Skip to main content
Erschienen in: Gut Pathogens 1/2017

Open Access 01.12.2017 | Genome Report

Comparative genomic analysis of Clostridium difficile ribotype 027 strains including the newly sequenced strain NCKUH-21 isolated from a patient in Taiwan

verfasst von: Haruo Suzuki, Masaru Tomita, Pei-Jane Tsai, Wen-Chien Ko, Yuan-Pin Hung, I-Hsiu Huang, Jenn-Wei Chen

Erschienen in: Gut Pathogens | Ausgabe 1/2017

Abstract

Background

Clostridium difficile is a Gram-positive anaerobe and the leading cause of antibiotic-associated diarrhea worldwide. The emergence of ribotype 027 (RT027) strains is associated with increased incidence of infection and mortality. To further understand the relationship between C. difficile NCKUH-21, a RT027 strain isolated from a patient in Taiwan, and other RT027 strains, we performed whole-genome shotgun sequencing on NCKUH-21 and comparative genomic analyses.

Results

The genome size, G+C content, and gene number for the NCKUH-21 strain were determined to be similar to those for other C. difficile strains. The core genome phylogeny indicated that the five RT027 strains R20291, CD196, NCKUH-21, BI1, and 2007855 formed a clade. A pathogenicity locus, tcdR-tcdB-tcdE-orf-tcdA-tcdC, was conserved in the genome. A genomic region highly similar to the Clostridium phage \(\upvarphi\)CD38-2 was present in the NCKUH-21 strain but absent in the other RT027 strains and designated as the prophage \(\upvarphi\)NCKUH-21. The prophage \(\upvarphi\)NCKUH-21 genes were significantly higher in G+C content than the other genes in the NCKUH-21 genome, indicating that the prophage does not match the base composition of the host genome.

Conclusions

This is the first whole-genome analysis of a RT027 C. difficile strain isolated from Taiwan. Due to the high identity with \(\upvarphi\)CD38-2, the prophage identified in the NCKUH-21 genome has the potential to regulate toxin production. These results provide important information for understanding the pathogenicity of RT027 C. difficile in Taiwan.

Background

Clostridium difficile is a Gram-positive, endospore-forming obligate anaerobe and the current leading cause of antibiotic-associated diarrhea (AAD) within hospital settings worldwide [1]. Estimates have revealed that C. difficile infections (CDI) are responsible for 15–25% of all AAD cases [2]. Onset of CDI can be engendered by disruption of the hosts’ gut microbiota by broad-spectrum antibiotic treatments. Aging, prolonged stay in health care settings, and proton-pump inhibitor use all contribute to increased risk of CDI [3]. Although C. difficile has been characterized for decades, it first gained prominence in 2003 when an outbreak in North America was found to be caused by a strain with toxin hyperproduction capabilities [4]. The rapid spread of C. difficile NAP1/BI/027 strain (PCR ribotype 027 or RT027), which is the same strain characterized with different methods has resulted in outbreaks worldwide, although cases in Asia and Latin America were less reported compared with Europe and North America.
According to a previous case report, NCKUH-21 is the strain isolated from the first severe RT027 CDI in Taiwan, and it contains a deletion of 18 base pairs and a truncated mutation (D117A) in tcdC [5]. To further understand the relationship between NCKUH-21 and other RT027 strains including historic strains and hypervirulent strains, we determined the genome sequence of the C. difficile strain NCKUH-21 (the accession numbers: BDSN01000001–BDSN01000094) and compared it with other sequenced RT027 strains. We assessed the presence of virulence and antibiotic resistance genes for the NCKUH-21 genome. We also compared the genome sequences of the NCKUH-21 strain with its close relatives to investigate the genome synteny, reconstruct the phylogenetic tree, and identify NCKUH-21 strain-specific genes.

Methods

Genome sequencing, assembly, and annotation for the strain NCKUH-21, as well as comparative genomics of nine C. difficile strains (Table 1), were performed as described in Additional file 1: Materials and methods.
Table 1
Analysis of the genomic features of Clostridium strains
Organism name
Size (bp)
%G+C
CDS
Source
C. difficile R20291
4,191,339
28.8
3543
An epidemic strain, UK, 2006
C. difficile CD196
4,110,554
28.6
3485
A patient with CDI, France, 1985
C. difficile NCKUH-21
4,217,149
28.4
3810
A patient with severe PMC, Taiwan, 2014
C. difficile BI1
4,464,700
28.4
4101
A human strain, USA, 1988
C. difficile 2007855
4,179,867
28.7
3811
A bovine strain, USA, 2007
C. difficile Z31
4,298,263
29.2
4128
A canine NTCD strain, Brazil, 2009
C. difficile CD630
4,298,133
29.1
3908
A patient with severe PMC, Switzerland, 1982
C. difficile M68
4,308,325
28.9
3870
A human strain, Ireland, 2006
C. difficile M120
4,047,729
28.7
3634
A human strain, UK, 2007
C. mangenotii LM2
3,023,790
31.6
2808
A reference genome from the rumen microbiome
%G+C= 100 × (G+C)/(A+T+G+C)
CDS number of protein-coding DNA sequences, PMC pseudomembrane colitis, NTCD non-toxigenic C. difficile

Quality assurance

Genomic DNAs were purified from a pure culture of a single bacterial isolate of NCKUH-21. A BLAST search against a nonredundant database revealed no potential contamination of the genomic libraries.

Results and discussion

Genomic features

Illumina MiSeq sequencing was performed to determine the genome sequence of the C. difficile strain NCKUH-21. The de novo assembly contained 94 contigs of length 4,217,149 bp, with a G+C content of 28.4% with sequencing coverage of 1611×. Genome annotation yielded a total of 3810 protein-coding sequences (CDSs).
Among the C. difficile strains analyzed in this paper, the genome size (Mb) ranged from 4.05 to 4.46, G+C content ranged from 28.4 to 29.2%, and CDS number ranged from 3485 to 4128 (Table 1). The general genomic features for the NCKUH-21 strain were thus similar to those of the other C. difficile strains.

Phylogeny

Clostridium difficile strains with the same PCR ribotype were reported to cluster together in the phylogenetic trees for the conserved genes [6]. The Roary pipeline produced a total of 8775 homologous groups of genes (“pan-genome”), of which 69 were shared by all the strains used in this study (“core-genome”). The core genome phylogeny indicated that the RT027 strains (R20291, CD196, NCKUH-21, BI1, and 2007855) formed a monophyletic group or clade, joined by the Z31 and 630 strains, followed by the M68 strain, and finally the M120 strain (Fig. 1).

Synteny

The Mauve Contig Mover (http://​darlinglab.​org/​mauve/​user-guide/​reordering.​html) was used to reorder the contigs of NCKUH-21 relative to the complete genome of C. difficile CD196. The genomes of the nine C. difficile strains were aligned using progressiveMauve, and this alignment was visualized using genoPlotR to investigate genomic rearrangement (Fig. 2). The genome synteny was determined to be conserved among all but one of the strains. An exception was the Z31 strain with large-scale genomic rearrangement, which had not been previously reported [7].

Antibiotic resistance and virulence genes

Antibiotic resistance and virulence genes were searched using ABRicate. Homologous DNA sequences for the binary toxin genes cdtA and cdtB listed in the Virulence Factors Database (accessions of AAF81760 and AAF81761, respectively) were detected in the NCKUH-21 genome [8]. Homologous DNA sequences for the antibiotic resistance genes cdeA, vanRG, and vanG listed in the Comprehensive Antibiotic Resistance Database (accessions of AJ574887.1:371–1697, DQ212986:2259–2967, and DQ212986:5985–7035, respectively) were detected in the NCKUH-21 genome. Although NCKUH-21 showed the genetic potential for becoming resistant to antibiotics, this strain was shown to be susceptible to moxifloxacin (minimum inhibitory concentration 0.5 μg/mL), metronidazole (0.094 μg/mL), and vancomycin (0.5 μg/mL) [5].
The genetic organization of the pathogenicity locus (PaLoc) of the CD630 strain is tcdR-tcdB-tcdE-orf-tcdA-tcdC (locus_tag: CD630_06590, CD630_06600, CD630_06610, CD630_06620, CD630_06630, and CD630_06640) [9]. The gene order was conserved in the NCKUH-21 genome (the accession number: BDSN01000011; locus_tag: NCKUH21_00647, NCKUH21_00648, NCKUH21_00649, NCKUH21_00650, NCKUH21_00651, and NCKUH21_00652). Moreover, another sequence similar to tcdE (CD630_06610) was found in the NCKUH-21 genome (locus_tag: NCKUH21_03847) with 83% amino acid identity. The genes tcdB and tcdA encoding Toxin B and Toxin A (locus_tag: CD630_06600 and CD630_06630; 2366 and 2710 amino acids in length), respectively, of the CD630 PaLoc were determined to be homologous with 48% amino acid identity; additionally, these two genes partly matched a sequence encoding “N-acetylmuramoyl-l-alanine amidase LytC” (the accession number: BDSN01000021; locus_tag: NCKUH21_02692; 644 amino acids in length) in the NCKUH-21 genome with 177 and 226 alignment length and 32 and 34% amino acid identity values, respectively. The PaLoc gene homologues may contribute to the virulence and pathogenicity for the C. difficile strain NCKUH-21.

NCKUH-21 strain-specific genes

To identify NCKUH-21 strain-specific genes, we searched the NCKUH-21 strain’s protein homologues in the genome sequences of all C. difficile strains by using the gene screen method with TBLASTN in the large-scale blast score ratio (LS-BSR) pipeline. Of the 3810 protein-coding genes identified in NCKUH-21, 3579 were conserved in all the other RT027 strains (R20291, CD196, BI1, and 2007855), and 2832 were conserved in all the C. difficile strains used in this study. Among the strains, the largest numbers of NCKUH-21 genes were conserved in the RT027 strains (R20291, CD196, BI1, and 2007855), ranging from 3592 to 3655, followed by other C. difficile strains (Z31, 630, M68, and M120), ranging from 3153 to 3431, and finally the outgroup LM2 (761).
A total of 140 protein-coding genes were present in the NCKUH-21 strain but absent in the other strains (Additional file 2: Table S1). The NCKUH-21 strain-specific genes could have been gained on the branch leading to the NCKUH-21 strain, and they could thus be linked to its specific phenotype (e.g., virulence and pathogenicity). Of the 140 NCKUH-21 strain-specific genes, 50 were encoded on the 40,525-bp-long contig sequence of the NCKUH-21 genome (the accession number: BDSN01000034), which showed a 99% identity match to the Clostridium phage \(\upvarphi\)CD38-2 (GenBank accession: HM568888). The genomic region highly similar to the Clostridium phage \(\upvarphi\)CD38-2 was designated as the prophage \(\upvarphi\)NCKUH-21.

Prophage \(\upvarphi\)NCKUH-21

The prophage \(\upvarphi\) NCKUH-21 detected in the draft genome for the C. difficile strain NCKUH-21 was further confirmed by phage induction examination and electron microscope imaging (data not shown). A previous study suggested that lysogenic \(\upvarphi\)CD38-2 replicates as a circular plasmid and boosts toxin production in C. difficile [10]. The high sequence identity between \(\upvarphi\)NCKUH-21 and \(\upvarphi\)CD38-2 suggests that these prophages have a similar role in C. difficile.
Reports have revealed that bacterial phages tend to be lower in G+C content than their hosts and that viruses match the G+C content of their hosts [11, 12], including the C. difficile bacteriophage \(\upvarphi\)CD119 [13]. Base composition statistics for the NCKUH-21 genes were calculated as the relative frequency of G+C at third codon positions (GC3). The median GC3 value for the prophage \(\upvarphi\)NCKUH-21 genes (0.21) was higher than that for the other genes (0.14) in the NCKUH-21 genome. A Wilcoxon rank sum test, which compared the GC3 values between the two groups of genes, was highly significant (P < 2.2e−16). This suggests that the prophage \(\upvarphi\)NCKUH-21 does not match the base composition of the host genome and may thus have been acquired by horizontal transfer based on the hypothesis of genome amelioration [14].

Concluding remarks

From 2013 to 2014, three RT027 C. difficile strains were isolated from patients in Taiwan [5, 15, 16]. Among them, NCKUH-21 is the first strain to have a whole-genome sequence for genome comparison. Whether the other two RT027 isolates also carry a complete prophage, what their phylogenetic relation with NCKUH-21 is, and what the relative toxin production level is between the three isolates are all topics for further research.

Authors’ contributions

HS conducted the bioinformatics analyses and drafted the manuscript. MT managed bioinformatics environments and helped write the manuscript. JWC performed the laboratory experiments and wrote the manuscript. IHH provided experimental suggestions and wrote the manuscript. PJT, WCK, and YPH provided the isolate and clinical characterizations. All authors read and approved the final manuscript.

Acknowledgements

Computational resources were provided by the Data Integration and Analysis Facility, National Institute for Basic Biology, Japan.

Competing interests

The authors declare that they have no competing interests.

Availability of data and materials

Nucleotide sequence accession numbers: The whole-genome shotgun sequencing data have been deposited in DDBJ/EMBL/GenBank under the accession numbers BDSN01000001–BDSN01000094 (94 entries).
Not applicable.
Not applicable.

Funding

This work was supported in part by research funding from Keio University and from Yamagata Prefecture and Tsuruoka City, Japan, and Ministry of Science and Technology, Taiwan, Grants (103-2320-B-006-028-MY2 to JC, 106-2633-B-006-002- to IH).

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.
Literatur
1.
Zurück zum Zitat Ananthakrishnan AN. Clostridium difficile infection: epidemiology, risk factors and management. Nat Rev Gastroenterol Hepatol. 2011;8(1):17–26.CrossRefPubMed Ananthakrishnan AN. Clostridium difficile infection: epidemiology, risk factors and management. Nat Rev Gastroenterol Hepatol. 2011;8(1):17–26.CrossRefPubMed
2.
Zurück zum Zitat Bartlett JG, Gerding DN. Clinical recognition and diagnosis of Clostridium difficile infection. Clin Infect Dis. 2008;46(Suppl 1):S12–8.CrossRefPubMed Bartlett JG, Gerding DN. Clinical recognition and diagnosis of Clostridium difficile infection. Clin Infect Dis. 2008;46(Suppl 1):S12–8.CrossRefPubMed
4.
Zurück zum Zitat O’Connor JR, Johnson S, Gerding DN. Clostridium difficile infection caused by the epidemic BI/NAP1/027 strain. Gastroenterology. 2009;136(6):1913–24.CrossRefPubMed O’Connor JR, Johnson S, Gerding DN. Clostridium difficile infection caused by the epidemic BI/NAP1/027 strain. Gastroenterology. 2009;136(6):1913–24.CrossRefPubMed
5.
Zurück zum Zitat Hung YP, Cia CT, Tsai BY, Chen PC, Lin HJ, Liu HC, Lee JC, Wu YH, Tsai PJ, Ko WC. The first case of severe Clostridium difficile ribotype 027 infection in Taiwan. J Infect. 2015;70(1):98–101.CrossRefPubMed Hung YP, Cia CT, Tsai BY, Chen PC, Lin HJ, Liu HC, Lee JC, Wu YH, Tsai PJ, Ko WC. The first case of severe Clostridium difficile ribotype 027 infection in Taiwan. J Infect. 2015;70(1):98–101.CrossRefPubMed
6.
Zurück zum Zitat Kurka H, Ehrenreich A, Ludwig W, Monot M, Rupnik M, Barbut F, Indra A, Dupuy B, Liebl W. Sequence similarity of Clostridium difficile strains by analysis of conserved genes and genome content is reflected by their ribotype affiliation. PLoS ONE. 2014;9(1):e86535.CrossRefPubMedPubMedCentral Kurka H, Ehrenreich A, Ludwig W, Monot M, Rupnik M, Barbut F, Indra A, Dupuy B, Liebl W. Sequence similarity of Clostridium difficile strains by analysis of conserved genes and genome content is reflected by their ribotype affiliation. PLoS ONE. 2014;9(1):e86535.CrossRefPubMedPubMedCentral
7.
Zurück zum Zitat Pereira FL, Oliveira Junior CA, Silva ROS, Dorella FA, Carvalho AF, Almeida GMF, Leal CAG, Lobato FCF, Figueiredo HCP. Complete genome sequence of Peptoclostridium difficile strain Z31. Gut Pathog. 2016;8:11.CrossRefPubMedPubMedCentral Pereira FL, Oliveira Junior CA, Silva ROS, Dorella FA, Carvalho AF, Almeida GMF, Leal CAG, Lobato FCF, Figueiredo HCP. Complete genome sequence of Peptoclostridium difficile strain Z31. Gut Pathog. 2016;8:11.CrossRefPubMedPubMedCentral
8.
Zurück zum Zitat Gerding DN, Johnson S, Rupnik M, Aktories K. Clostridium difficile binary toxin CDT: mechanism, epidemiology, and potential clinical importance. Gut Microbes. 2014;5(1):15–27.CrossRefPubMed Gerding DN, Johnson S, Rupnik M, Aktories K. Clostridium difficile binary toxin CDT: mechanism, epidemiology, and potential clinical importance. Gut Microbes. 2014;5(1):15–27.CrossRefPubMed
9.
Zurück zum Zitat Monot M, Eckert C, Lemire A, Hamiot A, Dubois T, Tessier C, Dumoulard B, Hamel B, Petit A, Lalande V, et al. Clostridium difficile: new insights into the evolution of the pathogenicity locus. Sci Rep. 2015;5:15023.CrossRefPubMedPubMedCentral Monot M, Eckert C, Lemire A, Hamiot A, Dubois T, Tessier C, Dumoulard B, Hamel B, Petit A, Lalande V, et al. Clostridium difficile: new insights into the evolution of the pathogenicity locus. Sci Rep. 2015;5:15023.CrossRefPubMedPubMedCentral
10.
Zurück zum Zitat Sekulovic O, Meessen-Pinard M, Fortier LC. Prophage-stimulated toxin production in Clostridium difficile NAP1/027 lysogens. J Bacteriol. 2011;193(11):2726–34.CrossRefPubMedPubMedCentral Sekulovic O, Meessen-Pinard M, Fortier LC. Prophage-stimulated toxin production in Clostridium difficile NAP1/027 lysogens. J Bacteriol. 2011;193(11):2726–34.CrossRefPubMedPubMedCentral
11.
Zurück zum Zitat Rocha EP, Danchin A. Base composition bias might result from competition for metabolic resources. Trends Genet. 2002;18(6):291–4.CrossRefPubMed Rocha EP, Danchin A. Base composition bias might result from competition for metabolic resources. Trends Genet. 2002;18(6):291–4.CrossRefPubMed
13.
Zurück zum Zitat Govind R, Fralick JA, Rolfe RD. Genomic organization and molecular characterization of Clostridium difficile bacteriophage PhiCD119. J Bacteriol. 2006;188(7):2568–77.CrossRefPubMedPubMedCentral Govind R, Fralick JA, Rolfe RD. Genomic organization and molecular characterization of Clostridium difficile bacteriophage PhiCD119. J Bacteriol. 2006;188(7):2568–77.CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat Lawrence JG, Ochman H. Amelioration of bacterial genomes: rates of change and exchange. J Mol Evol. 1997;44(4):383–97.CrossRefPubMed Lawrence JG, Ochman H. Amelioration of bacterial genomes: rates of change and exchange. J Mol Evol. 1997;44(4):383–97.CrossRefPubMed
15.
Zurück zum Zitat Liao TL, Lin CF, Chiou CS, Shen GH, Wang J. Clostridium difficile PCR ribotype 027 emerges in Taiwan. Jpn J Infect Dis. 2015;68(4):338–40.CrossRefPubMed Liao TL, Lin CF, Chiou CS, Shen GH, Wang J. Clostridium difficile PCR ribotype 027 emerges in Taiwan. Jpn J Infect Dis. 2015;68(4):338–40.CrossRefPubMed
16.
Zurück zum Zitat Lai MJ, Chiueh TS, Huang ZY, Lin JC. The first Clostridium difficile ribotype 027 strain isolated in Taiwan. J Formos Med Assoc. 2016;115(3):210–2.CrossRefPubMed Lai MJ, Chiueh TS, Huang ZY, Lin JC. The first Clostridium difficile ribotype 027 strain isolated in Taiwan. J Formos Med Assoc. 2016;115(3):210–2.CrossRefPubMed
Metadaten
Titel
Comparative genomic analysis of Clostridium difficile ribotype 027 strains including the newly sequenced strain NCKUH-21 isolated from a patient in Taiwan
verfasst von
Haruo Suzuki
Masaru Tomita
Pei-Jane Tsai
Wen-Chien Ko
Yuan-Pin Hung
I-Hsiu Huang
Jenn-Wei Chen
Publikationsdatum
01.12.2017
Verlag
BioMed Central
Erschienen in
Gut Pathogens / Ausgabe 1/2017
Elektronische ISSN: 1757-4749
DOI
https://doi.org/10.1186/s13099-017-0219-4

Weitere Artikel der Ausgabe 1/2017

Gut Pathogens 1/2017 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Battle of Experts: Sport vs. Spritze bei Adipositas und Typ-2-Diabetes

11.05.2024 DDG-Jahrestagung 2024 Kongressbericht

Im Battle of Experts traten zwei Experten auf dem Diabeteskongress gegeneinander an: Die eine vertrat die Auffassung „Sport statt Spritze“ bei Adipositas und Typ-2-Diabetes, der andere forderte „Spritze statt Sport!“ Am Ende waren sie sich aber einig: Die Kombination aus beidem erzielt die besten Ergebnisse.

Vorsicht, erhöhte Blutungsgefahr nach PCI!

10.05.2024 Koronare Herzerkrankung Nachrichten

Nach PCI besteht ein erhöhtes Blutungsrisiko, wenn die Behandelten eine verminderte linksventrikuläre Ejektionsfraktion aufweisen. Das Risiko ist umso höher, je stärker die Pumpfunktion eingeschränkt ist.

Triglyzeridsenker schützt nicht nur Hochrisikopatienten

10.05.2024 Hypercholesterinämie Nachrichten

Patienten mit Arteriosklerose-bedingten kardiovaskulären Erkrankungen, die trotz Statineinnahme zu hohe Triglyzeridspiegel haben, profitieren von einer Behandlung mit Icosapent-Ethyl, und zwar unabhängig vom individuellen Risikoprofil.

Gibt es eine Wende bei den bioresorbierbaren Gefäßstützen?

In den USA ist erstmals eine bioresorbierbare Gefäßstütze – auch Scaffold genannt – zur Rekanalisation infrapoplitealer Arterien bei schwerer PAVK zugelassen worden. Das markiert einen Wendepunkt in der Geschichte dieser speziellen Gefäßstützen.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.