Skip to main content
Erschienen in: Lasers in Medical Science 4/2010

01.07.2010 | Original Article

Comparison of the efficacy of Rose Bengal and erythrosin in photodynamic therapy against Enterobacteriaceae

verfasst von: Rodnei D. Rossoni, Juliana C. Junqueira, Evelyn Luzia S. Santos, Anna Carolina B. Costa, Antonio Olavo C. Jorge

Erschienen in: Lasers in Medical Science | Ausgabe 4/2010

Einloggen, um Zugang zu erhalten

Abstract

The aim of this study was to evaluate the effects of the photosensitizers Rose Bengal and erythrosin combined with a light-emitting diode (LED) on Enterobacteriaceae. Twelve Enterobacteriaceae strains isolated from the oral cavities of patients undergoing prolonged antibiotic therapy, including three Escherichia coli, three Enterobacter cloacae, three Klebsiella oxytoca and three Klebsiella pneumoniae, were studied. An Enterobacteriaceae suspension (106 cells/ml) was prepared from each clinical strain isolated from the human oral cavity and subjected to the following treatments: LED and Rose Bengal, LED and erythrosin, LED and physiological solution, and physiological solution only as control. A blue LED unit (460 nm), and Rose Bengal and erythrosin at a concentration of 50 µmol/l were used. After incubation at 37°C for 48 h, the number of colony-forming units (CFU) was calculated and subjected to analysis of variance (ANOVA). The Enterobacterial strains were sensitive to photodynamic therapy with Rose Bengal. There was a reduction of approximately 7.14 log10 for Enterobacter cloacae, 7.73 log10 for Escherichia coli, 6.76 log10 for Klebsiella pneumoniae and 7.21 log10 for Klebsiella oxytoca. However, photodynamic therapy using erythrosin did not reduce the numbers of CFUs per milliliter compared to the control group. The use of the LED alone had no toxic effect on the strain tested. The Enterobacteriaceae strains studied were sensitive to photodynamic therapy with Rose Bengal.
Literatur
1.
Zurück zum Zitat Ackroyd R, Kelty C, Brown N, Reed M (2001) The history of photodetection and photodynamic therapy. Photochem Photobiol 74:656–669CrossRefPubMed Ackroyd R, Kelty C, Brown N, Reed M (2001) The history of photodetection and photodynamic therapy. Photochem Photobiol 74:656–669CrossRefPubMed
2.
3.
Zurück zum Zitat Wainwright M (1998) Photodynamic antimicrobial chemotherapy (PACT). J Antimicrob Chemother 42:13–28CrossRefPubMed Wainwright M (1998) Photodynamic antimicrobial chemotherapy (PACT). J Antimicrob Chemother 42:13–28CrossRefPubMed
4.
Zurück zum Zitat Wainwright M, Crossley KB (2004) Photosensitizing agents circumventing resistance and breaking down biofilms: a review. Int Biodeterior Biodegrad 53:119–126CrossRef Wainwright M, Crossley KB (2004) Photosensitizing agents circumventing resistance and breaking down biofilms: a review. Int Biodeterior Biodegrad 53:119–126CrossRef
5.
Zurück zum Zitat Meisel P, Kocher T (2005) Photodynamic therapy for periodontal diseases: state of the art. J Photochem Photobiol B 79:159–170CrossRefPubMed Meisel P, Kocher T (2005) Photodynamic therapy for periodontal diseases: state of the art. J Photochem Photobiol B 79:159–170CrossRefPubMed
6.
Zurück zum Zitat Banks JG, Board RG, Carter J, Dodge AD (1985) The cytotoxic and photodynamic inactivation of micro-organisms by Rose Bengal. J Appl Bacteriol 58:391–400PubMed Banks JG, Board RG, Carter J, Dodge AD (1985) The cytotoxic and photodynamic inactivation of micro-organisms by Rose Bengal. J Appl Bacteriol 58:391–400PubMed
7.
Zurück zum Zitat Schäfer M, Schmitz C, Facius R, Horneck G, Milow B, Funken KH, Ortner J (2000) Systematic study of parameters influencing the action of Rose Bengal with visible light on bacterial cells: comparison between the biological effect and singlet-oxygen production. Photochem Photobiol 71:514–523CrossRefPubMed Schäfer M, Schmitz C, Facius R, Horneck G, Milow B, Funken KH, Ortner J (2000) Systematic study of parameters influencing the action of Rose Bengal with visible light on bacterial cells: comparison between the biological effect and singlet-oxygen production. Photochem Photobiol 71:514–523CrossRefPubMed
8.
Zurück zum Zitat Dahl TA, Midden WR, Neckers DC (1988) Comparison of photodynamic action by Rose Bengal in Gram-positive and Gram-negative bacteria. Photochem Photobiol 48:607–612CrossRefPubMed Dahl TA, Midden WR, Neckers DC (1988) Comparison of photodynamic action by Rose Bengal in Gram-positive and Gram-negative bacteria. Photochem Photobiol 48:607–612CrossRefPubMed
9.
Zurück zum Zitat Castanho GM, Zamboni SC, Torres CR (2009) Influence of gel color on in vitro surface and intrapulpal temperature rise during blue light-activated tooth bleaching. Gen Dent 57:146–150PubMed Castanho GM, Zamboni SC, Torres CR (2009) Influence of gel color on in vitro surface and intrapulpal temperature rise during blue light-activated tooth bleaching. Gen Dent 57:146–150PubMed
10.
Zurück zum Zitat Holt JG, Krieg NR, Sneath PH, Staley JT, Williams ST (1994) Bergey’s manual of determinative bacteriology. In: Holt et al. (ed) Facultatively anaerobic Gram-negative rods, 9th edn. Lippincott Williams & Wilkins, Baltimore, Maryland, p 179 Holt JG, Krieg NR, Sneath PH, Staley JT, Williams ST (1994) Bergey’s manual of determinative bacteriology. In: Holt et al. (ed) Facultatively anaerobic Gram-negative rods, 9th edn. Lippincott Williams & Wilkins, Baltimore, Maryland, p 179
11.
Zurück zum Zitat Sedgley CM, Samaranayake LP, Chan JCY, Wei SHY (1997) A 4-year longitudinal study of the oral prevalence of enteric Gram-negative rods and yeasts in Chinese children. Oral Microbiol Immunol 12:183–188CrossRefPubMed Sedgley CM, Samaranayake LP, Chan JCY, Wei SHY (1997) A 4-year longitudinal study of the oral prevalence of enteric Gram-negative rods and yeasts in Chinese children. Oral Microbiol Immunol 12:183–188CrossRefPubMed
12.
Zurück zum Zitat Slots J, Feik D, Rams TE (1990) Prevalence and antimicrobial susceptibility of Enterobacteriaceae, Pseudomonadaceae and Acinetobacter in human periodontitis. Oral Microbiol Immunol 5:149–154CrossRefPubMed Slots J, Feik D, Rams TE (1990) Prevalence and antimicrobial susceptibility of Enterobacteriaceae, Pseudomonadaceae and Acinetobacter in human periodontitis. Oral Microbiol Immunol 5:149–154CrossRefPubMed
13.
Zurück zum Zitat Ferrari PHP et al (2005) Effect of endodontic procedures on Enterococci, enteric bacteria and yeasts in primary endodontic infections. Int Endod J 38:372–380CrossRef Ferrari PHP et al (2005) Effect of endodontic procedures on Enterococci, enteric bacteria and yeasts in primary endodontic infections. Int Endod J 38:372–380CrossRef
14.
Zurück zum Zitat De Oliveira LD, Jorge AO, Carvalho CA, Koga-Ito CY, Valera MC (2007) In vitro effects of endodontic irrigants on endotoxins in root canals. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 104:135–142CrossRefPubMed De Oliveira LD, Jorge AO, Carvalho CA, Koga-Ito CY, Valera MC (2007) In vitro effects of endodontic irrigants on endotoxins in root canals. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 104:135–142CrossRefPubMed
15.
Zurück zum Zitat Gonçalves MO, Coutinho-Filho WP, Pimenta FP, Pereira GA, Pereira JA, Mattos-Guaraldi AL, Hirata R Jr (2007) Periodontal disease as reservoir for multi-resistant and hydrolytic enterobacterial species. Lett Appl Microbiol 44:488–494CrossRefPubMed Gonçalves MO, Coutinho-Filho WP, Pimenta FP, Pereira GA, Pereira JA, Mattos-Guaraldi AL, Hirata R Jr (2007) Periodontal disease as reservoir for multi-resistant and hydrolytic enterobacterial species. Lett Appl Microbiol 44:488–494CrossRefPubMed
16.
Zurück zum Zitat Soares BM, da Silva DL, Sousa GR, Amorim JC, de Resende MA, Pinotti M, Cisalpino OS (2009) In vitro photodynamic inactivation of Candida spp. growth and adhesion to buccal epithelial cells. Photochem Photobiol B 94:65–70CrossRef Soares BM, da Silva DL, Sousa GR, Amorim JC, de Resende MA, Pinotti M, Cisalpino OS (2009) In vitro photodynamic inactivation of Candida spp. growth and adhesion to buccal epithelial cells. Photochem Photobiol B 94:65–70CrossRef
17.
Zurück zum Zitat Peloi LS, Soares RR, Biondo CE, Souza VR, Hioka N, Kimura E (2008) Photodynamic effect of light-emitting diode light on cell growth inhibition induced by methylene blue. J Biosci 33:231–237CrossRefPubMed Peloi LS, Soares RR, Biondo CE, Souza VR, Hioka N, Kimura E (2008) Photodynamic effect of light-emitting diode light on cell growth inhibition induced by methylene blue. J Biosci 33:231–237CrossRefPubMed
18.
Zurück zum Zitat Zanin IC, Lobo MM, Rodrigues LK, Pimenta LA, Höfling JF, Gonçalves RB (2006) Photosensitization of in vitro biofilms by toluidine blue O combined with a light-emitting diode. Eur J Oral Sci 115:64–69CrossRef Zanin IC, Lobo MM, Rodrigues LK, Pimenta LA, Höfling JF, Gonçalves RB (2006) Photosensitization of in vitro biofilms by toluidine blue O combined with a light-emitting diode. Eur J Oral Sci 115:64–69CrossRef
19.
Zurück zum Zitat Brovko LY, Meyer A, Tiwana AS, Chen W, Liu H, Filipe CD, Griffiths MW (2009) Photodynamic treatment: a novel method for sanitation of food handling and food processing surfaces. J Food Prot 72:1020–1024PubMed Brovko LY, Meyer A, Tiwana AS, Chen W, Liu H, Filipe CD, Griffiths MW (2009) Photodynamic treatment: a novel method for sanitation of food handling and food processing surfaces. J Food Prot 72:1020–1024PubMed
20.
Zurück zum Zitat Demidova TN, Hamblin MR (2005) Effect of cell-photosensitizer binding and cell density on microbial photoinactivation. Antimicrob Agents Chemother 49:2329–2335CrossRefPubMed Demidova TN, Hamblin MR (2005) Effect of cell-photosensitizer binding and cell density on microbial photoinactivation. Antimicrob Agents Chemother 49:2329–2335CrossRefPubMed
21.
Zurück zum Zitat Wood S, Metcalf D, Devine D, Robinson C (2006) Erythrosin is a potential photosensitizer for the photodynamic therapy of oral plaque biofilms. J Antimicrob Chemother 57:680–684CrossRefPubMed Wood S, Metcalf D, Devine D, Robinson C (2006) Erythrosin is a potential photosensitizer for the photodynamic therapy of oral plaque biofilms. J Antimicrob Chemother 57:680–684CrossRefPubMed
22.
Zurück zum Zitat Metcalf D, Robinson C, Devine D, Wood S (2006) Enhancement of erythrosin-mediated photodynamic therapy of Streptococcus mutans biofilms by light fractionation. J Antimicrob Chemother 58:190–192CrossRefPubMed Metcalf D, Robinson C, Devine D, Wood S (2006) Enhancement of erythrosin-mediated photodynamic therapy of Streptococcus mutans biofilms by light fractionation. J Antimicrob Chemother 58:190–192CrossRefPubMed
23.
Zurück zum Zitat Maclean M, MacGregor SJ, Anderson JG, Woolsey G (2009) Inactivation of bacterial pathogens following exposure to light from a 405-nanometer light-emitting diode array. Appl Environ Microbiol 75:1932–1937CrossRefPubMed Maclean M, MacGregor SJ, Anderson JG, Woolsey G (2009) Inactivation of bacterial pathogens following exposure to light from a 405-nanometer light-emitting diode array. Appl Environ Microbiol 75:1932–1937CrossRefPubMed
24.
Zurück zum Zitat George S, Hamblin MR, Kishen A (2009) Uptake pathways of anionic and cationic photosensitizers into bacteria. Photochem Photobiol Sci 8:788–795CrossRefPubMed George S, Hamblin MR, Kishen A (2009) Uptake pathways of anionic and cationic photosensitizers into bacteria. Photochem Photobiol Sci 8:788–795CrossRefPubMed
Metadaten
Titel
Comparison of the efficacy of Rose Bengal and erythrosin in photodynamic therapy against Enterobacteriaceae
verfasst von
Rodnei D. Rossoni
Juliana C. Junqueira
Evelyn Luzia S. Santos
Anna Carolina B. Costa
Antonio Olavo C. Jorge
Publikationsdatum
01.07.2010
Verlag
Springer-Verlag
Erschienen in
Lasers in Medical Science / Ausgabe 4/2010
Print ISSN: 0268-8921
Elektronische ISSN: 1435-604X
DOI
https://doi.org/10.1007/s10103-010-0765-1

Weitere Artikel der Ausgabe 4/2010

Lasers in Medical Science 4/2010 Zur Ausgabe