Skip to main content
Erschienen in: Targeted Oncology 5/2016

17.05.2016 | Original Research Article

Combinatorial Study of a Novel Poly (ADP-ribose) Polymerase Inhibitor and an HDAC Inhibitor, SAHA, in Leukemic Cell Lines

verfasst von: Mahesh Hegde, Kempegowda Mantelingu, Monica Pandey, Chottanahalli S. Pavankumar, Kanchugarakoppal S. Rangappa, Sathees C. Raghavan

Erschienen in: Targeted Oncology | Ausgabe 5/2016

Einloggen, um Zugang zu erhalten

Abstract

Background

Cancer is a multifactorial disease, which makes it difficult to cure. Since more than one defective cellular component is often involved during oncogenesis, combination therapy is gaining prominence in the field of cancer therapeutics.

Objective

The purpose of this study was to investigate the combinatorial effects of a novel PARP inhibitor, P10, and HDAC inhibitor, SAHA, in leukemic cells.

Methods

Combinatorial effects of P10 and SAHA were tested using propidium iodide staining in different leukemic cells. Further, flowcytometry-based assays such as calcein-AM/ethidium homodimer staining, annexin-FITC/PI staining, and JC-1 staining were carried out to elucidate the mechanism of cell death. In addition, cell-cycle analysis, immunocytochemistry studies, and western blotting analysis were conducted to check the combinatorial effect in Nalm6 cells.

Results

Propidium iodide staining showed that P10 in combination with SAHA induced cell death in Nalm6 cells, in which PARP expression and activity is high with a combination index of <0.2. Annexin-FITC/PI staining, JC-1 staining, and other biochemical assays revealed that P10 in combination with SAHA induced apoptosis by causing a change in mitochondrial membrane potential in >65 % cells. Importantly, combinatorial treatment induced S phase arrest in 40-45 % cells due to DNA damage and plausible replicative stress. Finally, we demonstrated that treatment with P10 led to DNA strand breaks, which were further potentiated by SAHA (p < 0.01), leading to activation of apoptosis and increased cell death in PARP-positive leukemic cells.

Conclusions

Our study reveals that coadministration of PARP inhibitor with SAHA could be used as a combination therapy against leukemic cells that possess high levels of intrinsic PARP activity.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
2.
Zurück zum Zitat Chang P, Coughlin M, Mitchison TJ. Tankyrase-1 polymerization of poly(ADP-ribose) is required for spindle structure and function. Nat Cell Biol. 2005;7(11):1133–9. doi:10.1038/ncb1322.CrossRefPubMed Chang P, Coughlin M, Mitchison TJ. Tankyrase-1 polymerization of poly(ADP-ribose) is required for spindle structure and function. Nat Cell Biol. 2005;7(11):1133–9. doi:10.​1038/​ncb1322.CrossRefPubMed
3.
Zurück zum Zitat Hassa PO, Hottiger MO. The diverse biological roles of mammalian PARPS, a small but powerful family of poly-ADP-ribose polymerases. Front Biosci. 2008;13:3046–82.CrossRefPubMed Hassa PO, Hottiger MO. The diverse biological roles of mammalian PARPS, a small but powerful family of poly-ADP-ribose polymerases. Front Biosci. 2008;13:3046–82.CrossRefPubMed
10.
Zurück zum Zitat Ame JC, Rolli V, Schreiber V, Niedergang C, Apiou F, Decker P, et al. PARP-2, A novel mammalian DNA damage-dependent poly(ADP-ribose) polymerase. J Biol Chem. 1999;274(25):17860–8.CrossRefPubMed Ame JC, Rolli V, Schreiber V, Niedergang C, Apiou F, Decker P, et al. PARP-2, A novel mammalian DNA damage-dependent poly(ADP-ribose) polymerase. J Biol Chem. 1999;274(25):17860–8.CrossRefPubMed
12.
Zurück zum Zitat Bryant HE, Schultz N, Thomas HD, Parker KM, Flower D, Lopez E, et al. Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature. 2005;434(7035):913–7. doi:10.1038/nature03443.CrossRefPubMed Bryant HE, Schultz N, Thomas HD, Parker KM, Flower D, Lopez E, et al. Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature. 2005;434(7035):913–7. doi:10.​1038/​nature03443.CrossRefPubMed
13.
Zurück zum Zitat Farmer H, McCabe N, Lord CJ, Tutt AN, Johnson DA, Richardson TB, et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature. 2005;434(7035):917–21. doi:10.1038/nature03445.CrossRefPubMed Farmer H, McCabe N, Lord CJ, Tutt AN, Johnson DA, Richardson TB, et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature. 2005;434(7035):917–21. doi:10.​1038/​nature03445.CrossRefPubMed
15.
Zurück zum Zitat Penning TD, Zhu GD, Gandhi VB, Gong J, Liu X, Shi Y, et al. Discovery of the Poly(ADP-ribose) polymerase (PARP) inhibitor 2-[(R)-2-methylpyrrolidin-2-yl]-1H-benzimidazole-4-carboxamide (ABT-888) for the treatment of cancer. J Med Chem. 2009;52(2):514–23. doi:10.1021/jm801171j.CrossRefPubMed Penning TD, Zhu GD, Gandhi VB, Gong J, Liu X, Shi Y, et al. Discovery of the Poly(ADP-ribose) polymerase (PARP) inhibitor 2-[(R)-2-methylpyrrolidin-2-yl]-1H-benzimidazole-4-carboxamide (ABT-888) for the treatment of cancer. J Med Chem. 2009;52(2):514–23. doi:10.​1021/​jm801171j.CrossRefPubMed
18.
19.
Zurück zum Zitat Hegde M, Mantelingu K, Swarup HA, Pavankumar CS, Qamar I, Raghavan SC, et al. Novel PARP inhibitors sensitize human leukemic cells in an endogenous PARP activity dependent manner. RSC Adv. 2016;6(8):6308–19. doi:10.1039/C5RA19150E.CrossRef Hegde M, Mantelingu K, Swarup HA, Pavankumar CS, Qamar I, Raghavan SC, et al. Novel PARP inhibitors sensitize human leukemic cells in an endogenous PARP activity dependent manner. RSC Adv. 2016;6(8):6308–19. doi:10.​1039/​C5RA19150E.CrossRef
20.
22.
23.
Zurück zum Zitat Marks PA, Richon VM, Breslow R, Rifkind RA. Histone deacetylase inhibitors as new cancer drugs. Curr Opin Oncol. 2001;13(6):477–83.CrossRefPubMed Marks PA, Richon VM, Breslow R, Rifkind RA. Histone deacetylase inhibitors as new cancer drugs. Curr Opin Oncol. 2001;13(6):477–83.CrossRefPubMed
24.
Zurück zum Zitat Richon VM, Emiliani S, Verdin E, Webb Y, Breslow R, Rifkind RA, et al. A class of hybrid polar inducers of transformed cell differentiation inhibits histone deacetylases. Proc Natl Acad Sci U S A. 1998;95(6):3003–7.CrossRefPubMedPubMedCentral Richon VM, Emiliani S, Verdin E, Webb Y, Breslow R, Rifkind RA, et al. A class of hybrid polar inducers of transformed cell differentiation inhibits histone deacetylases. Proc Natl Acad Sci U S A. 1998;95(6):3003–7.CrossRefPubMedPubMedCentral
25.
Zurück zum Zitat Finnin MS, Donigian JR, Cohen A, Richon VM, Rifkind RA, Marks PA, et al. Structures of a histone deacetylase homologue bound to the TSA and SAHA inhibitors. Nature. 1999;401(6749):188–93. doi:10.1038/43710.CrossRefPubMed Finnin MS, Donigian JR, Cohen A, Richon VM, Rifkind RA, Marks PA, et al. Structures of a histone deacetylase homologue bound to the TSA and SAHA inhibitors. Nature. 1999;401(6749):188–93. doi:10.​1038/​43710.CrossRefPubMed
26.
30.
Zurück zum Zitat Burkle A, Chen G, Kupper JH, Grube K, Zeller WJ. Increased poly(ADP-ribosyl)ation in intact cells by cisplatin treatment. Carcinogenesis. 1993;14(4):559–61.CrossRefPubMed Burkle A, Chen G, Kupper JH, Grube K, Zeller WJ. Increased poly(ADP-ribosyl)ation in intact cells by cisplatin treatment. Carcinogenesis. 1993;14(4):559–61.CrossRefPubMed
31.
32.
Zurück zum Zitat Weltin D, Holl V, Hyun JW, Dufour P, Marchal J, Bischoff P. Effect of 6(5H)-phenanthridinone, a poly (ADP-ribose)polymerase inhibitor, and ionizing radiation on the growth of cultured lymphoma cells. Int J Radiat Biol. 1997;72(6):685–92.CrossRefPubMed Weltin D, Holl V, Hyun JW, Dufour P, Marchal J, Bischoff P. Effect of 6(5H)-phenanthridinone, a poly (ADP-ribose)polymerase inhibitor, and ionizing radiation on the growth of cultured lymphoma cells. Int J Radiat Biol. 1997;72(6):685–92.CrossRefPubMed
35.
Zurück zum Zitat Chou TC, Talalay P. Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul. 1984;22:27–55.CrossRefPubMed Chou TC, Talalay P. Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul. 1984;22:27–55.CrossRefPubMed
37.
Zurück zum Zitat Hegde M, Sharath Kumar KS, Thomas E, Ananda H, Raghavan SC, Rangappa KS. A novel benzimidazole derivative binds to the DNA minor groove and induces apoptosis in leukemic cells. RSC Adv. 2015;5(113):93194–208. doi:10.1039/C5RA16605E.CrossRef Hegde M, Sharath Kumar KS, Thomas E, Ananda H, Raghavan SC, Rangappa KS. A novel benzimidazole derivative binds to the DNA minor groove and induces apoptosis in leukemic cells. RSC Adv. 2015;5(113):93194–208. doi:10.​1039/​C5RA16605E.CrossRef
38.
39.
40.
Zurück zum Zitat Katiyar A, Hegde M, Kumar S, Gopalakrishnan V, Bhatelia KD, Ananthaswamy K, et al. Synthesis and evaluation of the biological activity of N[prime or minute]-[2-oxo-1,2 dihydro-3H-indol-3-ylidene] benzohydrazides as potential anticancer agents. RSC Adv. 2015;5(56):45492–501. doi:10.1039/C5RA01528F.CrossRef Katiyar A, Hegde M, Kumar S, Gopalakrishnan V, Bhatelia KD, Ananthaswamy K, et al. Synthesis and evaluation of the biological activity of N[prime or minute]-[2-oxo-1,2 dihydro-3H-indol-3-ylidene] benzohydrazides as potential anticancer agents. RSC Adv. 2015;5(56):45492–501. doi:10.​1039/​C5RA01528F.CrossRef
42.
Zurück zum Zitat John F, George J, Vartak SV, Srivastava M, Hassan PA, Aswal VK, et al. Enhanced efficacy of pluronic copolymer micelle encapsulated SCR7 against cancer cell proliferation. Macromol Biosci. 2015;15(4):521–34. doi:10.1002/mabi.201400480.CrossRefPubMed John F, George J, Vartak SV, Srivastava M, Hassan PA, Aswal VK, et al. Enhanced efficacy of pluronic copolymer micelle encapsulated SCR7 against cancer cell proliferation. Macromol Biosci. 2015;15(4):521–34. doi:10.​1002/​mabi.​201400480.CrossRefPubMed
44.
Zurück zum Zitat Cunningham D, Humblet Y, Siena S, Khayat D, Bleiberg H, Santoro A, et al. Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. N Engl J Med. 2004;351(4):337–45. doi:10.1056/NEJMoa033025.CrossRefPubMed Cunningham D, Humblet Y, Siena S, Khayat D, Bleiberg H, Santoro A, et al. Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. N Engl J Med. 2004;351(4):337–45. doi:10.​1056/​NEJMoa033025.CrossRefPubMed
46.
Zurück zum Zitat Wu M, Sirota M, Butte AJ, Chen B. Characteristics of drug combination therapy in oncology by analyzing clinical trial data on ClinicalTrials.gov. Pac Symp Biocomput. 2015:68–79. Wu M, Sirota M, Butte AJ, Chen B. Characteristics of drug combination therapy in oncology by analyzing clinical trial data on ClinicalTrials.gov. Pac Symp Biocomput. 2015:68–79.
47.
Zurück zum Zitat Bishop JF, Lowethal R, Joshua D, Matthews JP, Wolf MM, Cooper IA. Etoposide in leukemia. Cancer. 1991;67(1 Suppl):285–91.CrossRefPubMed Bishop JF, Lowethal R, Joshua D, Matthews JP, Wolf MM, Cooper IA. Etoposide in leukemia. Cancer. 1991;67(1 Suppl):285–91.CrossRefPubMed
49.
Zurück zum Zitat Chen X, Wong P, Radany EH, Stark JM, Laulier C, Wong JY. Suberoylanilide hydroxamic acid as a radiosensitizer through modulation of RAD51 protein and inhibition of homology-directed repair in multiple myeloma. Mol Cancer Res. 2012;10(8):1052–64. doi:10.1158/1541-7786.MCR-11-0587.CrossRefPubMed Chen X, Wong P, Radany EH, Stark JM, Laulier C, Wong JY. Suberoylanilide hydroxamic acid as a radiosensitizer through modulation of RAD51 protein and inhibition of homology-directed repair in multiple myeloma. Mol Cancer Res. 2012;10(8):1052–64. doi:10.​1158/​1541-7786.​MCR-11-0587.CrossRefPubMed
52.
Zurück zum Zitat Mao Z, Bozzella M, Seluanov A, Gorbunova V. DNA repair by nonhomologous end joining and homologous recombination during cell cycle in human cells. Cell Cycle. 2008;7(18):2902–6.CrossRefPubMedPubMedCentral Mao Z, Bozzella M, Seluanov A, Gorbunova V. DNA repair by nonhomologous end joining and homologous recombination during cell cycle in human cells. Cell Cycle. 2008;7(18):2902–6.CrossRefPubMedPubMedCentral
Metadaten
Titel
Combinatorial Study of a Novel Poly (ADP-ribose) Polymerase Inhibitor and an HDAC Inhibitor, SAHA, in Leukemic Cell Lines
verfasst von
Mahesh Hegde
Kempegowda Mantelingu
Monica Pandey
Chottanahalli S. Pavankumar
Kanchugarakoppal S. Rangappa
Sathees C. Raghavan
Publikationsdatum
17.05.2016
Verlag
Springer International Publishing
Erschienen in
Targeted Oncology / Ausgabe 5/2016
Print ISSN: 1776-2596
Elektronische ISSN: 1776-260X
DOI
https://doi.org/10.1007/s11523-016-0441-x

Weitere Artikel der Ausgabe 5/2016

Targeted Oncology 5/2016 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.