Skip to main content
Erschienen in: Knee Surgery, Sports Traumatology, Arthroscopy 4/2023

Open Access 25.08.2022 | KNEE

Combined treatment with medial unicompartmental knee arthroplasty and anterior cruciate ligament reconstruction is effective on long-term follow-up

verfasst von: Ayham Jaber, Chang min Kim, Alexander Barié, Marcus Streit, Holger Schmitt, Michael Clarius, Christian Merle, Yannic Bangert

Erschienen in: Knee Surgery, Sports Traumatology, Arthroscopy | Ausgabe 4/2023

Abstract

Purpose

The purpose of the present study was to evaluate the long-term outcome of combined medial unicompartmental knee arthroplasty (UKA) and anterior cruciate ligament reconstruction (ACLR). The authors hypothesized that the combined procedure leads to good long-term outcome in patients with isolated medial knee osteoarthritis (OA) and anterior cruciate ligament (ACL) deficiency.

Methods

Twenty-three patients with ACL deficiency and concomitant medial knee OA were treated from 2008 to 2016 with a combined UKA (Oxford Partial Knee) and ACLR using a hamstring tendon autograft. The follow-up assessment included VAS pain score, Lysholm score, Oxford Knee Score (OKS), American Knee Society scores (AKSS), International Knee Documentation Committee (IKDC 2000), Tegner and UCLA activity scores. Instrumented laxity test was done using the KT-1000 arthrometer. Survivorship analysis was performed using the Kaplan–Meier method. Implant loosening and disease progression was assessed by conventional radiography.

Results

Average follow-up duration was 10 years (6–14.5). VAS, Lysholm, Tegner and UCLA scores improved significantly. OKS, AKSS and IKDC 2000 showed excellent results on follow-up. Implant survivorship was 91.4% at 14.5 years. There were 2 revisions with conversion to total knee arthroplasty at 6 and 12 years postoperatively due to trauma and disease progression, respectively. There were no radiological or clinical signs of instability or disease progression in any of the remaining knees. The side-to-side difference using the KT-1000 arthrometer was insignificant.

Conclusions

UKA combined with ACLR is an effective therapeutic option with good outcome and return to sport rate on the long-term.

Level of evidence

IV.
Hinweise

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
OA
Osteoarthritis
TKA
Total knee arthroplasty
UKA
Unicompartmental knee arthroplasty
ACL
Anterior cruciate ligament
ACLR
Anterior cruciate ligament reconstruction
AP
Anteroposterior
ROM
Range of motion
MRI
Magnetic resonance imaging
MCL
Medial collateral ligament
AKSS
American knee society scores
OKS
Oxford knee score
VAS
Visual analog scale
IKDC 2000
International knee documentation committee

Introduction

The best treatment approach for medial knee osteoarthritis (OA) with existing anterior cruciate ligament (ACL) deficiency remains unclear. Primary OA progressively leads to secondary ACL instability as well as shortening of the medial collateral ligament (MCL) and gradual damage to the remaining knee compartments. In this patient group, a total knee arthroplasty (TKA) is indicated [22]. Patients with a primary ACL injury who develop unicompartmental OA are usually young and active. Chronic recurrence of giving way episodes in which posterior femoral subluxation occurs progressively leads to posteromedial OA by causing various degenerative alterations of the joint and accentuating the varus morphometry [24]. An ACL injury increases the risk of OA tenfold compared to the normal population [15].
Results of unicompartmental knee arthroplasty (UKA) have shown excellent long-term outcome with high patient satisfaction [13, 16]. According to the current consensus, UKA is indicated in patients suffering from isolated medial OA with intact cruciate and collateral ligaments [2]. ACL deficiency is considered an contraindication to UKA due to increased failure rates [7]. An in vitro robotic study showed that knee stability is not altered by a medial UKA but an ACL is essential to avoid pronounced anterior tibial translation [23].
The combined procedure of UKA and ACL reconstruction (ACLR) was proposed as a solution to this predicament and early results are encouraging [17, 25]. The ACLR seems to restore kinematics in the UKA knee in magnitudes similar to those in ACL-intact knees [6]. Several authors reported good clinical and radiological outcomes using the combined procedure with a mid-term follow-up duration [1, 11]. Long-term results are too scarce to develop a reliable statement [9, 10]. The aim of the study was to follow a consecutive group of patients who received a simultaneous ACLR and UKA. It was hypothesized that on long-term follow-up, the combined procedure will preserve knee stability and function with a survivorship equivalent to isolated UKA.

Patients and methods

A consecutive group of 23 patients (18 male, 5 female) received a UKA (Oxford Partial Knee, Zimmer Biomet Inc., Warsaw, Indiana, USA) in combination with ACLR using the hamstring tendon autograft between 2008 and 2016. All patients suffered from a primary ACL rupture and concomitant Medial knee OA. Diagnosis of the OA was done using conventional radiographs including anteroposterior (AP) view, a lateral view and AP views with varus/valgus stress tests. The ACL injury was evaluated clinically (Lachman test) and confirmed by magnetic resonance imaging (MRI). The average age at the time of surgery was 48 years (44–69). A total 19 patients received a cemented UKA and 4 patients received a non-cemented UKA. The surgeries were performed in 3 institutions by 4 senior surgeons who were trained in the same institution and are experienced with ACLR and UKA.
All patients met the inclusion criteria: body mass index < 30, isolated medial OA, varus knee deformity < 10 degrees, flexion contracture < 5 degrees, absence of patellofemoral OA symptoms, and absence of previous knee surgery or other ligamentous insufficiency.
The following scores were assessed on follow-up using questionnaires: Visual Analog Score (VAS), Lysholm score, Oxford Knee Score (OKS), American Knee Society scores (AKSS), International Knee Documentation Committee (IKDC 2000), Tegner and UCLA activity levels [4, 20]. Laxity with AP translation was assessed clinically using the Lachman test with a knee flexion of 30°. Instrumented laxity test of the operated knee was measured in millimeters using the reliable KT-1000 (Medmetric, San Diego, CA, US) and compared to the contralateral knee [3, 21]. Side-to-side differences were calculated. Standard AP and lateral radiographs were done only in defined timeframes following the surgical intervention (6 weeks/6 months/1 year/3 years/5 years/10 years/15 years) and were analyzed for presence of implant loosening or disease progression to the lateral compartment.
The study was approved by the institutional review board of the University of Heidelberg (Registration code S-093). It was conducted in accordance with the Helsinki Declaration of 1975, as revised in 2013. All patients provided written informed consent for participation in the study.

Surgical technique

The patient was positioned lying supine with a thigh tourniquet inflated to 280 mmhg. The knee was positioned hanging in a leg holder. A preliminary diagnostic arthroscopy was performed to confirm the indication of the combined procedure. A vertical incision over the pes anserinus was performed. The semitendinosus tendon was harvested with a tendon stripper and a four-stranded ACL replacement was prepared. The femoral canal was positioned and drilled through an anteromedial portal after assessing the diameter of the autograft. A medial mini-arthrotomy was then performed by extending the original incision proximally. Oxford UKA was then performed. The tibial resection was done few millimeters medial to the ACL stump to allow correct positioning of the tibial tunnel and avoid overlapping with the keel of the tibial component. The femoral resection was made in a standard manner for Oxford UKA. After insertion of the trial components, the tibial tunnel was made. It was positioned steeper and more anteriorly to avoid weakening the medial tibial plateau. Cementation was then done in select patients after covering the tibial tunnel. The original femoral and tibial implants were inserted and anchored. A sample of the tibial bearing was inserted to obtain the perfect ligament tensioning and balance. After polymerisation of the cement, the autograft was passed through the tunnels and fixated to the femur with a cortical button using the ACL Tightrope II® (Arthrex, FL, USA) and to the tibia with an interference absorbable screw and an additional suture disk. The definitive tibial bearing was inserted after retesting the knee range of motion (ROM).

Postoperative rehabilitation protocol

The postoperative rehabilitation protocol was brace-free with focus on regaining active and passive ROM. Isometric muscle exercises were started on the day after the operation. For the first 6 weeks, walking with partial weight-bearing was allowed. Flexion was limited to 90° in the first 4 weeks while immediate regaining of full knee extension was encouraged. Starting from the 4th week, proprioception exercises were added including assisted single-leg balance and heel-to-toe walking. Bicycling was allowed 4 weeks postoperatively. Strength training with focus on regaining muscle mass was gradually started 6 weeks postoperatively. Jogging was allowed 3 months postoperatively. Noncontact sports were allowed after 6 months and contact sports were allowed 1 year following surgery.

Statistical analysis

Data analysis was conducted using IBM SPSS Statistics version 25.0 (IBM Corp., Armonk, N.Y., USA). The mean and standard deviation were calculated. Wilcoxon test was used to compare the preoperative and follow-up scores. For all tests, p values of < 0.05 were considered to be significant. Kaplan–Meier analysis was used for survival analysis. A revision for any reason with or without removal/exchange of any part of the initial implant was used as an endpoint.

Results

The average follow-up duration was 10 years (6–14.5). No patients were lost to follow-up. There were significant improvements in VAS, Lysholm, UCLA and Tegner scores on follow-up. Twenty-two patients achieved a good or excellent OKS result. In the IKDC 2000, 19 patients scored over 70. Table 1 displays all assessed scores.
Table 1
Preoperative and follow-up scores presented as mean ± standard deviation (range) with corresponding p values
Score
Preoperative value
Postoperative value
p value
Lysholm
45 ± 20.8 (17–77)
85.5 ± 20.9 (44–100)
0.005
Tegner
2.8 ± 1.75 (1–5)
3.6 ± 1.25 (0–7)
0.005
UCLA
5.1 ± 2 (2–7)
6.7 ± 1.5 (4–8)
0.0071
VAS
7.4 ± 1.95 (3–10)
1.3 ± 1.6 (0–5)
0.0001
OKS
40 ± 8.2 (29–48)
IKDC 2000
76.7 ± 35.5 (40–97)
AKSS-A
91.5 ± 11.6 (74–100)
AKSS-B
90 ± 15.85 (50–100)
VAS visual analog scale, OKS Oxford knee score, IKDC International Knee documentation committee, AKSS American Knee Society score
There were two revisions (8.7%) occurring at a mean of 9 years, both of which were converted to TKA. One patient received a conversion procedure after incurring a trauma 6 years postoperatively and suffering from persistent pain and instability in the knee. The other patient received a conversion procedure 12 years postoperatively after developing symptomatic lateral knee OA.  The first patient reported being satisfied with the treatment before incurring the trauma. The implant survival rate was 100% at 5 years, 95,7% at 10 years and 91,4% at 14.5 years. Kaplan–Meier survival curve is displayed in Fig. 1. All patients were satisfied with the procedure and 22 out of 23 patients reported that they would undergo the same procedure again.  
There was no clinical evidence of instability in any of the knees as evaluated with clinical and instrumental laxity testing. Full knee extension was reached by 21 patients and 2 patients had a 5° knee extension deficit. Knee flexion ranged between 105 and 140° with 21 patients having a knee flexion of more than 120°. The return to sport rate was 100%. All knees had a firm endpoint in the Lachman test. The AP-Translation using the KT-1000 Arthrometer measured 3.9 (Range 2–10) for the operated knee and 2.9 (2–6) for the contralateral knee (p value: n.s). The average side-to-side difference between the operated and unoperated knee was 1.8 (0–6) with 3 patients having a difference of 3 mm or more.  The radiological evaluation showed no signs of implant loosening or disease progression on follow-up except in 1 patient who recieved a conversion procedure 12 years postoperatively. Figure 2 displays the follow-up radiographs of a patient 10 years postoperatively.

Discussion

The most important finding of the present study is that long-term function and implant survival following Oxford UKA combined with ACLR are excellent. In a recent comprehensive systemic review, Albo and colleagues concluded that the combined procedure is safe with a significant functional and clinical improvement [1]. Iriberri et al. published the results in 8 patients with a long-term follow-up and cited concerns over potential long-term deterioration after the 10 year mark since 2 out of 8 patients received a conversion to TKA due to disease progression [9]. In a large cohort described by Kennedy et al. which included patients receiving the combined procedure either simultaneously or separately, only 2 patients received a conversion procedure due to disease progression on the long-term [10]. In the present cohort, one patient received a TKA 12 years following the first operation due to primary disease progression and 1 patient received it 6 years postoperatively after trauma to the knee. Reports of the outcome of isolated UKA described implant survival rate of 80–95% on the long-term and only 30% of all revisions are related to disease progression [5, 19]. The cumulative results of the combined procedure are thus equivalent to those of isolated UKA [18]. The additional ACLR does not seem to increase the risk of disease progression.
Patients with ACL insufficiency secondary to OA are not good candidates for the combined procedure due to the presence of anteromedial tibial erosion with degeneration of other articular compartments and remaining ligamentous structures. If the ACL rupture is associated with a MCL rupture, intraoperative balancing is not possible because of medial instability. A chronic ACL rupture with preexisting medial OA leads to contracture of the MCL. Even then, correct balancing is no longer possible. If the MCL and lateral compartment are intact, balancing of the UKA in the case of ACL insufficiency or a recent rupture is unproblematic. The tensioned MCL determines the height of the bony resections. The integrity of the medial ligament must therefore be verified preoperatively. During balancing, the anterior translation needs to be neutralized by applying slight pressure from the ventral side on the proximal tibia. Moreover, before insertion of the ACL autograft after the UKA is carried out, a trial tibial bearing needs to be inserted to avoid intraarticular varus hyper-compression.
Simultaneous high tibial osteotomy (HTO) and ACLR in the setting of medial OA due to ACL deficiency is another treatment option for physically active young patients that has demonstrated good outcomes with return to recreational sports [8, 12, 14]. However, the literature collectively showed that HTO with ACLR leads to a higher complication rate than combined UKA and ACLR even though the survival rate is similar [14]. Combined UKA and ACLR additionally offers advantages in terms of faster recovery and better long-term functional outcome. The authors believe that HTO with ACLR can be an appropriate choice in select patients, especially those with an excessive posterior tibial slope and severe varus malalignment [8].
Limitations of the present study include the retrospective design and incomplete preoperative score assessment. The number of patients is limited and is distributed among 3 institutions, which dilutes the results. The surgeries were also done by 4 senior surgeons. However, they were all trained in one university hospital before going to neighboring hospitals and their surgical approach did not differ. The medical literature would benefit from prospective comparison studies with larger sample sizes and follow-up durations of more than 20 years.

Conclusion

Simultaneous ACLR and UKA is a viable treatment option with a good long-term outcome and return to sport rate in patients with an ACL injury and isolated medial knee OA. This approach should be included in the treatment portfolio and patients’ long-term expectations can be raised. Proper surgical indication and execution remain crucial for the success of the procedure.

Declarations

Conflict of interest

Prof. Merle reports institutional support from Zimmer Biomet, DePuy Synthes and Medacta outside the submitted work. Prof. Clarius reports research funding from Zimmer Biomet and Braun Aesculap / royalties from Braun Aesculap outside the submitted work. Dr. Jaber, Dr. Bangert, Prof. Schmitt, Dr. Barié, Prof. Streit and Mr. Kim have nothing to declare.

Ethical approval

Data acquisition and analysis were performed in compliance with protocols approved by the Ethical Committee of Heidelberg University Hospital (Ethikkommission—Medizinische Fakultät Heidelberg). The study was registered in the local register of clinical studies and was conducted in accordance with the Declaration of Helsinki, as revised in 2013. Informed consent was obtained from all patients before inclusion in the study.
Informed consent was obtained from all patients/parents before inclusion in the study and anonymous publication of the results.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

e.Med Orthopädie & Unfallchirurgie

Kombi-Abonnement

Mit e.Med Orthopädie & Unfallchirurgie erhalten Sie Zugang zu CME-Fortbildungen der Fachgebiete, den Premium-Inhalten der dazugehörigen Fachzeitschriften, inklusive einer gedruckten Zeitschrift Ihrer Wahl.

Literatur
1.
Zurück zum Zitat Albo E, Campi S, Zampogna B, Torre G, Papalia GF, Diaz Balzani LA et al (2021) Results of simultaneous unicompartmental knee arthroplasty and anterior cruciate ligament reconstruction: a systematic review. J Clin Med 10:4290CrossRefPubMedPubMedCentral Albo E, Campi S, Zampogna B, Torre G, Papalia GF, Diaz Balzani LA et al (2021) Results of simultaneous unicompartmental knee arthroplasty and anterior cruciate ligament reconstruction: a systematic review. J Clin Med 10:4290CrossRefPubMedPubMedCentral
2.
Zurück zum Zitat Berend KR, Berend ME, Dalury DF, Argenson JN, Dodd CA, Scott RD (2015) Consensus statement on indications and contraindications for medial unicompartmental knee arthroplasty. J Surg Orthop Adv 24:252–256PubMed Berend KR, Berend ME, Dalury DF, Argenson JN, Dodd CA, Scott RD (2015) Consensus statement on indications and contraindications for medial unicompartmental knee arthroplasty. J Surg Orthop Adv 24:252–256PubMed
3.
Zurück zum Zitat Boyer P, Djian P, Christel P, Paoletti X, Degeorges R (2004) Reliability of the KT-1000 arthrometer (Medmetric) for measuring anterior knee laxity: comparison with Telos in 147 knees. Rev Chir Orthop Reparatrice Appar Mot 90:757–764CrossRefPubMed Boyer P, Djian P, Christel P, Paoletti X, Degeorges R (2004) Reliability of the KT-1000 arthrometer (Medmetric) for measuring anterior knee laxity: comparison with Telos in 147 knees. Rev Chir Orthop Reparatrice Appar Mot 90:757–764CrossRefPubMed
4.
Zurück zum Zitat Cao S, Liu N, Li L, Lv H, Chen Y, Qian Q (2017) Simplified Chinese Version of University of California at Los Angeles activity score for arthroplasty and arthroscopy: cross-cultural adaptation and validation. J Arthroplasty 32:2706–2711CrossRefPubMed Cao S, Liu N, Li L, Lv H, Chen Y, Qian Q (2017) Simplified Chinese Version of University of California at Los Angeles activity score for arthroplasty and arthroscopy: cross-cultural adaptation and validation. J Arthroplasty 32:2706–2711CrossRefPubMed
5.
Zurück zum Zitat Castiello E, Affatato S (2020) Progression of osteoarthritis and reoperation in unicompartmental knee arthroplasty: a comparison of national joint registries. Int J Artif Organs 43:203–207CrossRefPubMed Castiello E, Affatato S (2020) Progression of osteoarthritis and reoperation in unicompartmental knee arthroplasty: a comparison of national joint registries. Int J Artif Organs 43:203–207CrossRefPubMed
6.
Zurück zum Zitat Citak M, Bosscher MRF, Citak M, Musahl V, Pearle AD, Suero EM (2011) Anterior cruciate ligament reconstruction after unicompartmental knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 19:1683–1688CrossRefPubMed Citak M, Bosscher MRF, Citak M, Musahl V, Pearle AD, Suero EM (2011) Anterior cruciate ligament reconstruction after unicompartmental knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 19:1683–1688CrossRefPubMed
7.
Zurück zum Zitat Deschamps G, Lapeyre B (1987) Rupture of the anterior cruciate ligament: a frequently unrecognized cause of failure of unicompartmental knee prostheses. Apropos of a series of 79 Lotus prostheses with a follow-up of more than 5 years. Rev Chir Orthop Reparatrice Appar Mot 73:544–551PubMed Deschamps G, Lapeyre B (1987) Rupture of the anterior cruciate ligament: a frequently unrecognized cause of failure of unicompartmental knee prostheses. Apropos of a series of 79 Lotus prostheses with a follow-up of more than 5 years. Rev Chir Orthop Reparatrice Appar Mot 73:544–551PubMed
8.
Zurück zum Zitat Gupta A, Tejpal T, Shanmugaraj A, Horner NS, Simunovic N, Duong A et al (2019) Surgical techniques, outcomes, indications, and complications of simultaneous high tibial osteotomy and anterior cruciate ligament revision surgery: a systematic review. Hss j 15:176–184CrossRefPubMed Gupta A, Tejpal T, Shanmugaraj A, Horner NS, Simunovic N, Duong A et al (2019) Surgical techniques, outcomes, indications, and complications of simultaneous high tibial osteotomy and anterior cruciate ligament revision surgery: a systematic review. Hss j 15:176–184CrossRefPubMed
9.
Zurück zum Zitat Iriberri I, Suau S, Payán L, Aragón JF (2019) Long-term deterioration after one-stage unicompartmental knee arthroplasty and anterior cruciate ligament reconstruction. Musculoskelet Surg 103:251–256CrossRefPubMed Iriberri I, Suau S, Payán L, Aragón JF (2019) Long-term deterioration after one-stage unicompartmental knee arthroplasty and anterior cruciate ligament reconstruction. Musculoskelet Surg 103:251–256CrossRefPubMed
10.
Zurück zum Zitat Kennedy JA, Molloy J, Mohammad HR, Mellon SJ, Dodd CAF, Murray DW (2019) Mid- to long-term function and implant survival of ACL reconstruction and medial Oxford UKR. Knee 26:897–904CrossRefPubMed Kennedy JA, Molloy J, Mohammad HR, Mellon SJ, Dodd CAF, Murray DW (2019) Mid- to long-term function and implant survival of ACL reconstruction and medial Oxford UKR. Knee 26:897–904CrossRefPubMed
11.
Zurück zum Zitat Kurien T, Stragier B, Senevirathna S, Geutjens G (2022) Excellent outcomes with combined single stage Physica ZUK medial unicompartment knee replacement and anterior cruciate ligament reconstruction results in young, active patients with instability and osteoarthritis with a mean follow up of 5 years. Knee 36:114–119CrossRefPubMed Kurien T, Stragier B, Senevirathna S, Geutjens G (2022) Excellent outcomes with combined single stage Physica ZUK medial unicompartment knee replacement and anterior cruciate ligament reconstruction results in young, active patients with instability and osteoarthritis with a mean follow up of 5 years. Knee 36:114–119CrossRefPubMed
12.
Zurück zum Zitat Li Y, Zhang H, Zhang J, Li X, Song G, Feng H (2015) Clinical outcome of simultaneous high tibial osteotomy and anterior cruciate ligament reconstruction for medial compartment osteoarthritis in young patients with anterior cruciate ligament-deficient knees: a systematic review. Arthroscopy 31:507–519CrossRefPubMed Li Y, Zhang H, Zhang J, Li X, Song G, Feng H (2015) Clinical outcome of simultaneous high tibial osteotomy and anterior cruciate ligament reconstruction for medial compartment osteoarthritis in young patients with anterior cruciate ligament-deficient knees: a systematic review. Arthroscopy 31:507–519CrossRefPubMed
13.
Zurück zum Zitat Liddle AD, Judge A, Pandit H, Murray DW (2014) Adverse outcomes after total and unicompartmental knee replacement in 101,330 matched patients: a study of data from the National Joint Registry for England and Wales. Lancet 384:1437–1445CrossRefPubMed Liddle AD, Judge A, Pandit H, Murray DW (2014) Adverse outcomes after total and unicompartmental knee replacement in 101,330 matched patients: a study of data from the National Joint Registry for England and Wales. Lancet 384:1437–1445CrossRefPubMed
14.
Zurück zum Zitat Mancuso F, Hamilton TW, Kumar V, Murray DW, Pandit H (2016) Clinical outcome after UKA and HTO in ACL deficiency: a systematic review. Knee Surg Sports Traumatol Arthrosc 24:112–122CrossRefPubMed Mancuso F, Hamilton TW, Kumar V, Murray DW, Pandit H (2016) Clinical outcome after UKA and HTO in ACL deficiency: a systematic review. Knee Surg Sports Traumatol Arthrosc 24:112–122CrossRefPubMed
15.
Zurück zum Zitat McDaniel WJ Jr, Dameron TB Jr (1983) The untreated anterior cruciate ligament rupture. Clin Orthop Relat Res 172:158–163CrossRef McDaniel WJ Jr, Dameron TB Jr (1983) The untreated anterior cruciate ligament rupture. Clin Orthop Relat Res 172:158–163CrossRef
16.
Zurück zum Zitat Migliorini F, Tingart M, Niewiera M, Rath B, Eschweiler J (2019) Unicompartmental versus total knee arthroplasty for knee osteoarthritis. Eur J Orthop Surg Traumatol 29:947–955CrossRefPubMed Migliorini F, Tingart M, Niewiera M, Rath B, Eschweiler J (2019) Unicompartmental versus total knee arthroplasty for knee osteoarthritis. Eur J Orthop Surg Traumatol 29:947–955CrossRefPubMed
17.
Zurück zum Zitat Pandit H, Beard DJ, Jenkins C, Kimstra Y, Thomas NP, Dodd CAF et al (2006) Combined anterior cruciate reconstruction and Oxford unicompartmental knee arthroplasty. J Bone Joint Surg Br 88-B:887–892CrossRef Pandit H, Beard DJ, Jenkins C, Kimstra Y, Thomas NP, Dodd CAF et al (2006) Combined anterior cruciate reconstruction and Oxford unicompartmental knee arthroplasty. J Bone Joint Surg Br 88-B:887–892CrossRef
18.
Zurück zum Zitat Panzram B, Mandery M, Reiner T, Gotterbarm T, Schiltenwolf M, Merle C (2020) Cementless Oxford medial unicompartmental knee replacement-clinical and radiological results of 228 knees with a minimum 2-year follow-up. J Clin Med 9(5):1476CrossRefPubMedPubMedCentral Panzram B, Mandery M, Reiner T, Gotterbarm T, Schiltenwolf M, Merle C (2020) Cementless Oxford medial unicompartmental knee replacement-clinical and radiological results of 228 knees with a minimum 2-year follow-up. J Clin Med 9(5):1476CrossRefPubMedPubMedCentral
19.
Zurück zum Zitat Price AJ, Waite JC, Svard U (2005) Long-term clinical results of the medial Oxford unicompartmental knee arthroplasty. Clin Orthop Relat Res 171–180 Price AJ, Waite JC, Svard U (2005) Long-term clinical results of the medial Oxford unicompartmental knee arthroplasty. Clin Orthop Relat Res 171–180
20.
Zurück zum Zitat Ra HJ, Kim HS, Choi JY, Ha JK, Kim JY, Kim JG (2014) Comparison of the ceiling effect in the Lysholm score and the IKDC subjective score for assessing functional outcome after ACL reconstruction. Knee 21:906–910CrossRefPubMed Ra HJ, Kim HS, Choi JY, Ha JK, Kim JY, Kim JG (2014) Comparison of the ceiling effect in the Lysholm score and the IKDC subjective score for assessing functional outcome after ACL reconstruction. Knee 21:906–910CrossRefPubMed
21.
Zurück zum Zitat Rangger C, Daniel DM, Stone ML, Kaufman K (1993) Diagnosis of an ACL disruption with KT-1000 arthrometer measurements. Knee Surg Sports Traumatol Arthrosc 1:60–66CrossRefPubMed Rangger C, Daniel DM, Stone ML, Kaufman K (1993) Diagnosis of an ACL disruption with KT-1000 arthrometer measurements. Knee Surg Sports Traumatol Arthrosc 1:60–66CrossRefPubMed
22.
Zurück zum Zitat Schmitt J, Lange T, Günther KP, Kopkow C, Rataj E, Apfelbacher C et al (2017) Indication criteria for total knee arthroplasty in patients with osteoarthritis—a multi-perspective consensus study. Z Orthop Unfall 155:539–548CrossRefPubMed Schmitt J, Lange T, Günther KP, Kopkow C, Rataj E, Apfelbacher C et al (2017) Indication criteria for total knee arthroplasty in patients with osteoarthritis—a multi-perspective consensus study. Z Orthop Unfall 155:539–548CrossRefPubMed
23.
Zurück zum Zitat Suggs JF, Li G, Park SE, Steffensmeier S, Rubash HE, Freiberg AA (2004) Function of the anterior cruciate ligament after unicompartmental knee arthroplasty: an in vitro robotic study. J Arthroplasty 19:224–229CrossRefPubMed Suggs JF, Li G, Park SE, Steffensmeier S, Rubash HE, Freiberg AA (2004) Function of the anterior cruciate ligament after unicompartmental knee arthroplasty: an in vitro robotic study. J Arthroplasty 19:224–229CrossRefPubMed
24.
Zurück zum Zitat Ventura A, Legnani C, Terzaghi C, Iori S, Borgo E (2017) Medial unicondylar knee arthroplasty combined to anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 25:675–680CrossRefPubMed Ventura A, Legnani C, Terzaghi C, Iori S, Borgo E (2017) Medial unicondylar knee arthroplasty combined to anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 25:675–680CrossRefPubMed
25.
Zurück zum Zitat Weston-Simons JS, Pandit H, Jenkins C, Jackson WF, Price AJ, Gill HS et al (2012) Outcome of combined unicompartmental knee replacement and combined or sequential anterior cruciate ligament reconstruction: a study of 52 cases with mean follow-up of five years. J Bone Joint Surg Br 94:1216–1220CrossRefPubMed Weston-Simons JS, Pandit H, Jenkins C, Jackson WF, Price AJ, Gill HS et al (2012) Outcome of combined unicompartmental knee replacement and combined or sequential anterior cruciate ligament reconstruction: a study of 52 cases with mean follow-up of five years. J Bone Joint Surg Br 94:1216–1220CrossRefPubMed
Metadaten
Titel
Combined treatment with medial unicompartmental knee arthroplasty and anterior cruciate ligament reconstruction is effective on long-term follow-up
verfasst von
Ayham Jaber
Chang min Kim
Alexander Barié
Marcus Streit
Holger Schmitt
Michael Clarius
Christian Merle
Yannic Bangert
Publikationsdatum
25.08.2022
Verlag
Springer Berlin Heidelberg
Erschienen in
Knee Surgery, Sports Traumatology, Arthroscopy / Ausgabe 4/2023
Print ISSN: 0942-2056
Elektronische ISSN: 1433-7347
DOI
https://doi.org/10.1007/s00167-022-07102-3

Weitere Artikel der Ausgabe 4/2023

Knee Surgery, Sports Traumatology, Arthroscopy 4/2023 Zur Ausgabe

Arthropedia

Grundlagenwissen der Arthroskopie und Gelenkchirurgie. Erweitert durch Fallbeispiele, Videos und Abbildungen. 
» Jetzt entdecken

Ein Drittel der jungen Ärztinnen und Ärzte erwägt abzuwandern

07.05.2024 Klinik aktuell Nachrichten

Extreme Arbeitsverdichtung und kaum Supervision: Dr. Andrea Martini, Sprecherin des Bündnisses Junge Ärztinnen und Ärzte (BJÄ) über den Frust des ärztlichen Nachwuchses und die Vorteile des Rucksack-Modells.

Aquatherapie bei Fibromyalgie wirksamer als Trockenübungen

03.05.2024 Fibromyalgiesyndrom Nachrichten

Bewegungs-, Dehnungs- und Entspannungsübungen im Wasser lindern die Beschwerden von Patientinnen mit Fibromyalgie besser als das Üben auf trockenem Land. Das geht aus einer spanisch-brasilianischen Vergleichsstudie hervor.

Endlich: Zi zeigt, mit welchen PVS Praxen zufrieden sind

IT für Ärzte Nachrichten

Darauf haben viele Praxen gewartet: Das Zi hat eine Liste von Praxisverwaltungssystemen veröffentlicht, die von Nutzern positiv bewertet werden. Eine gute Grundlage für wechselwillige Ärztinnen und Psychotherapeuten.

Proximale Humerusfraktur: Auch 100-Jährige operieren?

01.05.2024 DCK 2024 Kongressbericht

Mit dem demographischen Wandel versorgt auch die Chirurgie immer mehr betagte Menschen. Von Entwicklungen wie Fast-Track können auch ältere Menschen profitieren und bei proximaler Humerusfraktur können selbst manche 100-Jährige noch sicher operiert werden.

Update Orthopädie und Unfallchirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.