Skip to main content
Erschienen in: Archives of Virology 3/2013

Open Access 01.03.2013 | Brief Review

Complex evolution and epidemiology of Dobrava-Belgrade hantavirus: definition of genotypes and their characteristics

verfasst von: Boris Klempa, Tatjana Avsic-Zupanc, Jan Clement, Tamara K. Dzagurova, Heikki Henttonen, Paul Heyman, Ferenc Jakab, Detlev H. Kruger, Piet Maes, Anna Papa, Evgeniy A. Tkachenko, Rainer G. Ulrich, Olli Vapalahti, Antti Vaheri

Erschienen in: Archives of Virology | Ausgabe 3/2013

Abstract

Dobrava-Belgrade virus (DOBV) is a human pathogen that has evolved in, and is hosted by, mice of several species of the genus Apodemus. We propose a subdivision of the species Dobrava-Belgrade virus into four related genotypes – Dobrava, Kurkino, Saaremaa, and Sochi – that show characteristic differences in their phylogeny, specific host reservoirs, geographical distribution, and pathogenicity for humans.

History of DOBV discovery and characterization

Dobrava virus was isolated more than 25 years ago from a yellow-necked mouse, Apodemus flavicollis, captured in Slovenia [2]. At the same time, cell-culture isolation of Belgrade virus from a patient with severe hemorrhagic fever with renal syndrome (HFRS) was reported [11]. Later, these virus isolates were found to be identical [77]. Therefore, the International Committee for Taxonomy of Viruses (ICTV) proposed the name Dobrava-Belgrade virus (DOBV) for this hantavirus species [10].
Soon, reports on detection of DOBV in other European countries started to appear. DOBV nucleic acid was detected by RT-PCR and sequencing in Greek and Albanian HFRS patients [1]. Using the focus-reduction neutralization test (FRNT), DOBV-neutralizing antibodies were found in patient sera from Bosnia-Herzegovina [34], in sera from patients of a retrospectively studied HFRS outbreak in Russia (1991-92 in Tula-Ryazan region [33]), in sera of two HFRS patients from Germany [38, 39], and in human sera from Estonia [35] and Slovakia [72].
Surprisingly, DOBV was then detected also in striped field mice, A. agrarius, trapped on the Estonian islands Saaremaa and Vormsi [55] and subsequently isolated in cell culture [41]. Other DOBV sequences, quite distinct from those of the Saaremaa isolate, were recovered from striped field mice trapped in the Kurkino region in Russia [56] and in Slovakia [72, 73]. Meanwhile, DOBV was molecularly detected in striped field mice in other European countries such as Germany [66], Denmark [44], and other regions of European Russia [27]. Corresponding DOBV genome sequences were demonstrated in HFRS patients from Germany [23] and European Russia [27].
In several countries, both yellow-necked (Apodemus flavicollis; Af) and striped field mouse (A. agrarius; Aa)-associated strains are sympatrically present, such as Slovakia [21, 73], Slovenia [5], Hungary [16, 17, 61, 65], and Croatia (62). Phylogenetic analysis has shown that the viruses from these two different hosts also form distinct evolutionary lineages [5, 21, 73]. This finding initiated a taxonomical dispute as to whether or not the Aa-associated strains represent a distinct hantavirus species called Saaremaa virus, SAAV [22, 26, 58, 59]. Indeed, SAAV is currently recognized as an independent virus species on the ICTV species list (http://​ictvonline.​org/​virusTaxonomy.​asp).
Here we summarize the current knowledge on phylogeny and molecular epidemiology of Apodemus-associated hantaviruses in Europe and propose their taxonomical classification.

DOBV hosts and evolution

Hantaviruses are considered host-specific, usually being associated with a single species of rodents or a few closely related species as their reservoir hosts [6, 15, 18]. For example, Tula virus is associated with voles of several species, namely the common vole Microtus arvalis, several other Microtus species, and the water vole Arvicola amphibius [54, 60, 67, 68, 71]. Similarly, Seoul virus is associated with rats of different species, namely Rattus rattus, R. norvegicus and R. losea [31, 32]. Moreover, several novel hantaviruses have been detected recently in insectivores (shrews and moles) [14], and most recently, even in bats [76, 82].
Currently, mice of at least three Apodemus species are recognized as DOBV hosts. The yellow-necked mouse is the dominant DOBV host in South-Eastern (SE) Europe. DOBV sequences associated with yellow-necked mice have been reported from Slovenia [3, 5], Serbia and Montenegro [51, 77], Albania and Greece [1, 43, 45, 47, 48], Croatia [37, 62], and Bulgaria [53]. Intriguingly, mice of this species are present across Europe but seem to be DOBV-free in Western and Northern Europe. Besides SE Europe, DOBV-Af has been found in several countries in Central Europe such as the Czech Republic [52, 81], Slovakia [73, 83], Hungary [40, 61] and recently also in Turkey [46, 64]. In Central and Eastern Europe (Germany, Slovakia, European Russia, Hungary, Estonia, and other countries), the striped field mouse is the dominant DOBV reservoir. DOBV-positive striped field mice have also been reported in SE Europe [5, 62]. Recently, a third natural reservoir host was identified in the Black Sea region of the European part of Russia, where about 20 % of trapped Black Sea field mice of the species A. ponticus (a sibling species of yellow-necked mouse, J. Michaux pers. comm.) were DOBV-antigen positive and from which virus could be isolated by cell culture with lung tissue homogenate as inoculum [27, 79].
DOBV belongs to the group of Murinae-associated hantaviruses. Its close relatives are Hantaan virus (HTNV), Seoul virus, and Thailand virus from Asia. The most closely related hantavirus currently is Sangassou virus, which is found in West Africa [25, 28].
Phylogenetic analysis of the DOBV strains from yellow-necked and striped field mice occurring sympatrically in Slovenia [5] and Slovakia [21, 73] clearly showed that DOBV forms distinct evolutionary lineages according to the host species. This was clearly confirmed when virus sequences from the third host, the Black Sea field mouse, were analyzed. These lineages were called DOBV-Af, DOBV-Aa, and DOBV-Ap according to the rodent species abbreviation of their hosts [27, 30].
The strict host-determined differentiation is particularly obvious in the sequence analysis of the M segment, which encodes the viral envelope glycoprotein (Fig. 1B). However, in the S-segment-based trees, the virus sequences obtained from striped field mice trapped on Saaremaa Island in Estonia are clearly distinct from the other strains derived from striped field mice from mainland Europe [14, 24, 27, 53, 63]. Genetic reassortment between DOBV-Aa and DOBV-Af strains was initially proposed as a possible explanation for the conflicting S- and M-segment phylogenies [21]. Discovery of the DOBV-Ap lineage required revision of the concept. DOBV-Ap forms a sister group to DOBV-Af in the S-segment trees, and the position of the Saaremaa strain is now more ancestral [27]. Therefore, the putative reassortment could not have occurred directly with DOBV-Af as initially proposed but with some older ancestor of DOBV-Af and DOBV-Ap.
An alternative explanation based on different evolutionary rates of genome segments has been proposed [42, 59]. According to Plyusnin et al. [59], after a host switch of pre-DOBV to striped field mouse, the housekeeping nucleocapsid (N) and RNA-dependent RNA polymerase (RdRp) proteins (encoded by S and L segments) have been diverging more slowly than surface glycoproteins Gn (G1) and Gc (G2) (encoded by M segment), which are involved in the recognition of host-cell receptor(s) and represent targets for neutralizing antibodies. Consequently, the M segment has accumulated more mutations than the S (and L) segment, making phylogenetic reconstructions easier [59].
However, the proposed host switch from yellow-necked mouse to striped field mouse has been called into doubt by others [19, 26]. Indeed, high sequence variability and long branch distances among geographical clusters within the DOBV-Aa lineage indicate an isolated long-term evolution of the virus and suggest that the striped field mouse is the primary host of DOBV. On the other hand, low intra-lineage variability of DOBV-Af and DOBV-Ap strains indicates more recent and rapid spread of these viruses in yellow-necked mouse and Black Sea field mouse populations.
Additional conflicts in tree topologies suggesting genetic reassortment during DOBV evolution have been observed for DOBV-Ap. In S-segment trees, DOBV-Ap forms a well-supported sister group to DOBV-Af but is an outgroup to all other DOBV strains in M- and L-segment trees [27]. More complete sequence data, especially from M and L segments, allowing construction of more balanced datasets for all three segments, would be very helpful to better understand the complexity of DOBV evolution.
The inference of S-segment phylogeny seems to be particularly problematic. Usage of various datasets and phylogenetic methods can result in different positions of the Saaremaa strains [74]. Nevertheless, it remains clear that Saaremaa strains show different phylogenetic placement in S- and M-segment trees (Fig. 1) and are evolutionarily distinct from the DOBV-Aa lineage. It is important to note that the DOBV S-segment sequences obtained recently from striped field mice trapped on the Estonian mainland do not share a common ancestor with Saaremaa strains but clearly cluster with DOBV-Aa strains (Golovljova, et al., manuscript in preparation; Figs. 1A, 2). In this context, it is interesting to note that the striped field mouse population from Saaremaa Island has two pericentromeric nucleolus-organizer regions less in their karyotype than striped field mice from Estonia, Russia, or other continental areas. This has been interpreted as evidence for their earlier geographic isolation from the continental populations [7]. On the other hand, ongoing work by J. Michaux (pers. comm) shows narrow genetic diversity in striped field mice in the Western Palearctic, indicating quite recent quick expansion from the Eastern Palearctic. Due to the Ice Age, Saaremaa Island has existed for a maximum of 10,000 years, thus limiting the maximum age of the population of striped field mice found there. All of this suggests that genetic changes in these viruses can be quite fast.
Although there are difficulties in inferring phylogenetic relationships between the lineages, the following four lineages can currently be clearly recognized according to S-segment-based phylogenetic analysis: DOBV-Af, DOBV-Aa, DOBV-Ap, and SAAV (see Fig. 1A, 2). Since the appearance of SAAV in the ICTV species list, some authors designate any strain originating from A. agrarius as SAAV (e.g., see refs. [57, 62]) regardless of their phylogenetic distance to Estonian Saaremaa strains and to other DOBV lineages, Other authors emphasize the fact that A. agrarius-derived strains are not monophyletic and that DOBV-Aa strains from Central Europe, mainland Estonia and Russia are clearly different from Saaremaa Island strains. This parallel terminology has brought confusion not only to the hantavirus scientific community but also to clinicians and public-health authorities.

Proposal of a new classification

We would like to propose a novel intra-species classification of DOBV, which is based on phylogenetic analysis of the S segment sequences. Due to the genetic basis of the classification, we propose to define virus genotypes. In agreement with the usual procedure in hantavirus terminology, genotype names should be derived from the geographical place where the first sequence of the genotype was detected.
Following this concept, one can currently define four DOBV genotypes corresponding to the four above-listed lineages. The “Dobrava” genotype consists of DOBV-Af strains and is named after the prototype virus [2]. Strains on the Estonian island of Saaremaa carried by striped field mice represent the “Saaremaa” genotype [55]. Since the first sequences of the DOBV-Aa lineage were found in the Kurkino region of Russia [56], we propose to define the “Kurkino” genotype, which corresponds to the DOBV-Aa lineage on the European mainland. Analogously, the strains of the DOBV-Ap lineage represent the “Sochi” genotype [27]. Basic characteristics of the virus genotypes are summarized in Table 1.
Table 1
Characteristics of virus genotypes belonging to the species Dobrava-Belgrade virus
Genotype
Dobrava
Kurkino
Saaremaa
Sochi
Natural host
Yellow-necked mouse Apodemus flavicollis
Striped field mouse A. agrarius
Striped field mouse A. agrarius
Black sea field mouse A. ponticus
Virus nucleotide sequences verified in patients
Yes
Yes
No
Yes
Molecular detection in rodent host in countries
Slovenia, Croatia, Greece, Czech Republic, Slovakia, Hungary, Turkey
Germany, Slovakia, Russia, Hungary, Slovenia, Croatia, Estonia (mainland)
Estonia (Saaremaa Island)
Russia
Clinical course of disease
Moderate/severe
Mild/moderate
Subclinical?
Moderate/severe
Case fatality rate
10–12 %
0.3–0.9 %
N/A
>6 %
Available cell culture isolates
Dobrava 3970/87, Belgrade Bel-1, Ano-Poroia/Af19/1999
Slovakia (SK/Aa), Aa1854/Lipetsk-02, Aa4053/Tula-02, Aa2007/Voronezh-03, EAT/Lipetsk-06, Greifswald
Saaremaa/160 V
Ap1584/Sochi-01, Sochi/hu
Prototypical virus strain and accession numbers of their genomic sequences
Dobrava 3970/87; L41916, L33685, GU904040
Slovakia/Aa; AY961615, AY961616, GU904039
Saaremaa/160 V; AJ009773, AJ009774, AJ410618
Ap1584/Sochi-01; EU188449, EU188450, EU188451
References
[1, 2, 4, 11, 40, 43, 49, 50]
[8, 16, 23, 27, 63, 66, our unpubl. data]
[13, 41]
[9, 27, 79, our unpubl. data]
N/A, data not available
Based on the recently accumulated knowledge, we are convinced that it would be more appropriate to classify these four genotypes within a single hantavirus species, Dobrava-Belgrade virus (DOBV). They should neither be divided into DOBV and SAAV species nor do they represent four distinct species. This opinion is based on the following four facts. (i) The amino acid sequence differences between the genotypes are extremely small, not exceeding 5 % in case of N and RdRp proteins and 10 % in case of glycoprotein precursor (GPC) (see Table 2). The current ICTV species demarcation criterion is a 7 % difference for both N and GPC amino acid sequences while a recent proposal based on similarity frequency histograms even suggests 10 % for N and 12 % for GPC sequences [36]. (ii) The genotypes cannot be distinguished using any of the routine serological methods (enzyme-linked immunosorbent assay, indirect immunofluorescence assay, immunoblot test), and in a substantial number of cases (about one-third), not even using neutralization assays, which are considered the “gold standard” for serotyping of convalescent sera [12, 24, 27, 75]. Therefore, routine serological methods can clearly identify the causative agent at the species level but not at the genotype level. Therefore, no artificial categories such as “DOBV/SAAV” need to be introduced in routine diagnostics. (iii) Spill-over infections of the DOBV-Aa strains (Kurkino genotype) to local yellow-necked mice could be observed recently in northern Germany [63, 66], and the opposite situation, the detection of the DOBV-Af strain (Dobrava genotype) in striped field mice, was observed in Croatia [62]. Such spillover infections are considered to be transient and epidemiologically irrelevant. However, they enable different hantavirus strains, or even members of different species, to “meet” in the same host, which is a basic prerequisite for genetic reassortment as well as recombination. Recently, it was shown that the genetic reassortment between the DOBV-Af lineage (defined now as Dobrava genotype) and the DOBV-Aa lineage (defined now as Kurkino genotype) can occur with high frequency in cell culture [20]. (iv) Recent discovery of the Sochi genotype in the Black Sea region shows that the list of natural hosts of DOBV still might not be complete, and novel hosts and lineages/genotypes will probably emerge in new geographical regions. If the “new host–new virus species” rule were to be followed, this could lead to claims of additional hantavirus species that could be barely differentiable from each other.
Table 2
Amino acid sequence differences (%) between the prototypical virus isolates of the proposed Dobrava-Belgrade virus species genotypes
Virus protein
Genotype*
Amino acid sequence differences (%) to genotype
Dobrava
Kurkino
Saaremaa
Nucleocapsid protein (S segment)
Dobrava
-
  
Kurkino
2.6
-
 
Saaremaa
3.1
3.3
-
Sochi
2.4
2.6
3.8
Glycoprotein precursor (M segment)
Dobrava
-
  
Kurkino
6.4
-
 
Saaremaa
5.9
4.2
-
Sochi
6.7
9.6
9.8
RNA-dependent RNA polymerase (L segment)
Dobrava
-
  
Kurkino
2.4
-
 
Saaremaa
2.7
2.7
-
Sochi
3.4
3.6
3.6
* Sequences of the prototypical virus strains Dobrava 3970/87, Slovakia/Aa, Saaremaa/160 V, and Ap1584/Sochi-01 (for GenBank accession numbers, see Table 1), were used for calculations

DOBV epidemiology and virulence in humans

All four DOBV genotypes have been isolated in cell culture and were molecularly detected in their respective reservoir hosts and – with the exception of the Saaremaa genotype – also in HFRS patients (Table 1). Human infections by viruses of the Dobrava genotype are mainly reported from SE Europe [4, 49], and those by members of the Sochi genotype, from the Black Sea coast region of Russia [9, 27]. However, Dobrava-genotype infections are also occasionally reported outside of SE Europe, e.g., in the Czech Republic [52], Slovakia [83, our unpublished data], and Hungary [17].
Human infections by Kurkino viruses were first reported from Germany. In accordance with the geographical distribution of A. agrarius, the infections are restricted to the northeastern part of the country [23, 24, 38, 39, 73]. During the period of 1991 to 2006, three large DOBV-associated HFRS outbreaks were registered in central regions of European Russia [8, 27, 33, 79]. Detailed investigation of the 2001/02 and 2005/06 HFRS outbreaks have revealed the Kurkino genotype as the causative infectious agent and the striped field mouse as a reservoir species [8, 27, 79].
So far, only three HFRS patients in Estonia have been linked by serological tests to Saaremaa (or related DOBV) infection; however, no molecular (nucleotide sequence) identification of the virus strains involved has been reported [13]. Based on the recently detected Kurkino genotype sequences in striped field mice from mainland Estonia, it seems likely that these clinical cases were caused by the Kurkino and not the Saaremaa genotype.
It is highly interesting to note that the different genotypes of DOBV– despite their high genetic similarity – induce HFRS of different severity. The most severe clinical courses were observed in SE Europe, where human infections by the Dobrava genotype occur. The case-fatality rate (CFR) of clinical cases was 10-12 %, a rate that is similar or even higher than that known for HTNV infections in Asia [4, 49, 80]. For HFRS caused by the Sochi genotype on the Black Sea coast of European Russia, a CFR of about 6 % was observed [27]; however, recent studies indicate that the CFR might be even higher (Dzagurova et al., in preparation). Whereas clinical manifestations of both Dobrava and Sochi infections are moderate to severe, the course of HFRS due to infection by Kurkino seems to be milder. During the clinically characterized large Kurkino outbreaks in European Russia in the seasons 2001/02 and 2005/06, CFRs between 0.3 % and 0.9 % were determined [8, 27]. These data confirm previous findings [38, 69, 73] that Kurkino infections cause mainly mild or moderate clinical courses of HFRS. However, during the outbreaks in Central European Russia as well as in some cases in northern Germany, severe clinical courses, even with lung impairment, were found [8, 39, 70]. In contrast, Saaremaa infections seem to be mainly subclinical. Despite the high hantaviral seroprevalence in the Saaremaa human population (28 %), no clinical cases have been reported [12, 13, 75]. At the current stage of knowledge, the order of virulence of the DOBV genotypes in humans appears to be as follows: Dobrava > Sochi > Kurkino > Saaremaa. In line with this virulence ranking in humans, a study in suckling mice demonstrated a fatal outcome for Dobrava but not Saaremaa infections [29].
It remains to be determined which genetic differences in the four virus genotypes are responsible for their different virulence. In initial investigations, we found that genetic markers associated with the divergent virulence of Kurkino (virus isolate SK/Aa) versus Dobrava (virus isolate Slo/Af), at least under in vitro conditions, are associated with the genomic S and L segments of the viruses [20].

Conclusions

DOBV is the most virulent European hantavirus and is responsible for almost all fatal HFRS cases in Europe. Together with the more common, but less virulent, Puumala virus, it can be considered one of the two most important hantaviruses in Europe. Its unambiguous classification is therefore of significant benefit not only for the scientific community but also for hantavirus diagnostics, medical care, and public-health authorities. The different virulence of such closely related genotypes makes the virus particularly interesting for research. Understanding the mechanisms behind the different virulence properties of the DOBV genotypes could significantly advance the whole field of hantavirus pathogenesis.

Acknowledgments

This study was funded by Deutsche Forschungsgemeinschaft (Research Training Group 1121 and grant no. KR1293/9-1), European Commission (European Virus Archive, FP7 CAPACITIES project - GA no. 228292), Slovak Research and Development Agency (DO7RP-0008-09), and Sigrid Jusélius Foundation. Moreover, the study was partially funded by EU grant FP7-261504 EDENext and is catalogued by the EDENext Steering Committee as EDENext 061 (http://​www.​edenext.​eu). The contents of this publication are the sole responsibility of the authors and do not necessarily reflect the views of the European Commission. We thank Tarja Sironen (Helsinki, Finland) for fruitful discussions and her contribution to the molecular phylogenetic analyses, Martin Raftery (Berlin, Germany) for critical reading of the manuscript, and Irina Golovljova (Tallinn, Estonia) and Kirill Nemirov (Lyon, France) for sharing sequence data with us prior to publication.

Open Access

This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://​creativecommons.​org/​licenses/​by/​2.​0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

e.Med Innere Medizin

Kombi-Abonnement

Mit e.Med Innere Medizin erhalten Sie Zugang zu CME-Fortbildungen des Fachgebietes Innere Medizin, den Premium-Inhalten der internistischen Fachzeitschriften, inklusive einer gedruckten internistischen Zeitschrift Ihrer Wahl.

e.Med Allgemeinmedizin

Kombi-Abonnement

Mit e.Med Allgemeinmedizin erhalten Sie Zugang zu allen CME-Fortbildungen und Premium-Inhalten der allgemeinmedizinischen Zeitschriften, inklusive einer gedruckten Allgemeinmedizin-Zeitschrift Ihrer Wahl.

Literatur
1.
Zurück zum Zitat Antoniadis A, Stylianakis A, Papa A, Alexiou-Daniel S, Lampropoulos A, Nichol ST, Peters CJ, Spiropoulou CF (1996) Direct genetic detection of Dobrava virus in Greek and Albanian patients with hemorrhagic fever with renal syndrome. J Infect Dis 174:407–410PubMedCrossRef Antoniadis A, Stylianakis A, Papa A, Alexiou-Daniel S, Lampropoulos A, Nichol ST, Peters CJ, Spiropoulou CF (1996) Direct genetic detection of Dobrava virus in Greek and Albanian patients with hemorrhagic fever with renal syndrome. J Infect Dis 174:407–410PubMedCrossRef
2.
Zurück zum Zitat Avsic-Zupanc T, Xiao SY, Stojanovic R, Gligic A, van der Groen G, LeDuc JW (1992) Characterization of Dobrava virus: a Hantavirus from Slovenia, Yugoslavia. J Med Virol 38:132–137PubMedCrossRef Avsic-Zupanc T, Xiao SY, Stojanovic R, Gligic A, van der Groen G, LeDuc JW (1992) Characterization of Dobrava virus: a Hantavirus from Slovenia, Yugoslavia. J Med Virol 38:132–137PubMedCrossRef
3.
Zurück zum Zitat Avsic-Zupanc T, Toney A, Anderson K, Chu YK, Schmaljohn C (1995) Genetic and antigenic properties of Dobrava virus: a unique member of the Hantavirus genus, family Bunyaviridae. J Gen Virol 76:2801–2808PubMedCrossRef Avsic-Zupanc T, Toney A, Anderson K, Chu YK, Schmaljohn C (1995) Genetic and antigenic properties of Dobrava virus: a unique member of the Hantavirus genus, family Bunyaviridae. J Gen Virol 76:2801–2808PubMedCrossRef
4.
Zurück zum Zitat Avsic-Zupanc T, Petrovec M, Furlan P, Kaps R, Elgh F, Lundkvist A (1999) Hemorrhagic fever with renal syndrome in the Dolenjska region of Slovenia–a 10-year survey. Clin Infect Dis 28:860–865PubMedCrossRef Avsic-Zupanc T, Petrovec M, Furlan P, Kaps R, Elgh F, Lundkvist A (1999) Hemorrhagic fever with renal syndrome in the Dolenjska region of Slovenia–a 10-year survey. Clin Infect Dis 28:860–865PubMedCrossRef
5.
Zurück zum Zitat Avsic-Zupanc T, Nemirov K, Petrovec M, Trilar T, Poljak M, Vaheri A, Plyusnin A (2000) Genetic analysis of wild-type Dobrava hantavirus in Slovenia: co-existence of two distinct genetic lineages within the same natural focus. J Gen Virol 81:1747–1755PubMed Avsic-Zupanc T, Nemirov K, Petrovec M, Trilar T, Poljak M, Vaheri A, Plyusnin A (2000) Genetic analysis of wild-type Dobrava hantavirus in Slovenia: co-existence of two distinct genetic lineages within the same natural focus. J Gen Virol 81:1747–1755PubMed
6.
Zurück zum Zitat Blasdell K, Henttonen H, Buchy P (2011) Hantavirus genetic diversity. In: Morand S, Beaudeau F, Cabaret S (eds) New frontiers of molecular epidemiology of infectious diseases, 1st edn. Springer, Berlin, pp 179–216 Blasdell K, Henttonen H, Buchy P (2011) Hantavirus genetic diversity. In: Morand S, Beaudeau F, Cabaret S (eds) New frontiers of molecular epidemiology of infectious diseases, 1st edn. Springer, Berlin, pp 179–216
7.
Zurück zum Zitat Boeskorov G, Kartavtseva I, Zagorodniuk I, Belianin A, Liapunova EA (1995) Nucleolus organizer regions and B-chromosomes of wood mice (Mammalia, Rodentia, Apodemus) [in Russian]. Genetika 31:185–192PubMed Boeskorov G, Kartavtseva I, Zagorodniuk I, Belianin A, Liapunova EA (1995) Nucleolus organizer regions and B-chromosomes of wood mice (Mammalia, Rodentia, Apodemus) [in Russian]. Genetika 31:185–192PubMed
8.
Zurück zum Zitat Dzagurova TK, Klempa B, Tkachenko EA, Slyusareva GP, Morozov VG, Auste B, Kruger DH (2009) Molecular diagnostics of hemorrhagic fever with renal syndrome during a Dobrava virus infection outbreak in the European part of Russia. J Clin Microbiol 47:4029–4036PubMedCrossRef Dzagurova TK, Klempa B, Tkachenko EA, Slyusareva GP, Morozov VG, Auste B, Kruger DH (2009) Molecular diagnostics of hemorrhagic fever with renal syndrome during a Dobrava virus infection outbreak in the European part of Russia. J Clin Microbiol 47:4029–4036PubMedCrossRef
9.
Zurück zum Zitat Dzagurova TK, Witkowski PT, Tkachenko EA, Klempa B, Morozov VG, Auste B, Zavora DL, Iunicheva IV, Mutnih ES, Kruger DH (2012) Isolation of Sochi virus from a fatal case of hantavirus disease with fulminant clinical course. Clin Infect Dis 54:e1–e4PubMedCrossRef Dzagurova TK, Witkowski PT, Tkachenko EA, Klempa B, Morozov VG, Auste B, Zavora DL, Iunicheva IV, Mutnih ES, Kruger DH (2012) Isolation of Sochi virus from a fatal case of hantavirus disease with fulminant clinical course. Clin Infect Dis 54:e1–e4PubMedCrossRef
10.
Zurück zum Zitat Fauquet CM, Mayo MA, Maniloff J, Desselberger U, Ball LA (2005) Virus taxonomy. Eighth report of the International Committee on Taxonomy of Viruses. Elsevier Academic Press, Amsterdam Fauquet CM, Mayo MA, Maniloff J, Desselberger U, Ball LA (2005) Virus taxonomy. Eighth report of the International Committee on Taxonomy of Viruses. Elsevier Academic Press, Amsterdam
11.
Zurück zum Zitat Gligic A, Dimkovic N, Xiao SY, Buckle GJ, Jovanovic D, Velimirovic D, Stojanovic R, Obradovic M, Diglisic G, Micic J, Asher DM, LeDuc JW, Yanagihara R, Gajdusek DC (1992) Belgrade virus: a new hantavirus causing severe hemorrhagic fever with renal syndrome in Yugoslavia. J Infect Dis 166:113–120PubMedCrossRef Gligic A, Dimkovic N, Xiao SY, Buckle GJ, Jovanovic D, Velimirovic D, Stojanovic R, Obradovic M, Diglisic G, Micic J, Asher DM, LeDuc JW, Yanagihara R, Gajdusek DC (1992) Belgrade virus: a new hantavirus causing severe hemorrhagic fever with renal syndrome in Yugoslavia. J Infect Dis 166:113–120PubMedCrossRef
12.
Zurück zum Zitat Golovljova I, Sjölander KB, Lindegren G, Vene S, Vasilenko V, Plyusnin A, Lundkvist A (2002) Hantaviruses in Estonia. J Med Virol 68:589–598PubMedCrossRef Golovljova I, Sjölander KB, Lindegren G, Vene S, Vasilenko V, Plyusnin A, Lundkvist A (2002) Hantaviruses in Estonia. J Med Virol 68:589–598PubMedCrossRef
13.
Zurück zum Zitat Golovljova I, Vasilenko V, Mittzenkov V, Prükk T, Seppet E, Vene S, Settergren B, Plyusnin A, Lundkvist A (2007) Characterization of hemorrhagic fever with renal syndrome caused by hantaviruses, Estonia. Emerg Infect Dis 13:1773–1776PubMedCrossRef Golovljova I, Vasilenko V, Mittzenkov V, Prükk T, Seppet E, Vene S, Settergren B, Plyusnin A, Lundkvist A (2007) Characterization of hemorrhagic fever with renal syndrome caused by hantaviruses, Estonia. Emerg Infect Dis 13:1773–1776PubMedCrossRef
14.
Zurück zum Zitat Henttonen H, Buchy P, Suputtamongkol Y, Jittapalapong S, Herbreteau V, Laakkonen J, Chaval Y, Galan M, Dobigny G, Charbonnel N, Michaux J, Cosson JF, Morand S, Hugot JP (2008) Recent discoveries of new hantaviruses widen their range and question their origins. Ann NY Acad Sci 1149:84–89PubMedCrossRef Henttonen H, Buchy P, Suputtamongkol Y, Jittapalapong S, Herbreteau V, Laakkonen J, Chaval Y, Galan M, Dobigny G, Charbonnel N, Michaux J, Cosson JF, Morand S, Hugot JP (2008) Recent discoveries of new hantaviruses widen their range and question their origins. Ann NY Acad Sci 1149:84–89PubMedCrossRef
15.
Zurück zum Zitat Hjelle B, Yates T (2001) Modeling hantavirus maintenance and transmission in rodent communities. Curr Top Microbiol Immunol 256:77–90PubMedCrossRef Hjelle B, Yates T (2001) Modeling hantavirus maintenance and transmission in rodent communities. Curr Top Microbiol Immunol 256:77–90PubMedCrossRef
16.
Zurück zum Zitat Jakab F, Horváth G, Ferenczi E, Sebok J, Varecza Z, Szucs G (2007) Detection of Dobrava hantaviruses in Apodemus agrarius mice in the Transdanubian region of Hungary. Virus Res 128:149–152PubMedCrossRef Jakab F, Horváth G, Ferenczi E, Sebok J, Varecza Z, Szucs G (2007) Detection of Dobrava hantaviruses in Apodemus agrarius mice in the Transdanubian region of Hungary. Virus Res 128:149–152PubMedCrossRef
17.
Zurück zum Zitat Jakab F, Sebok J, Ferenczi E, Horváth G, Szucs G (2007) First detection of Dobrava hantavirus from a patient with severe haemorrhagic fever with renal syndrome by SYBR Green-based real time RT-PCR. Scand J Infect Dis 39:902–906PubMedCrossRef Jakab F, Sebok J, Ferenczi E, Horváth G, Szucs G (2007) First detection of Dobrava hantavirus from a patient with severe haemorrhagic fever with renal syndrome by SYBR Green-based real time RT-PCR. Scand J Infect Dis 39:902–906PubMedCrossRef
18.
Zurück zum Zitat Jonsson CB, Figueiredo LT, Vapalahti O (2010) A global perspective on hantavirus ecology, epidemiology, and disease. Clin Microbiol Rev 23:412–441PubMedCrossRef Jonsson CB, Figueiredo LT, Vapalahti O (2010) A global perspective on hantavirus ecology, epidemiology, and disease. Clin Microbiol Rev 23:412–441PubMedCrossRef
19.
Zurück zum Zitat Khaiboullina SF, Morzunov SP, St Jeor SC (2005) Hantaviruses: molecular biology, evolution and pathogenesis. Curr Mol Med 5:773–790PubMedCrossRef Khaiboullina SF, Morzunov SP, St Jeor SC (2005) Hantaviruses: molecular biology, evolution and pathogenesis. Curr Mol Med 5:773–790PubMedCrossRef
20.
Zurück zum Zitat Kirsanovs S, Klempa B, Franke R, Lee MH, Schönrich G, Rang A, Kruger DH (2010) Genetic reassortment between high-virulent and low-virulent Dobrava-Belgrade virus strains. Virus Genes 41:319–328PubMedCrossRef Kirsanovs S, Klempa B, Franke R, Lee MH, Schönrich G, Rang A, Kruger DH (2010) Genetic reassortment between high-virulent and low-virulent Dobrava-Belgrade virus strains. Virus Genes 41:319–328PubMedCrossRef
21.
Zurück zum Zitat Klempa B, Schmidt HA, Ulrich R, Kaluz S, Labuda M, Meisel H, Hjelle B, Kruger DH (2003) Genetic interaction between distinct Dobrava hantavirus subtypes in Apodemus agrarius and A. flavicollis in nature. J Virol 77:804–809PubMedCrossRef Klempa B, Schmidt HA, Ulrich R, Kaluz S, Labuda M, Meisel H, Hjelle B, Kruger DH (2003) Genetic interaction between distinct Dobrava hantavirus subtypes in Apodemus agrarius and A. flavicollis in nature. J Virol 77:804–809PubMedCrossRef
22.
Zurück zum Zitat Klempa B, Ulrich R, Meisel H, Krüger DH, Schmidt HA, Kaluz S, Labuda M, Hjelle B (2003) Genetic interaction between Dobrava and Saaremaa hantaviruses: Now or millions of years ago? (Authors’ Reply). J Virol 77:7157–7158CrossRef Klempa B, Ulrich R, Meisel H, Krüger DH, Schmidt HA, Kaluz S, Labuda M, Hjelle B (2003) Genetic interaction between Dobrava and Saaremaa hantaviruses: Now or millions of years ago? (Authors’ Reply). J Virol 77:7157–7158CrossRef
23.
Zurück zum Zitat Klempa B, Schütt M, Auste B, Labuda M, Ulrich R, Meisel H, Krüger DH (2004) First molecular identification of human Dobrava virus infection in central Europe. J Clin Microbiol 42:1322–1325PubMedCrossRef Klempa B, Schütt M, Auste B, Labuda M, Ulrich R, Meisel H, Krüger DH (2004) First molecular identification of human Dobrava virus infection in central Europe. J Clin Microbiol 42:1322–1325PubMedCrossRef
24.
Zurück zum Zitat Klempa B, Stanko M, Labuda M, Ulrich R, Meisel H, Krüger DH (2005) Central European Dobrava Hantavirus isolate from a striped field mouse (Apodemus agrarius). J Clin Microbiol 43:2756–2763PubMedCrossRef Klempa B, Stanko M, Labuda M, Ulrich R, Meisel H, Krüger DH (2005) Central European Dobrava Hantavirus isolate from a striped field mouse (Apodemus agrarius). J Clin Microbiol 43:2756–2763PubMedCrossRef
25.
Zurück zum Zitat Klempa B, Fichet-Calvet E, Lecompte E, Auste B, Aniskin V, Meisel H, Denys C, Koivogui L, ter Meulen J, Krüger DH (2006) Hantavirus in African wood mouse, Guinea. Emerg Infect Dis 12:838–840PubMedCrossRef Klempa B, Fichet-Calvet E, Lecompte E, Auste B, Aniskin V, Meisel H, Denys C, Koivogui L, ter Meulen J, Krüger DH (2006) Hantavirus in African wood mouse, Guinea. Emerg Infect Dis 12:838–840PubMedCrossRef
26.
Zurück zum Zitat Klempa B, Meisel H, Kruger DH, Ulrich R, Stanko M, Labuda M (2006) Saaremaa hantavirus should not be confused with its dangerous relative, Dobrava virus – Author’s reply. J Clin Microbiol 44:1609–1611 Klempa B, Meisel H, Kruger DH, Ulrich R, Stanko M, Labuda M (2006) Saaremaa hantavirus should not be confused with its dangerous relative, Dobrava virus – Author’s reply. J Clin Microbiol 44:1609–1611
27.
Zurück zum Zitat Klempa B, Tkachenko EA, Dzagurova TK, Yunicheva YV, Morozov VG, Okulova NM, Slyusareva GP, Smirnov A, Kruger DH (2008) Hemorrhagic fever with renal syndrome caused by 2 lineages of Dobrava hantavirus, Russia. Emerg Infect Dis 14:617–625PubMedCrossRef Klempa B, Tkachenko EA, Dzagurova TK, Yunicheva YV, Morozov VG, Okulova NM, Slyusareva GP, Smirnov A, Kruger DH (2008) Hemorrhagic fever with renal syndrome caused by 2 lineages of Dobrava hantavirus, Russia. Emerg Infect Dis 14:617–625PubMedCrossRef
28.
Zurück zum Zitat Klempa B, Witkowski PT, Popugaeva E, Auste B, Koivogui L, Fichet-Calvet E, Strecker T, Ter Meulen J, Krüger DH (2012) Sangassou virus, the first hantavirus isolate from Africa, displays genetic and functional properties distinct from those of other Murinae-associated hantaviruses. J Virol 86:3819–3827PubMedCrossRef Klempa B, Witkowski PT, Popugaeva E, Auste B, Koivogui L, Fichet-Calvet E, Strecker T, Ter Meulen J, Krüger DH (2012) Sangassou virus, the first hantavirus isolate from Africa, displays genetic and functional properties distinct from those of other Murinae-associated hantaviruses. J Virol 86:3819–3827PubMedCrossRef
29.
Zurück zum Zitat Klingström J, Hardestam J, Lundkvist A (2006) Dobrava, but not Saaremaa, hantavirus is lethal and induces nitric oxide production in suckling mice. Microbes Infect 8:728–737PubMedCrossRef Klingström J, Hardestam J, Lundkvist A (2006) Dobrava, but not Saaremaa, hantavirus is lethal and induces nitric oxide production in suckling mice. Microbes Infect 8:728–737PubMedCrossRef
30.
Zurück zum Zitat Kruger DH, Klempa B (2011) Dobrava-Belgrade virus. In: Liu D (ed) Molecular detection of human viral pathogens. CRC Press, Boca Raton, London, New York, pp 631–638 Kruger DH, Klempa B (2011) Dobrava-Belgrade virus. In: Liu D (ed) Molecular detection of human viral pathogens. CRC Press, Boca Raton, London, New York, pp 631–638
31.
Zurück zum Zitat Lee HW, Baek LJ, Johnson KM (1982) Isolation of Hantaan virus, the etiologic agent of Korean hemorrhagic fever, from wild urban rats. J Infect Dis 146:638–644PubMedCrossRef Lee HW, Baek LJ, Johnson KM (1982) Isolation of Hantaan virus, the etiologic agent of Korean hemorrhagic fever, from wild urban rats. J Infect Dis 146:638–644PubMedCrossRef
32.
Zurück zum Zitat Liu PQ, Liao HX, Fu JL, Hang CS, Song G (1984) Isolation of epidemic hemorrhagic fever virus from Rattus losea and Rattus confucianus and their antigenic identification. Bull Jiangxi Med Coll 3:1–7 Liu PQ, Liao HX, Fu JL, Hang CS, Song G (1984) Isolation of epidemic hemorrhagic fever virus from Rattus losea and Rattus confucianus and their antigenic identification. Bull Jiangxi Med Coll 3:1–7
33.
Zurück zum Zitat Lundkvist A, Apekina N, Myasnikov Y, Vapalahti O, Vaheri A, Plyusnin A (1997) Dobrava hantavirus outbreak in Russia. Lancet 350:781–782PubMedCrossRef Lundkvist A, Apekina N, Myasnikov Y, Vapalahti O, Vaheri A, Plyusnin A (1997) Dobrava hantavirus outbreak in Russia. Lancet 350:781–782PubMedCrossRef
34.
Zurück zum Zitat Lundkvist A, Hukic M, Horling J, Gilljam M, Nichol S, Niklasson B (1997) Puumala and Dobrava viruses cause hemorrhagic fever with renal syndrome in Bosnia-Hercegovina: evidence of highly cross-neutralizing antibody responses in early patient sera. J Med Virol 53:51–59PubMedCrossRef Lundkvist A, Hukic M, Horling J, Gilljam M, Nichol S, Niklasson B (1997) Puumala and Dobrava viruses cause hemorrhagic fever with renal syndrome in Bosnia-Hercegovina: evidence of highly cross-neutralizing antibody responses in early patient sera. J Med Virol 53:51–59PubMedCrossRef
35.
Zurück zum Zitat Lundkvist Å, Vasilenko V, Golovljova I, Plyusnin A, Vaheri A (1998) Human Dobrava hantavirus infections in Estonia. Lancet 352:369PubMedCrossRef Lundkvist Å, Vasilenko V, Golovljova I, Plyusnin A, Vaheri A (1998) Human Dobrava hantavirus infections in Estonia. Lancet 352:369PubMedCrossRef
36.
Zurück zum Zitat Maes P, Klempa B, Clement J, Matthijnssens J, Gajdusek DC, Krüger DH, Van Ranst M (2009) A proposal for new criteria for the classification of hantaviruses, based on S and M segment protein sequences. Infect Genet Evol 9:813–820PubMedCrossRef Maes P, Klempa B, Clement J, Matthijnssens J, Gajdusek DC, Krüger DH, Van Ranst M (2009) A proposal for new criteria for the classification of hantaviruses, based on S and M segment protein sequences. Infect Genet Evol 9:813–820PubMedCrossRef
37.
Zurück zum Zitat Markotić A, Nichol ST, Kuzman I, Sanchez AJ, Ksiazek TG, Gagro A, Rabatić S, Zgorelec R, Avsic-Zupanc T, Beus I, Dekaris D (2002) Characteristics of Puumala and Dobrava infections in Croatia. J Med Virol 66:542–551PubMedCrossRef Markotić A, Nichol ST, Kuzman I, Sanchez AJ, Ksiazek TG, Gagro A, Rabatić S, Zgorelec R, Avsic-Zupanc T, Beus I, Dekaris D (2002) Characteristics of Puumala and Dobrava infections in Croatia. J Med Virol 66:542–551PubMedCrossRef
38.
Zurück zum Zitat Meisel H, Lundkvist Å, Gantzer K, Bär W, Sibold C, Krüger DH (1998) First case of infection with hantavirus Dobrava in Germany. Eur J Clin Microbiol Infect Dis 17:884–885PubMedCrossRef Meisel H, Lundkvist Å, Gantzer K, Bär W, Sibold C, Krüger DH (1998) First case of infection with hantavirus Dobrava in Germany. Eur J Clin Microbiol Infect Dis 17:884–885PubMedCrossRef
39.
Zurück zum Zitat Mentel R, Bordihn N, Wegner U, Wendel H, Niklasson B (1999) Hantavirus Dobrava infection with pulmonary manifestation. Med Microbiol Immunol 188:51–53PubMedCrossRef Mentel R, Bordihn N, Wegner U, Wendel H, Niklasson B (1999) Hantavirus Dobrava infection with pulmonary manifestation. Med Microbiol Immunol 188:51–53PubMedCrossRef
40.
Zurück zum Zitat Németh V, Madai M, Maráczi A, Bérczi B, Horváth G, Oldal M, Kisfali P, Bányai K, Jakab F (2011) Detection of Dobrava-Belgrade hantavirus using recombinant-nucleocapsid-based enzyme-linked immunosorbent assay and SYBR Green-based real-time reverse transcriptase-polymerase chain reaction. Arch Virol 156:1655–1660PubMedCrossRef Németh V, Madai M, Maráczi A, Bérczi B, Horváth G, Oldal M, Kisfali P, Bányai K, Jakab F (2011) Detection of Dobrava-Belgrade hantavirus using recombinant-nucleocapsid-based enzyme-linked immunosorbent assay and SYBR Green-based real-time reverse transcriptase-polymerase chain reaction. Arch Virol 156:1655–1660PubMedCrossRef
41.
Zurück zum Zitat Nemirov K, Vapalahti O, Lundkvist A, Vasilenko V, Golovljova I, Plyusnina A, Niemimaa J, Laakkonen J, Henttonen H, Vaheri A, Plyusnin A (1999) Isolation and characterization of Dobrava hantavirus carried by the striped field mouse (Apodemus agrarius) in Estonia. J Gen Virol 80:371–379PubMed Nemirov K, Vapalahti O, Lundkvist A, Vasilenko V, Golovljova I, Plyusnina A, Niemimaa J, Laakkonen J, Henttonen H, Vaheri A, Plyusnin A (1999) Isolation and characterization of Dobrava hantavirus carried by the striped field mouse (Apodemus agrarius) in Estonia. J Gen Virol 80:371–379PubMed
42.
Zurück zum Zitat Nemirov K, Henttonen H, Vaheri A, Plyusnin A (2002) Phylogenetic evidence for host switching in the evolution of hantaviruses carried by Apodemus mice. Virus Res 90:207–215PubMedCrossRef Nemirov K, Henttonen H, Vaheri A, Plyusnin A (2002) Phylogenetic evidence for host switching in the evolution of hantaviruses carried by Apodemus mice. Virus Res 90:207–215PubMedCrossRef
43.
Zurück zum Zitat Nemirov K, Vapalahti O, Papa A, Plyusnina A, Lundkvist A, Antoniadis A, Vaheri A, Plyusnin A (2003) Genetic characterization of new Dobrava hantavirus isolate from Greece. J Med Virol 69:408–416PubMedCrossRef Nemirov K, Vapalahti O, Papa A, Plyusnina A, Lundkvist A, Antoniadis A, Vaheri A, Plyusnin A (2003) Genetic characterization of new Dobrava hantavirus isolate from Greece. J Med Virol 69:408–416PubMedCrossRef
44.
Zurück zum Zitat Nemirov K, Andersen HK, Leirs H, Henttonen H, Vaheri A, Lundkvist A, Plyusnin A (2004) Saaremaa hantavirus in Denmark. J Clin Virol 30:254–257PubMedCrossRef Nemirov K, Andersen HK, Leirs H, Henttonen H, Vaheri A, Lundkvist A, Plyusnin A (2004) Saaremaa hantavirus in Denmark. J Clin Virol 30:254–257PubMedCrossRef
45.
Zurück zum Zitat Olsson GE, Leirs H, Henttonen H (2010) Hantaviruses and their hosts in Europe: reservoirs here and there, but not everywhere? Vector-Borne Zoon Dis 10:546–561CrossRef Olsson GE, Leirs H, Henttonen H (2010) Hantaviruses and their hosts in Europe: reservoirs here and there, but not everywhere? Vector-Borne Zoon Dis 10:546–561CrossRef
46.
Zurück zum Zitat Oncul O, Atalay Y, Onem Y, Turhan V, Acar A, Uyar Y, Caglayik DY, Ozkan S, Gorenek L (2011) Hantavirus infection in Istanbul, Turkey. Emerg Infect Dis 17:303–304PubMedCrossRef Oncul O, Atalay Y, Onem Y, Turhan V, Acar A, Uyar Y, Caglayik DY, Ozkan S, Gorenek L (2011) Hantavirus infection in Istanbul, Turkey. Emerg Infect Dis 17:303–304PubMedCrossRef
47.
Zurück zum Zitat Papa A, Johnson AM, Stockton PC, Bowen MD, Spiropoulou CF, Alexiou-Daniel S, Ksiazek TG, Nichol ST, Antoniadis A (1998) Retrospective serological and genetic study of the distribution of hantaviruses in Greece. J Med Virol 55:321–327PubMedCrossRef Papa A, Johnson AM, Stockton PC, Bowen MD, Spiropoulou CF, Alexiou-Daniel S, Ksiazek TG, Nichol ST, Antoniadis A (1998) Retrospective serological and genetic study of the distribution of hantaviruses in Greece. J Med Virol 55:321–327PubMedCrossRef
48.
Zurück zum Zitat Papa A, Spiropoulou C, Nichol S, Antoniadis A (2000) Tracing Dobrava hantavirus infection. J Infect Dis 181:2116–2117PubMedCrossRef Papa A, Spiropoulou C, Nichol S, Antoniadis A (2000) Tracing Dobrava hantavirus infection. J Infect Dis 181:2116–2117PubMedCrossRef
49.
Zurück zum Zitat Papa A, Antoniadis A (2001) Hantavirus infections in Greece–an update. Eur J Epidemiol 17:189–194PubMedCrossRef Papa A, Antoniadis A (2001) Hantavirus infections in Greece–an update. Eur J Epidemiol 17:189–194PubMedCrossRef
50.
Zurück zum Zitat Papa A, Nemirov K, Henttonen H, Niemimaa J, Antoniadis A, Vaheri A, Plyusnin A, Vapalahti O (2001) Isolation of Dobrava virus from Apodemus flavicollis in Greece. J Clin Microbiol 39:2291–2293PubMedCrossRef Papa A, Nemirov K, Henttonen H, Niemimaa J, Antoniadis A, Vaheri A, Plyusnin A, Vapalahti O (2001) Isolation of Dobrava virus from Apodemus flavicollis in Greece. J Clin Microbiol 39:2291–2293PubMedCrossRef
51.
Zurück zum Zitat Papa A, Bojovic B, Antoniadis A (2006) Hantaviruses in Serbia and Montenegro. Emerg Infect Dis 12:1015–1018PubMedCrossRef Papa A, Bojovic B, Antoniadis A (2006) Hantaviruses in Serbia and Montenegro. Emerg Infect Dis 12:1015–1018PubMedCrossRef
52.
Zurück zum Zitat Papa A, Zelená H, Barnetová D, Petrousová L (2010) Genetic detection of Dobrava/Belgrade virus in a Czech patient with Haemorrhagic fever with renal syndrome. Clin Microbiol Infect 16:1187–1190PubMedCrossRef Papa A, Zelená H, Barnetová D, Petrousová L (2010) Genetic detection of Dobrava/Belgrade virus in a Czech patient with Haemorrhagic fever with renal syndrome. Clin Microbiol Infect 16:1187–1190PubMedCrossRef
53.
Zurück zum Zitat Papa A, Christova I (2011) Genetic detection of Dobrava/Belgrade virus, Bulgaria. Emerg Infect Dis 17:308–309PubMedCrossRef Papa A, Christova I (2011) Genetic detection of Dobrava/Belgrade virus, Bulgaria. Emerg Infect Dis 17:308–309PubMedCrossRef
54.
Zurück zum Zitat Plyusnin A, Vapalahti O, Lankinen H, Lehvaslaiho H, Apekina N, Myasnikov Y, Kallio-Kokko H, Henttonen H, Lundkvist A, Brummer-Korvenkontio M, Gavrilovskaya I, Vaheri A (1994) Tula virus - a newly detected hantavirus carried by European common voles. J Virol 68:7833–7839PubMed Plyusnin A, Vapalahti O, Lankinen H, Lehvaslaiho H, Apekina N, Myasnikov Y, Kallio-Kokko H, Henttonen H, Lundkvist A, Brummer-Korvenkontio M, Gavrilovskaya I, Vaheri A (1994) Tula virus - a newly detected hantavirus carried by European common voles. J Virol 68:7833–7839PubMed
55.
Zurück zum Zitat Plyusnin A, Vapalahti O, Vasilenko V, Henttonen H, Vaheri A (1997) Dobrava hantavirus in Estonia: does the virus exist throughout Europe? Lancet 349:1369–1370PubMedCrossRef Plyusnin A, Vapalahti O, Vasilenko V, Henttonen H, Vaheri A (1997) Dobrava hantavirus in Estonia: does the virus exist throughout Europe? Lancet 349:1369–1370PubMedCrossRef
56.
Zurück zum Zitat Plyusnin A, Nemirov K, Apekina N, Plyusnina A, Lundkvist Å, Vaheri A (1999) Dobrava hantavirus in Russia. Lancet 353:207PubMedCrossRef Plyusnin A, Nemirov K, Apekina N, Plyusnina A, Lundkvist Å, Vaheri A (1999) Dobrava hantavirus in Russia. Lancet 353:207PubMedCrossRef
57.
Zurück zum Zitat Plyusnin A (2002) Genetics of hantaviruses: implications to taxonomy. Arch Virol 147:665–682PubMedCrossRef Plyusnin A (2002) Genetics of hantaviruses: implications to taxonomy. Arch Virol 147:665–682PubMedCrossRef
58.
Zurück zum Zitat Plyusnin A, Vaheri A, Lundkvist Å (2003) Genetic interaction between Dobrava and Saaremaa viruses: now or millions of years ago? J Virol 77:7156–7157PubMedCrossRef Plyusnin A, Vaheri A, Lundkvist Å (2003) Genetic interaction between Dobrava and Saaremaa viruses: now or millions of years ago? J Virol 77:7156–7157PubMedCrossRef
59.
Zurück zum Zitat Plyusnin A, Vaheri A, Lundkvist A (2006) Saaremaa hantavirus should not be confused with its dangerous relative, Dobrava virus. J Clin Microbiol 44:1608–1609PubMedCrossRef Plyusnin A, Vaheri A, Lundkvist A (2006) Saaremaa hantavirus should not be confused with its dangerous relative, Dobrava virus. J Clin Microbiol 44:1608–1609PubMedCrossRef
60.
Zurück zum Zitat Plyusnina A, Laakkonen J, Niemimaa J, Henttonen H, Plyusnin A (2008) New genetic lineage of Tula Hantavirus in Microtus arvalis obscurus in Eastern Kazakhstan. Open Virol J 2:32–36PubMedCrossRef Plyusnina A, Laakkonen J, Niemimaa J, Henttonen H, Plyusnin A (2008) New genetic lineage of Tula Hantavirus in Microtus arvalis obscurus in Eastern Kazakhstan. Open Virol J 2:32–36PubMedCrossRef
61.
Zurück zum Zitat Plyusnina A, Ferenczi E, Rácz GR, Nemirov K, Lundkvist A, Vaheri A, Vapalahti O, Plyusnin A (2009) Co-circulation of three pathogenic hantaviruses: Puumala, Dobrava, and Saaremaa in Hungary. J Med Virol 81:2045–2052PubMedCrossRef Plyusnina A, Ferenczi E, Rácz GR, Nemirov K, Lundkvist A, Vaheri A, Vapalahti O, Plyusnin A (2009) Co-circulation of three pathogenic hantaviruses: Puumala, Dobrava, and Saaremaa in Hungary. J Med Virol 81:2045–2052PubMedCrossRef
62.
Zurück zum Zitat Plyusnina A, Krajinović LC, Margaletić J, Niemimaa J, Nemirov K, Lundkvist Å, Markotić A, Miletić-Medved M, Avšič-Županc T, Henttonen H, Plyusnin A (2011) Genetic evidence for the presence of two distinct hantaviruses associated with Apodemus mice in Croatia and analysis of local strains. J Med Virol 83:108–114PubMedCrossRef Plyusnina A, Krajinović LC, Margaletić J, Niemimaa J, Nemirov K, Lundkvist Å, Markotić A, Miletić-Medved M, Avšič-Županc T, Henttonen H, Plyusnin A (2011) Genetic evidence for the presence of two distinct hantaviruses associated with Apodemus mice in Croatia and analysis of local strains. J Med Virol 83:108–114PubMedCrossRef
63.
Zurück zum Zitat Popugaeva E, Witkowski PT, Schlegel M, Ulrich RG, Auste B, Rang A, Krüger DH, Klempa B (2012) Dobrava-Belgrade hantavirus from Germany shows receptor usage and innate immunity induction consistent with the pathogenicity of the virus in humans. PLoS ONE 7:e35587PubMedCrossRef Popugaeva E, Witkowski PT, Schlegel M, Ulrich RG, Auste B, Rang A, Krüger DH, Klempa B (2012) Dobrava-Belgrade hantavirus from Germany shows receptor usage and innate immunity induction consistent with the pathogenicity of the virus in humans. PLoS ONE 7:e35587PubMedCrossRef
64.
Zurück zum Zitat Sarıgüzel N, Hofmann J, Canpolat AT, Türk A, Ettinger J, Atmaca D, Akyar I, Yücel S, Arıkan E, Uyar Y, Cağlayık DY, Kocagöz AS, Kaya A, Kruger DH (2012) Dobrava hantavirus infection complicated by panhypopituitarism, Istanbul, Turkey, 2010. Emerg Infect Dis 18:1180–1183PubMedCrossRef Sarıgüzel N, Hofmann J, Canpolat AT, Türk A, Ettinger J, Atmaca D, Akyar I, Yücel S, Arıkan E, Uyar Y, Cağlayık DY, Kocagöz AS, Kaya A, Kruger DH (2012) Dobrava hantavirus infection complicated by panhypopituitarism, Istanbul, Turkey, 2010. Emerg Infect Dis 18:1180–1183PubMedCrossRef
65.
Zurück zum Zitat Scharninghausen JJ, Meyer H, Pfeffer M, Davis DS, Honeycutt RL (1999) Genetic evidence of Dobrava virus in Apodemus agrarius in Hungary. Emerg Infect Dis 5:468–470PubMedCrossRef Scharninghausen JJ, Meyer H, Pfeffer M, Davis DS, Honeycutt RL (1999) Genetic evidence of Dobrava virus in Apodemus agrarius in Hungary. Emerg Infect Dis 5:468–470PubMedCrossRef
66.
Zurück zum Zitat Schlegel M, Klempa B, Auste B, Bemmann M, Schmidt-Chanasit J, Büchner T, Groschup MH, Meier M, Buschmann A, Zoller H, Krüger DH, Ulrich RG (2009) Multiple Dobrava-Belgrade virus spillover infections, Germany. Emerg Infect Dis 15:2017–2020PubMedCrossRef Schlegel M, Klempa B, Auste B, Bemmann M, Schmidt-Chanasit J, Büchner T, Groschup MH, Meier M, Buschmann A, Zoller H, Krüger DH, Ulrich RG (2009) Multiple Dobrava-Belgrade virus spillover infections, Germany. Emerg Infect Dis 15:2017–2020PubMedCrossRef
67.
Zurück zum Zitat Schlegel M, Kindler E, Essbauer SS, Wolf R, Thiel J, Groschup MH, Heckel G, Oehme RM, Ulrich RG (2012) Tula virus infections in the Eurasian water vole in Central Europe. Vector Borne Zoonotic Dis 12:503–513PubMedCrossRef Schlegel M, Kindler E, Essbauer SS, Wolf R, Thiel J, Groschup MH, Heckel G, Oehme RM, Ulrich RG (2012) Tula virus infections in the Eurasian water vole in Central Europe. Vector Borne Zoonotic Dis 12:503–513PubMedCrossRef
68.
Zurück zum Zitat Schmidt-Chanasit J, Essbauer S, Petraityte R, Yoshimatsu K, Tackmann K, Conraths FJ, Sasnauskas K, Arikawa J, Thomas A, Pfeffer M, Scharninghausen JJ, Splettstoesser W, Wenk M, Heckel G, Ulrich RG (2010) Extensive host sharing of central European Tula virus. J Virol 84:459–474PubMedCrossRef Schmidt-Chanasit J, Essbauer S, Petraityte R, Yoshimatsu K, Tackmann K, Conraths FJ, Sasnauskas K, Arikawa J, Thomas A, Pfeffer M, Scharninghausen JJ, Splettstoesser W, Wenk M, Heckel G, Ulrich RG (2010) Extensive host sharing of central European Tula virus. J Virol 84:459–474PubMedCrossRef
69.
Zurück zum Zitat Schütt M, Gerke P, Meisel H, Ulrich R, Kruger DH (2001) Clinical characterization of Dobrava hantavirus infections in Germany. Clin Nephrol 55:371–374PubMed Schütt M, Gerke P, Meisel H, Ulrich R, Kruger DH (2001) Clinical characterization of Dobrava hantavirus infections in Germany. Clin Nephrol 55:371–374PubMed
70.
Zurück zum Zitat Schütt M, Meisel H, Kruger DH, Ulrich R, Dalhoff K, Dodt C (2004) Life-threatening Dobrava hantavirus infection with unusually extended pulmonary involvement. Clin Nephrol 62:54–57PubMed Schütt M, Meisel H, Kruger DH, Ulrich R, Dalhoff K, Dodt C (2004) Life-threatening Dobrava hantavirus infection with unusually extended pulmonary involvement. Clin Nephrol 62:54–57PubMed
71.
Zurück zum Zitat Sibold C, Sparr S, Schulz A, Labuda M, Kozuch O, Lysy J, Kruger DH, Meisel H (1995) Genetic characterization of a new hantavirus detected in Microtus arvalis from Slovakia. Virus Genes 10:277–281PubMedCrossRef Sibold C, Sparr S, Schulz A, Labuda M, Kozuch O, Lysy J, Kruger DH, Meisel H (1995) Genetic characterization of a new hantavirus detected in Microtus arvalis from Slovakia. Virus Genes 10:277–281PubMedCrossRef
72.
Zurück zum Zitat Sibold C, Meisel H, Lundkvist Å, Schulz A, Cifire F, Ulrich R, Kozuch O, Labuda M, Kruger DH (1999) Simultaneous occurrence of Dobrava, Puumala, and Tula hantaviruses in Slovakia. Am J Trop Med Hyg 61:409–411PubMed Sibold C, Meisel H, Lundkvist Å, Schulz A, Cifire F, Ulrich R, Kozuch O, Labuda M, Kruger DH (1999) Simultaneous occurrence of Dobrava, Puumala, and Tula hantaviruses in Slovakia. Am J Trop Med Hyg 61:409–411PubMed
73.
Zurück zum Zitat Sibold C, Ulrich R, Labuda M, Lundkvist Å, Martens H, Schütt M, Gerke P, Leitmeyer K, Meisel H, Kruger DH (2001) Dobrava hantavirus causes hemorrhagic fever with renal syndrome in central Europe and is carried by two different Apodemus mice species. J Med Virol 63:158–167PubMedCrossRef Sibold C, Ulrich R, Labuda M, Lundkvist Å, Martens H, Schütt M, Gerke P, Leitmeyer K, Meisel H, Kruger DH (2001) Dobrava hantavirus causes hemorrhagic fever with renal syndrome in central Europe and is carried by two different Apodemus mice species. J Med Virol 63:158–167PubMedCrossRef
74.
Zurück zum Zitat Sironen T, Vaheri A, Plyusnin A (2005) Phylogenetic evidence for the distinction of Saaremaa and Dobrava hantaviruses. Virol J 2:90PubMedCrossRef Sironen T, Vaheri A, Plyusnin A (2005) Phylogenetic evidence for the distinction of Saaremaa and Dobrava hantaviruses. Virol J 2:90PubMedCrossRef
75.
Zurück zum Zitat Sjolander KB, Golovljova I, Vasilenko V, Plyusnin A, Lundkvist Å (2002) Serological divergence of Dobrava and Saaremaa hantaviruses: evidence for two distinct serotypes. Epidemiol Infect 128:99–103PubMed Sjolander KB, Golovljova I, Vasilenko V, Plyusnin A, Lundkvist Å (2002) Serological divergence of Dobrava and Saaremaa hantaviruses: evidence for two distinct serotypes. Epidemiol Infect 128:99–103PubMed
76.
Zurück zum Zitat Sumibcay L, Kadjo B, Gu SH, Kang HJ, Lim BK, Cook JA, Song JW, Yanagihara R (2012) Divergent lineage of a novel hantavirus in the banana pipistrelle (Neoromicia nanus) in Côte d’Ivoire. Virol J 9:34PubMedCrossRef Sumibcay L, Kadjo B, Gu SH, Kang HJ, Lim BK, Cook JA, Song JW, Yanagihara R (2012) Divergent lineage of a novel hantavirus in the banana pipistrelle (Neoromicia nanus) in Côte d’Ivoire. Virol J 9:34PubMedCrossRef
77.
Zurück zum Zitat Taller AM, Xiao SY, Godec MS, Gligic A, Avsic-Zupanc T, Goldfarb LG, Yanagihara R, Asher DM (1993) Belgrade virus, a cause of hemorrhagic fever with renal syndrome in the Balkans, is closely related to Dobrava virus of field mice. J Infect Dis 168:750–753PubMedCrossRef Taller AM, Xiao SY, Godec MS, Gligic A, Avsic-Zupanc T, Goldfarb LG, Yanagihara R, Asher DM (1993) Belgrade virus, a cause of hemorrhagic fever with renal syndrome in the Balkans, is closely related to Dobrava virus of field mice. J Infect Dis 168:750–753PubMedCrossRef
78.
Zurück zum Zitat Tamura K, Peterson D, Peterson N, Stecher G, Nie M, Kumar S (2011) MEGA5: Molecular evolutionary genetics analysis using maximum Likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739PubMedCrossRef Tamura K, Peterson D, Peterson N, Stecher G, Nie M, Kumar S (2011) MEGA5: Molecular evolutionary genetics analysis using maximum Likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739PubMedCrossRef
79.
Zurück zum Zitat Tkachenko EA, Okulova NM, Iunicheva IuV, Morzunov SP, Khaĭbulina SF, Riabova TE, Vasilenko LE, Bashkirtsev VN, Dzagurova TK, Gorbachkova EA, Sedova NS, Balakirev AE, Dekonenko AE, Drozdov SG (2005) The epizootological and virological characteristics of a natural hantavirus infection focus in the subtropic zone of the Krasnodarsk Territory [in Rusian]. Vopr Virusol 50:14–19PubMed Tkachenko EA, Okulova NM, Iunicheva IuV, Morzunov SP, Khaĭbulina SF, Riabova TE, Vasilenko LE, Bashkirtsev VN, Dzagurova TK, Gorbachkova EA, Sedova NS, Balakirev AE, Dekonenko AE, Drozdov SG (2005) The epizootological and virological characteristics of a natural hantavirus infection focus in the subtropic zone of the Krasnodarsk Territory [in Rusian]. Vopr Virusol 50:14–19PubMed
80.
Zurück zum Zitat Vaheri A, Henttonen H, Voutilainen L, Mustonen J, Sironen T, Vapalahti O (2012) Hantavirus infections in Europe and their impact on public health. Rev Med Virol. doi:10.1002/rmv.1722 PubMed Vaheri A, Henttonen H, Voutilainen L, Mustonen J, Sironen T, Vapalahti O (2012) Hantavirus infections in Europe and their impact on public health. Rev Med Virol. doi:10.​1002/​rmv.​1722 PubMed
81.
Zurück zum Zitat Weidmann M, Schmidt P, Vackova M, Krivanec K, Munclinger P, Hufert FT (2005) Identification of genetic evidence for Dobrava virus spillover in rodents by nested reverse transcription (RT)-PCR and TaqMan RT-PCR. J Clin Microbiol 43:808–812PubMedCrossRef Weidmann M, Schmidt P, Vackova M, Krivanec K, Munclinger P, Hufert FT (2005) Identification of genetic evidence for Dobrava virus spillover in rodents by nested reverse transcription (RT)-PCR and TaqMan RT-PCR. J Clin Microbiol 43:808–812PubMedCrossRef
82.
Zurück zum Zitat Weiss S, Witkowski P, Auste B, Nowak K, Weber N, Fahr J, Mombouli JV, Wolfe ND, Drexler JF, Drosten C, Klempa B, Leendertz FH, Kruger DH (2012) Hantavirus in bat, Sierra Leone. Emerg Infect Dis 18:159–161PubMedCrossRef Weiss S, Witkowski P, Auste B, Nowak K, Weber N, Fahr J, Mombouli JV, Wolfe ND, Drexler JF, Drosten C, Klempa B, Leendertz FH, Kruger DH (2012) Hantavirus in bat, Sierra Leone. Emerg Infect Dis 18:159–161PubMedCrossRef
83.
Zurück zum Zitat Zelena H, Zvolankova V, Zuchnicka J, Liszkova K, Papa A (2011) Hantavirus infection during a stay in a mountain hut in Northern Slovakia. J Med Virol 83:496–500PubMedCrossRef Zelena H, Zvolankova V, Zuchnicka J, Liszkova K, Papa A (2011) Hantavirus infection during a stay in a mountain hut in Northern Slovakia. J Med Virol 83:496–500PubMedCrossRef
Metadaten
Titel
Complex evolution and epidemiology of Dobrava-Belgrade hantavirus: definition of genotypes and their characteristics
verfasst von
Boris Klempa
Tatjana Avsic-Zupanc
Jan Clement
Tamara K. Dzagurova
Heikki Henttonen
Paul Heyman
Ferenc Jakab
Detlev H. Kruger
Piet Maes
Anna Papa
Evgeniy A. Tkachenko
Rainer G. Ulrich
Olli Vapalahti
Antti Vaheri
Publikationsdatum
01.03.2013
Verlag
Springer Vienna
Erschienen in
Archives of Virology / Ausgabe 3/2013
Print ISSN: 0304-8608
Elektronische ISSN: 1432-8798
DOI
https://doi.org/10.1007/s00705-012-1514-5

Weitere Artikel der Ausgabe 3/2013

Archives of Virology 3/2013 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Battle of Experts: Sport vs. Spritze bei Adipositas und Typ-2-Diabetes

11.05.2024 DDG-Jahrestagung 2024 Kongressbericht

Im Battle of Experts traten zwei Experten auf dem Diabeteskongress gegeneinander an: Die eine vertrat die Auffassung „Sport statt Spritze“ bei Adipositas und Typ-2-Diabetes, der andere forderte „Spritze statt Sport!“ Am Ende waren sie sich aber einig: Die Kombination aus beidem erzielt die besten Ergebnisse.

Vorsicht, erhöhte Blutungsgefahr nach PCI!

10.05.2024 Koronare Herzerkrankung Nachrichten

Nach PCI besteht ein erhöhtes Blutungsrisiko, wenn die Behandelten eine verminderte linksventrikuläre Ejektionsfraktion aufweisen. Das Risiko ist umso höher, je stärker die Pumpfunktion eingeschränkt ist.

Triglyzeridsenker schützt nicht nur Hochrisikopatienten

10.05.2024 Hypercholesterinämie Nachrichten

Patienten mit Arteriosklerose-bedingten kardiovaskulären Erkrankungen, die trotz Statineinnahme zu hohe Triglyzeridspiegel haben, profitieren von einer Behandlung mit Icosapent-Ethyl, und zwar unabhängig vom individuellen Risikoprofil.

Gibt es eine Wende bei den bioresorbierbaren Gefäßstützen?

In den USA ist erstmals eine bioresorbierbare Gefäßstütze – auch Scaffold genannt – zur Rekanalisation infrapoplitealer Arterien bei schwerer PAVK zugelassen worden. Das markiert einen Wendepunkt in der Geschichte dieser speziellen Gefäßstützen.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.