid-rich dark chocolate improves endothelial function and increases plasma epicatechin concentrations in healthy adults. J Am Coll Nutr. 2004, 23 (3): 197-204. Engler MB, Engler MM, Chen CY, Malloy MJ, Browne A, Chiu EY, Kwak HK, Milbury P, Paul SM, Blumberg J, Mietus-Snyder ML: Flavonoid-rich dark chocolate improves endothelial function and increases plasma epicatechin concentrations in healthy adults. J Am Coll Nutr. 2004, 23 (3): 197-204.
99.
Zurück zum Zitat Heiss C, Dejam A, Kleinbongard P, Schewe T, Sies H, Kelm M: Vascular effects of cocoa rich in flavan-3-ols. JAMA. 2003, 290 (8): 1030-1031. 10.1001/jama.290.8.1030. Heiss C, Dejam A, Kleinbongard P, Schewe T, Sies H, Kelm M: Vascular effects of cocoa rich in flavan-3-ols. JAMA. 2003, 290 (8): 1030-1031. 10.1001/jama.290.8.1030.
100.
Zurück zum Zitat Karim M, McCormick K, Kappagoda CT: Effects of cocoa extracts on endothelium-dependent relaxation. J Nutr. 2000, 130 (8S Suppl): 2105S-8S. Karim M, McCormick K, Kappagoda CT: Effects of cocoa extracts on endothelium-dependent relaxation. J Nutr. 2000, 130 (8S Suppl): 2105S-8S.
101.
Zurück zum Zitat Schramm DD, Wang JF, Holt RR, Ensunsa JL, Gonsalves JL, Lazarus SA, Schmitz HH, German JB, Keen CL: Chocolate procyanidins decrease the leukotriene-prostacyclin ratio in humans and human aortic endothelial cells. Am J Clin Nutr. 2001, 73 (1): 36-40. Schramm DD, Wang JF, Holt RR, Ensunsa JL, Gonsalves JL, Lazarus SA, Schmitz HH, German JB, Keen CL: Chocolate procyanidins decrease the leukotriene-prostacyclin ratio in humans and human aortic endothelial cells. Am J Clin Nutr. 2001, 73 (1): 36-40.
102.
Zurück zum Zitat Schewe T, Sadik C, Klotz LO, Yoshimoto T, Kuhn H, Sies H: Polyphenols of cocoa: inhibition of mammalian 15-lipoxygenase. Biol Chem. 2001, 382 (12): 1687-1696. 10.1515/BC.2001.204. Schewe T, Sadik C, Klotz LO, Yoshimoto T, Kuhn H, Sies H: Polyphenols of cocoa: inhibition of mammalian 15-lipoxygenase. Biol Chem. 2001, 382 (12): 1687-1696. 10.1515/BC.2001.204.
103.
Zurück zum Zitat Schewe T, Kuhn H, Sies H: Flavonoids of cocoa inhibit recombinant human 5-lipoxygenase. J Nutr. 2002, 132 (7): 1825-1829. Schewe T, Kuhn H, Sies H: Flavonoids of cocoa inhibit recombinant human 5-lipoxygenase. J Nutr. 2002, 132 (7): 1825-1829.
104.
Zurück zum Zitat Ridker PM, Hennekens CH, Buring JE, Rifai N: C-reactive protein and other markers of inflammation in the prediction of cardiovascular disease in women. N Engl J Med. 2000, 342 (12): 836-843. 10.1056/NEJM200003233421202. Ridker PM, Hennekens CH, Buring JE, Rifai N: C-reactive protein and other markers of inflammation in the prediction of cardiovascular disease in women. N Engl J Med. 2000, 342 (12): 836-843. 10.1056/NEJM200003233421202.
105.
Zurück zum Zitat Pai JK, Pischon T, Ma J, Manson JE, Hankinson SE, Joshipura K, Curhan GC, Rifai N, Cannuscio CC, Stampfer MJ, Rimm EB: Inflammatory markers and the risk of coronary heart disease in men and women. N Engl J Med. 2004, 351 (25): 2599-2610. 10.1056/NEJMoa040967. Pai JK, Pischon T, Ma J, Manson JE, Hankinson SE, Joshipura K, Curhan GC, Rifai N, Cannuscio CC, Stampfer MJ, Rimm EB: Inflammatory markers and the risk of coronary heart disease in men and women. N Engl J Med. 2004, 351 (25): 2599-2610. 10.1056/NEJMoa040967.
106.
Zurück zum Zitat Ridker PM, Cannon CP, Morrow D, Rifai N, Rose LM, McCabe CH, Pfeffer MA, Braunwald E: C-reactive protein levels and outcomes after statin therapy. N Engl J Med. 2005, 352 (1): 20-28. 10.1056/NEJMoa042378. Ridker PM, Cannon CP, Morrow D, Rifai N, Rose LM, McCabe CH, Pfeffer MA, Braunwald E: C-reactive protein levels and outcomes after statin therapy. N Engl J Med. 2005, 352 (1): 20-28. 10.1056/NEJMoa042378.
107.
Zurück zum Zitat Margolis KL, Manson JE, Greenland P, Rodabough RJ, Bray PF, Safford M, Grimm RHJ, Howard BV, Assaf AR, Prentice R: Leukocyte count as a predictor of cardiovascular events and mortality in postmenopausal women: the Women's Health Initiative Observational Study. Arch Intern Med. 2005, 165 (5): 500-508. 10.1001/archinte.165.5.500. Margolis KL, Manson JE, Greenland P, Rodabough RJ, Bray PF, Safford M, Grimm RHJ, Howard BV, Assaf AR, Prentice R: Leukocyte count as a predictor of cardiovascular events and mortality in postmenopausal women: the Women's Health Initiative Observational Study. Arch Intern Med. 2005, 165 (5): 500-508. 10.1001/archinte.165.5.500.
108.
Zurück zum Zitat Ridker PM, Rifai N, Rose L, Buring JE, Cook NR: Comparison of C-reactive protein and low-density lipoprotein cholesterol levels in the prediction of first cardiovascular events. N Engl J Med. 2002, 347 (20): 1557-1565. 10.1056/NEJMoa021993. Ridker PM, Rifai N, Rose L, Buring JE, Cook NR: Comparison of C-reactive protein and low-density lipoprotein cholesterol levels in the prediction of first cardiovascular events. N Engl J Med. 2002, 347 (20): 1557-1565. 10.1056/NEJMoa021993.
109.
Zurück zum Zitat Sanbongi C, Suzuki N, Sakane T: Polyphenols in chocolate, which have antioxidant activity, modulate immune functions in humans in vitro. Cell Immunol. 1997, 177 (2): 129-136. 10.1006/cimm.1997.1109. Sanbongi C, Suzuki N, Sakane T: Polyphenols in chocolate, which have antioxidant activity, modulate immune functions in humans in vitro. Cell Immunol. 1997, 177 (2): 129-136. 10.1006/cimm.1997.1109.
110.
Zurück zum Zitat Mao TK, Powell J, Van de Water J, Keen CL, Schmitz HH, Hammerstone JF, Gershwin ME: The effect of cocoa procyanidins on the transcription and secretion of interleukin 1 beta in peripheral blood mononuclear cells. Life Sci. 2000, 66 (15): 1377-1386. 10.1016/S0024-3205(00)00449-5. Mao TK, Powell J, Van de Water J, Keen CL, Schmitz HH, Hammerstone JF, Gershwin ME: The effect of cocoa procyanidins on the transcription and secretion of interleukin 1 beta in peripheral blood mononuclear cells. Life Sci. 2000, 66 (15): 1377-1386. 10.1016/S0024-3205(00)00449-5.
111.
Zurück zum Zitat Mao T, Van De Water J, Keen CL, Schmitz HH, Gershwin ME: Cocoa procyanidins and human cytokine transcription and secretion. J Nutr. 2000, 130 (8S Suppl): 2093S-9S. Mao T, Van De Water J, Keen CL, Schmitz HH, Gershwin ME: Cocoa procyanidins and human cytokine transcription and secretion. J Nutr. 2000, 130 (8S Suppl): 2093S-9S.
112.
Zurück zum Zitat Mao TK, Van de Water J, Keen CL, Schmitz HH, Gershwin ME: Effect of cocoa flavanols and their related oligomers on the secretion of interleukin-5 in peripheral blood mononuclear cells. J Med Food. 2002, 5 (1): 17-22. 10.1089/109662002753723188. Mao TK, Van de Water J, Keen CL, Schmitz HH, Gershwin ME: Effect of cocoa flavanols and their related oligomers on the secretion of interleukin-5 in peripheral blood mononuclear cells. J Med Food. 2002, 5 (1): 17-22. 10.1089/109662002753723188.
113.
Zurück zum Zitat Mao TK, van de Water J, Keen CL, Schmitz HH, Gershwin ME: Modulation of TNF-alpha secretion in peripheral blood mononuclear cells by cocoa flavanols and procyanidins. Dev Immunol. 2002, 9 (3): 135-141. 10.1080/1044667031000137601. Mao TK, van de Water J, Keen CL, Schmitz HH, Gershwin ME: Modulation of TNF-alpha secretion in peripheral blood mononuclear cells by cocoa flavanols and procyanidins. Dev Immunol. 2002, 9 (3): 135-141. 10.1080/1044667031000137601.
114.
Zurück zum Zitat Mao TK, Van De Water J, Keen CL, Schmitz HH, Gershwin ME: Cocoa flavonols and procyanidins promote transforming growth factor-beta1 homeostasis in peripheral blood mononuclear cells. Exp Biol Med (Maywood). 2003, 228 (1): 93-99. Mao TK, Van De Water J, Keen CL, Schmitz HH, Gershwin ME: Cocoa flavonols and procyanidins promote transforming growth factor-beta1 homeostasis in peripheral blood mononuclear cells. Exp Biol Med (Maywood). 2003, 228 (1): 93-99.
115.
Zurück zum Zitat Mursu J, Voutilainen S, Nurmi T, Rissanen TH, Virtanen JK, Kaikkonen J, Nyyssonen K, Salonen JT: Dark Chocolate Consumption Increases HDL Cholesterol Concentration and Chocolate Fatty Acids May Inhibit Lipid Peroxidation in Healthy Humans. Free Radic Biol Med. 2004, 37 (9): 1351-1359. 10.1016/j.freeradbiomed.2004.06.002. Mursu J, Voutilainen S, Nurmi T, Rissanen TH, Virtanen JK, Kaikkonen J, Nyyssonen K, Salonen JT: Dark Chocolate Consumption Increases HDL Cholesterol Concentration and Chocolate Fatty Acids May Inhibit Lipid Peroxidation in Healthy Humans. Free Radic Biol Med. 2004, 37 (9): 1351-1359. 10.1016/j.freeradbiomed.2004.06.002.
116.
Zurück zum Zitat Grassi D, Lippi C, Necozione S, Desideri G, Ferri C: Short-term administration of dark chocolate is followed by a significant increase in insulin sensitivity and a decrease in blood pressure in healthy persons. Am J Clin Nutr. 2005, 81 (3): 611-614. Grassi D, Lippi C, Necozione S, Desideri G, Ferri C: Short-term administration of dark chocolate is followed by a significant increase in insulin sensitivity and a decrease in blood pressure in healthy persons. Am J Clin Nutr. 2005, 81 (3): 611-614.
117.
Zurück zum Zitat Grassi D, Necozione S, Lippi C, Croce G, Valeri L, Pasqualetti P, Desideri G, Blumberg JB, Ferri C: Cocoa Reduces Blood Pressure and Insulin Resistance and Improves Endothelium-Dependent Vasodilation in Hypertensives. Hypertension. 2005, 01.HYP.0000174990.46027.70- Grassi D, Necozione S, Lippi C, Croce G, Valeri L, Pasqualetti P, Desideri G, Blumberg JB, Ferri C: Cocoa Reduces Blood Pressure and Insulin Resistance and Improves Endothelium-Dependent Vasodilation in Hypertensives. Hypertension. 2005, 01.HYP.0000174990.46027.70-
118.
Zurück zum Zitat Taubert D, Berkels R, Roesen R, Klaus W: Chocolate and blood pressure in elderly individuals with isolated systolic hypertension. JAMA. 2003, 290 (8): 1029-1030. 10.1001/jama.290.8.1029. Taubert D, Berkels R, Roesen R, Klaus W: Chocolate and blood pressure in elderly individuals with isolated systolic hypertension. JAMA. 2003, 290 (8): 1029-1030. 10.1001/jama.290.8.1029.
119.
Zurück zum Zitat Fraga CG, Actis-Goretta L, Ottaviani JI, Carrasquedo F, Lotito SB, Lazarus S, Schmitz HH, Keen CL: Regular consumption of a flavanol-rich chocolate can improve oxidant stress in young soccer players. Clin Dev Immunol. 2005, 12 (1): 11-17. 10.1080/10446670410001722159. Fraga CG, Actis-Goretta L, Ottaviani JI, Carrasquedo F, Lotito SB, Lazarus S, Schmitz HH, Keen CL: Regular consumption of a flavanol-rich chocolate can improve oxidant stress in young soccer players. Clin Dev Immunol. 2005, 12 (1): 11-17. 10.1080/10446670410001722159.
120.
Zurück zum Zitat Lee IM, Paffenbarger RSJ: Life is sweet: candy consumption and longevity. BMJ. 1998, 317 (7174): 1683-1684. Lee IM, Paffenbarger RSJ: Life is sweet: candy consumption and longevity. BMJ. 1998, 317 (7174): 1683-1684.
121.
Zurück zum Zitat Hertog MG, Kromhout D, Aravanis C, Blackburn H, Buzina R, Fidanza F, Giampaoli S, Jansen A, Menotti A, Nedeljkovic S, et : Flavonoid intake and long-term risk of coronary heart disease and cancer in the seven countries study. Arch Intern Med. 1995, 155 (4): 381-386. 10.1001/archinte.155.4.381. Hertog MG, Kromhout D, Aravanis C, Blackburn H, Buzina R, Fidanza F, Giampaoli S, Jansen A, Menotti A, Nedeljkovic S, et : Flavonoid intake and long-term risk of coronary heart disease and cancer in the seven countries study. Arch Intern Med. 1995, 155 (4): 381-386. 10.1001/archinte.155.4.381.
122.
Zurück zum Zitat Geleijnse JM, Launer LJ, Van der Kuip DA, Hofman A, Witteman JC: Inverse association of tea and flavonoid intakes with incident myocardial infarction: the Rotterdam Study. Am J Clin Nutr. 2002, 75 (5): 880-886. Geleijnse JM, Launer LJ, Van der Kuip DA, Hofman A, Witteman JC: Inverse association of tea and flavonoid intakes with incident myocardial infarction: the Rotterdam Study. Am J Clin Nutr. 2002, 75 (5): 880-886.
123.
Zurück zum Zitat Rimm EB, Katan MB, Ascherio A, Stampfer MJ, Willett WC: Relation between Intake of Flavonoids and Risk for Coronary Heart Disease in Male Health Professionals. Ann Intern Med. 1996, 125 (5): 384-389. Rimm EB, Katan MB, Ascherio A, Stampfer MJ, Willett WC: Relation between Intake of Flavonoids and Risk for Coronary Heart Disease in Male Health Professionals. Ann Intern Med. 1996, 125 (5): 384-389.
124.
Zurück zum Zitat Sesso HD, Gaziano JM, Liu S, Buring JE: Flavonoid intake and the risk of cardiovascular disease in women. Am J Clin Nutr. 2003, 77 (6): 1400-1408. Sesso HD, Gaziano JM, Liu S, Buring JE: Flavonoid intake and the risk of cardiovascular disease in women. Am J Clin Nutr. 2003, 77 (6): 1400-1408.
125.
Zurück zum Zitat Hertog MG, Feskens EJ, Hollman PC, Katan MB, Kromhout D: Dietary antioxidant flavonoids and risk of coronary heart disease: the Zutphen Elderly Study. Lancet. 1993, 342 (8878): 1007-1011. 10.1016/0140-6736(93)92876-U. Hertog MG, Feskens EJ, Hollman PC, Katan MB, Kromhout D: Dietary antioxidant flavonoids and risk of coronary heart disease: the Zutphen Elderly Study. Lancet. 1993, 342 (8878): 1007-1011. 10.1016/0140-6736(93)92876-U.
126.
Zurück zum Zitat Hirvonen T, Pietinen P, Virtanen M, Ovaskainen ML, Hakkinen S, Albanes D, Virtamo J: Intake of flavonols and flavones and risk of coronary heart disease in male smokers. Epidemiology. 2001, 12 (1): 62-67. 10.1097/00001648-200101000-00011. Hirvonen T, Pietinen P, Virtanen M, Ovaskainen ML, Hakkinen S, Albanes D, Virtamo J: Intake of flavonols and flavones and risk of coronary heart disease in male smokers. Epidemiology. 2001, 12 (1): 62-67. 10.1097/00001648-200101000-00011.
127.
Zurück zum Zitat Keli SO, Hertog MG, Feskens EJ, Kromhout D: Dietary flavonoids, antioxidant vitamins, and incidence of stroke: the Zutphen study. Arch Intern Med. 1996, 156 (6): 637-642. 10.1001/archinte.156.6.637. Keli SO, Hertog MG, Feskens EJ, Kromhout D: Dietary flavonoids, antioxidant vitamins, and incidence of stroke: the Zutphen study. Arch Intern Med. 1996, 156 (6): 637-642. 10.1001/archinte.156.6.637.
128.
Zurück zum Zitat Arts IC, Jacobs DRJ, Harnack LJ, Gross M, Folsom AR: Dietary catechins in relation to coronary heart disease death among postmenopausal women. Epidemiology. 2001, 12 (6): 668-675. 10.1097/00001648-200111000-00015. Arts IC, Jacobs DRJ, Harnack LJ, Gross M, Folsom AR: Dietary catechins in relation to coronary heart disease death among postmenopausal women. Epidemiology. 2001, 12 (6): 668-675. 10.1097/00001648-200111000-00015.
129.
Zurück zum Zitat Hirvonen T, Virtamo J, Korhonen P, Albanes D, Pietinen P: Intake of flavonoids, carotenoids, vitamins C and E, and risk of stroke in male smokers. Stroke. 2000, 31 (10): 2301-2306. Hirvonen T, Virtamo J, Korhonen P, Albanes D, Pietinen P: Intake of flavonoids, carotenoids, vitamins C and E, and risk of stroke in male smokers. Stroke. 2000, 31 (10): 2301-2306.
130.
Zurück zum Zitat Yochum L, Kushi LH, Meyer K, Folsom AR: Dietary flavonoid intake and risk of cardiovascular disease in postmenopausal women. Am J Epidemiol. 1999, 149 (10): 943-949. Yochum L, Kushi LH, Meyer K, Folsom AR: Dietary flavonoid intake and risk of cardiovascular disease in postmenopausal women. Am J Epidemiol. 1999, 149 (10): 943-949.
131.
Zurück zum Zitat Knekt P, Jarvinen R, Reunanen A, Maatela J: Flavonoid intake and coronary mortality in Finland: a cohort study. BMJ. 1996, 312 (7029): 478-481. Knekt P, Jarvinen R, Reunanen A, Maatela J: Flavonoid intake and coronary mortality in Finland: a cohort study. BMJ. 1996, 312 (7029): 478-481.
132.
Zurück zum Zitat Knekt P, Kumpulainen J, Jarvinen R, Rissanen H, Heliovaara M, Reunanen A, Hakulinen T, Aromaa A: Flavonoid intake and risk of chronic diseases. Am J Clin Nutr. 2002, 76 (3): 560-568. Knekt P, Kumpulainen J, Jarvinen R, Rissanen H, Heliovaara M, Reunanen A, Hakulinen T, Aromaa A: Flavonoid intake and risk of chronic diseases. Am J Clin Nutr. 2002, 76 (3): 560-568.
133.
Zurück zum Zitat Hertog MG, Sweetnam PM, Fehily AM, Elwood PC, Kromhout D: Antioxidant flavonols and ischemic heart disease in a Welsh population of men: the Caerphilly Study. Am J Clin Nutr. 1997, 65 (5): 1489-1494. Hertog MG, Sweetnam PM, Fehily AM, Elwood PC, Kromhout D: Antioxidant flavonols and ischemic heart disease in a Welsh population of men: the Caerphilly Study. Am J Clin Nutr. 1997, 65 (5): 1489-1494.
134.
Zurück zum Zitat Arts IC, Hollman PC, Kromhout D: Chocolate as a source of tea flavonoids. Lancet. 1999, 354 (9177): 488-10.1016/S0140-6736(99)02267-9. Arts IC, Hollman PC, Kromhout D: Chocolate as a source of tea flavonoids. Lancet. 1999, 354 (9177): 488-10.1016/S0140-6736(99)02267-9.
135.
Zurück zum Zitat Lazarus SA, Hammerstone JF, Schmitz HH: Chocolate contains additional flavonoids not found in tea. Lancet. 1999, 354 (9192): 1825-10.1016/S0140-6736(05)70599-7. Lazarus SA, Hammerstone JF, Schmitz HH: Chocolate contains additional flavonoids not found in tea. Lancet. 1999, 354 (9192): 1825-10.1016/S0140-6736(05)70599-7.
136.
Zurück zum Zitat Dreosti IE: Antioxidant polyphenols in tea, cocoa, and wine. Nutrition. 2000, 16 (7-8): 692-694. 10.1016/S0899-9007(00)00304-X. Dreosti IE: Antioxidant polyphenols in tea, cocoa, and wine. Nutrition. 2000, 16 (7-8): 692-694. 10.1016/S0899-9007(00)00304-X.
138.
Zurück zum Zitat Zhu QY, Schramm DD, Gross HB, Holt RR, Kim SH, Yamaguchi T, Kwik-Uribe CL, Keen CL: Influence of cocoa flavanols and procyanidins on free radical-induced human erythrocyte hemolysis. Clin Dev Immunol. 2005, 12 (1): 27-34. 10.1080/17402520512331329514. Zhu QY, Schramm DD, Gross HB, Holt RR, Kim SH, Yamaguchi T, Kwik-Uribe CL, Keen CL: Influence of cocoa flavanols and procyanidins on free radical-induced human erythrocyte hemolysis. Clin Dev Immunol. 2005, 12 (1): 27-34. 10.1080/17402520512331329514.
139.
Zurück zum Zitat Vlachopoulos C, Aznaouridis K, Alexopoulos N, Economou E, Andreadou I, Stefanadis C: Effect of Dark Chocolate on Arterial Function in Healthy Individuals. American Journal of Hypertension. 2005, 18 (6): 785-10.1016/j.amjhyper.2004.12.008. Vlachopoulos C, Aznaouridis K, Alexopoulos N, Economou E, Andreadou I, Stefanadis C: Effect of Dark Chocolate on Arterial Function in Healthy Individuals. American Journal of Hypertension. 2005, 18 (6): 785-10.1016/j.amjhyper.2004.12.008.
140.
Zurück zum Zitat Kromhout D, Menotti A, Bloemberg B, Aravanis C, Blackburn H, Buzina R, Dontas AS, Fidanza F, Giampaoli S, Jansen A: Dietary saturated and trans fatty acids and cholesterol and 25-year mortality from coronary heart disease: the Seven Countries Study. Prev Med. 1995, 24 (3): 308-315. 10.1006/pmed.1995.1049. Kromhout D, Menotti A, Bloemberg B, Aravanis C, Blackburn H, Buzina R, Dontas AS, Fidanza F, Giampaoli S, Jansen A: Dietary saturated and trans fatty acids and cholesterol and 25-year mortality from coronary heart disease: the Seven Countries Study. Prev Med. 1995, 24 (3): 308-315. 10.1006/pmed.1995.1049.
141.
Zurück zum Zitat Hertog MG, Feskens EJ, Kromhout D: Antioxidant flavonols and coronary heart disease risk. Lancet. 1997, 349 (9053): 699-10.1016/S0140-6736(05)60135-3. Hertog MG, Feskens EJ, Kromhout D: Antioxidant flavonols and coronary heart disease risk. Lancet. 1997, 349 (9053): 699-10.1016/S0140-6736(05)60135-3.
142.
Zurück zum Zitat Arts IC, Hollman PC, Feskens EJ, Bueno de Mesquita HB, Kromhout D: Catechin intake might explain the inverse relation between tea consumption and ischemic heart disease: the Zutphen Elderly Study. Am J Clin Nutr. 2001, 74 (2): 227-232. Arts IC, Hollman PC, Feskens EJ, Bueno de Mesquita HB, Kromhout D: Catechin intake might explain the inverse relation between tea consumption and ischemic heart disease: the Zutphen Elderly Study. Am J Clin Nutr. 2001, 74 (2): 227-232.
Metadaten
Titel
Chocolate and Prevention of Cardiovascular Disease: A Systematic Review
verfasst von
Eric L Ding
Susan M Hutfless
Xin Ding
Saket Girotra
Publikationsdatum
01.12.2006
Verlag
BioMed Central
Erschienen in
Nutrition & Metabolism / Ausgabe 1/2006
Elektronische ISSN: 1743-7075
DOI
https://doi.org/10.1186/1743-7075-3-2

Weitere Artikel der Ausgabe 1/2006

Nutrition & Metabolism 1/2006 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Echinokokkose medikamentös behandeln oder operieren?

06.05.2024 DCK 2024 Kongressbericht

Die Therapie von Echinokokkosen sollte immer in spezialisierten Zentren erfolgen. Eine symptomlose Echinokokkose kann – egal ob von Hunde- oder Fuchsbandwurm ausgelöst – konservativ erfolgen. Wenn eine Op. nötig ist, kann es sinnvoll sein, vorher Zysten zu leeren und zu desinfizieren. 

Umsetzung der POMGAT-Leitlinie läuft

03.05.2024 DCK 2024 Kongressbericht

Seit November 2023 gibt es evidenzbasierte Empfehlungen zum perioperativen Management bei gastrointestinalen Tumoren (POMGAT) auf S3-Niveau. Vieles wird schon entsprechend der Empfehlungen durchgeführt. Wo es im Alltag noch hapert, zeigt eine Umfrage in einem Klinikverbund.

Proximale Humerusfraktur: Auch 100-Jährige operieren?

01.05.2024 DCK 2024 Kongressbericht

Mit dem demographischen Wandel versorgt auch die Chirurgie immer mehr betagte Menschen. Von Entwicklungen wie Fast-Track können auch ältere Menschen profitieren und bei proximaler Humerusfraktur können selbst manche 100-Jährige noch sicher operiert werden.

Die „Zehn Gebote“ des Endokarditis-Managements

30.04.2024 Endokarditis Leitlinie kompakt

Worauf kommt es beim Management von Personen mit infektiöser Endokarditis an? Eine Kardiologin und ein Kardiologe fassen die zehn wichtigsten Punkte der neuen ESC-Leitlinie zusammen.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.