Skip to main content
Erschienen in: BMC Infectious Diseases 1/2020

Open Access 01.12.2020 | Case report

Conidiobolus pachyzygosporus invasive pulmonary infection in a patient with acute myeloid leukemia: case report and review of the literature

verfasst von: E. Stavropoulou, A. T. Coste, C. Beigelman-Aubry, I. Letovanec, O. Spertini, A. Lovis, T. Krueger, R. Burger, P. Y. Bochud, F. Lamoth

Erschienen in: BMC Infectious Diseases | Ausgabe 1/2020

Abstract

Background

Conidiobolus spp. (mainly C. coronatus) are the causal agents of rhino-facial conidiobolomycosis, a limited soft tissue infection, which is essentially observed in immunocompetent individuals from tropical areas. Rare cases of invasive conidiobolomycosis due to C. coronatus or other species (C.incongruus, C.lamprauges) have been reported in immunocompromised patients. We report here the first case of invasive pulmonary fungal infection due to Conidiobolus pachyzygosporus in a Swiss patient with onco-haematologic malignancy.

Case presentation

A 71 year-old female was admitted in a Swiss hospital for induction chemotherapy of acute myeloid leukemia. A chest CT performed during the neutropenic phase identified three well-circumscribed lung lesions consistent with invasive fungal infection, along with a positive 1,3-beta-d-glucan assay in serum. A transbronchial biopsy of the lung lesions revealed large occasionally septate hyphae. A Conidiobolus spp. was detected by direct 18S rDNA in the tissue biopsy and subsequently identified at species level as C. pachyzygosporus by 28S rDNA sequencing. The infection was cured after isavuconazole therapy, recovery of the immune system and surgical resection of lung lesions.

Conclusions

This is the first description of C. pachyzygosporus as human pathogen and second case report of invasive conidiobolomycosis from a European country.
Hinweise

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
CT
Computed tomography
BAL
Broncho-alveolar lavage fluid
BDG
1,3-Beta-d-glucan

Background

Conidiobolus spp. are filamentous fungi, which belong to the phylum Entomophthoramycota and are responsible for a human disease called conidiobolomycosis. These fungi are insect parasites and can also be found in soil, decaying vegetation and reptile or amphibian droppings [1, 2]. Although Conidiobolus spp. seem to be ubiquitous in the world, conidiobolomycosis is mainly a tropical disease as the fungus needs a high level of humidity (> 95%) for germination and growth. The infection usually consists of a rhinofacial cellulitis, which can lead to chronic facial deformity in immunocompetent hosts [14]. Few cases of disseminated infections involving multiple organs (lungs, heart, kidneys, spleen or brain) have been reported in immunocompromised individuals, such as hematologic cancer patients or solid-organ transplant recipients [514]. While Conidiobolus coronatus represents the main pathogenic species in humans, C. incongruus and C. lamprauges have also been reported, especially in disseminated infections [2, 5, 7, 9, 13]. We report here a case of C. pachyzygosporus invasive infection limited to the lungs in a patient with acute myeloid leukemia, which was acquired in Switzerland.

Case presentation

A 71 year-old female of Swiss origin was admitted at the University Hospital of Lausanne (Switzerland) for a diagnosis of acute myeloid leukemia. She underwent induction chemotherapy (cytarabine 200 mg/m2 days 1–7 and daunorubicin 60 mg/m2 days 1,2 and 3, followed by imatinib and then dasatinib 140 mg qd from day 3) and triple intrathecal chemotherapy (cytarabine, methotrexate, hydrocortisone). Chemotherapy-induced neutropenia (i.e. neutrophil count < 500/mm3) occurred 8 days later and antifungal prophylaxis with fluconazole (400 mg qd) was started. On the same day, the patient developed febrile neutropenia due to Streptococcus mitis bacteremia and was treated with piperacillin-tazobactam. The patient had persistent neutropenic fever despite broad-spectrum antibiotic therapy. Meanwhile, the monitoring of 1,3-d-beta-glucan (BDG) in serum (Fungitell™, Associates of Cape Cod, MA) performed twice weekly was positive on two consecutive values (213 and 104 pg/ml on day 5 and 8 of neutropenia, respectively). The galactomannan testing in serum was negative. Fluconazole was then switched to caspofungin (70 mg on day 1, followed by 50 mg qd). A chest and abdominal computerized tomography (CT) performed on day 9 of neutropenia revealed two well-circumscribed opacities in the right superior lobe and another smaller nodule in the right inferior lobe (Fig. 1). Caspofungin was switched to liposomal amphotericin B (5 mg/kg qd). The BDG test turned negative 3 days after the start of amphotericin B therapy. The patient recovered from neutropenia after 11 days and a bronchoscopy with broncho-alveolar lavage (BAL) was performed on the same day. Cultures and galactomannan testing were negative in BAL fluid. Aspergillus fumigatus-specific PCR and 18S rDNA panfungal PCR, as previously described [15], were also negative on this sample. Because of worsening dyspnea, another CT was repeated 4 days after the initial imaging, which showed an increase in size of the lung lesions with appearance of ground-glass opacity (Fig. 1). Liposomal amphotericin B was switched to oral isavuconazole (200 mg tid on day 1 and 2, followed by 200 mg qd) because of renal failure potentially attributed to amphotericin B, and a bronchoscopy with radial ultrasound assisted transbronchial biopsies was performed, as previously described [16]. Histologic examination of the lung biopsy showed bronchopulmonary parenchyma with necrosis and presence of large and tortuous mycelia with occasional septa at Grocott and periodic-acid-Schiff (PAS) staining (Fig. 2a). Cultures and A. fumigatus-specific PCR performed on the native lung tissue biopsy were negative, but the 18S rDNA panfungal PCR was positive at 1582 copies/ml for a Conidiobolus spp. with the highest score for C. nanodes/lamprauges (Fig. 2b). In order to confirm this result, DNA was extracted from the histopathologic paraffin-embedded tissue showing the mycelial elements. The 18S rDNA PCR was positive for a mold belonging to the order Entomophthorales, but discrimination at genus/species level was not possible. PCR targeting the 28S rDNA, which has demonstrated good discrimination for identification of Conidiobolus spp. at species level [17], was performed on this sample and provided an optimal score with 100% identity for Conidiobolus pachyzygosporus (Fig. 2b).
Further patient history revealed no particular exposition within the last 2 years, except a travel in Madeira 3 months earlier. Abdominal and cranial CT did not show evidence of dissemination to other organs. Isavuconazole therapy was continued with trough plasma concentrations within the expected therapeutic range (3.8 mg/l at day 7 of therapy). Serial chest CTs performed on day 10 and 25 of antifungal therapy showed a significant regression of the size of the lung lesions (Fig. 1). The patient was in oncological remission following induction chemotherapy and tyrosine kinase inhibitors (ponatinib, then nilotinib) were maintained awaiting an allogeneic hematopoietic stem cell transplantation. Considering the high immunosuppressive risk associated with this procedure, it was decided to surgically remove the residual lung lesions. Wedge resections of the three nodules were performed. Isavuconazole was interrupted 1 week later after a total of 2 months of antifungal therapy, because of the development of hepatic test disturbances of probable toxic origin. A chest CT performed 2 months after interruption of antifungal therapy did not show any sign of recurrent disease.

Discussion and conclusions

We describe here a case of proven invasive fungal infection attributed to Conidiobolus pachyzygosporus in a patient with acute myeloid leukemia. Although the mold was not isolated in cultures, the histopathologic description of large hyphae evocative of a zygomycetous mold despite the presence of occasional septa is consistent with previous histological descriptions of Entomophthorales in human tissues [2, 8, 9, 12, 13]. Direct molecular testing performed by 18S rDNA PCR on both the native tissue biopsy and the DNA extracted from the paraffin-embedded tissue led to the identification of a Conidiobolus spp. Identification at species level was achieved by 28S rDNA sequencing with a highest score and unique match with 100% identity for Conidiobolus pachyzygosporus. While 18S rDNA sequencing lacks discrimination for species identification among fungi of the order Entomophthorales, 28S rDNA amplification was shown to be able to discriminate species among the genus Conidiobulus, including C. pachyzygosporus [17]. This novel species has been described for the first time in 2018 in samples of plant detritus from China and has never been associated with infections in humans up to now [17]. Our literature search identified only 10 cases of invasive Conidiobolus infections including the current one (Table 1). Most cases were disseminated infections involving multiple organs and six of them were observed in patients with hematologic malignancies. Mortality was high (about 70%).
Table 1
Case reports of invasive fungal infections due to Conidiobolus spp.
Year of publication, region/country (reference)
Underlying conditions
Organs affected
Species
Treatment (dose), duration and outcome
1970, West Virginia (USA)
[7, 10]
1 year-old male, no underlying conditions
Mediastinum, lungs, pericardium
C. incongruus
Deoxycholate amphotericin B (1 mg/kg/day), 10 weeks
Outcome: cure
1983, Thailand
[5]
20 year-old female, no underlying conditions
Soft tissues (breast), lungs, mediastinum, liver, gastro-intestinal tract
C. incongruus
Co-trimoxazole (2 g/day), duration NS
Outcome: death
1990, Texas (USA)
[8]
29 year-old male, cocaine abuse
Endocardium, blood, skin, heart, lungs, kidneys, brain, muscles
Conidiobolus spp.
None
Outcome: death
1992, Mississippi (USA)
[12]
64 year-old male, kidney transplantation
Lungs, myocardium, brain, kidney, thyroid
C. coronatus
Deoxycholate amphotericin B (50 mg every other day), until death
Outcome: death
1994, Maryland (USA)
[13]
32 year-old female, lymphocytic lymphoma with leukemic transformation (neutropenia)
Lungs, pericardium
C. incongruus
Deoxycholate amphotericin B (0.5 mg/kg/day, then 1.5 mg/kg/day) and flucytosine (150 mg/kg/day), until death
Surgery
Outcome: death
2009, India
[11]
10 year-old female, T-cell acute lymphoblastic leukemia
Sinus, soft tissues (facial)
C. coronatus
Amphotericin B (NS), until death
Surgery
Outcome: death
2010, Germany
[14]
78 year-old female, myelodysplastic syndrome
Sinus, soft tissues (facial), brain
C. incongruus
Liposomal amphotericin B (200 mg/day), until death
Surgery
Outcome: death
2011, Japan
[9]
61 year-old male, mantle cell lymphoma, allogeneic HSCT
Lungs, heart, spleen, kidney, bladder, thyroid
C. lamprauges
Micafungin (150 mg/day) and liposomal amphotericin B (2.5 mg/kg/day), then intravenous voriconazole (6 mg/kg/day on day 1, then 4 mg/kg/day) and micafungin (150 mg/day), until death
Outcome: death
2018, Wisconsin (USA)
[6]
15 year-old male, B-cell lymphoblastic leukemia (neutropenia)
Sinus, lungs
C. coronatus
Liposomal amphotericin B (10 mg/kg/day) and anidulafungin (1.5 mg/kg/day) and oral terbinafine (250 mg twice per day), duration NS
Surgery, granulocyte transfusion
Outcome: cure
2019, Switzerland
(present case)
71 year-old, acute myeloid leukemia (neutropenia)
Lungs
Conidiobolus spp.
Caspofungin (70 mg/day on day 1, then 50 mg/day), then liposomal amphotericin B (5 mg/kg/day), then oral isavuconazole (200 mg three times per day on day 1 and 2, then 200 mg/day), 2 months
Surgery
Outcome: cure
NS Not specified
Interestingly, the BDG marker in serum was positive in our case. Analyses of the cell wall of Entomophthorales suggest the presence of significant amount of 1,3-d-beta-glucan [2]. Positivity of the BDG marker in serum was previously reported in a case of C. lamprauges infection [9], but lack of BDG detection was reported in a case of C. incongruus infection [14]. Therefore, data are still scarce to assess the value of the BDG test for diagnosis and follow-up of conidiobolomycosis.
Conidiobolus spp. are notoriously resistant in vitro to most antifungal agents, including azole drugs [18, 19]. In the absence of isolation of the mold by conventional cultures, we could not perform antifungal susceptibility testing in this case. Therapeutic options were limited by the previous nephrotoxicity attributed to liposomal amphotericin B and isavuconazole was continued because of favorable clinical and radiological evolution. Significant reduction of the lung lesions was observed which could be attributed to the antifungal effect of isavuconazole and/or neutrophil recovery. Finally, complete surgical removal of the lung lesions was performed without relapsing disease in follow-up. Our case highlights the importance of multilayered therapeutic approaches combining surgery, granulocyte transfusion and antifungal therapy, as previously suggested for invasive Conidiobolus infections [6].
While conidiobolomycosis is classically described as a tropical disease, the rare cases of invasive infections in hematologic cancer patients have been described in temperate regions (USA, Japan, Europe). For most of them, the causal agent was a Conidiobolus spp. other than C. coronatus, (the main cause of rhinofacial conidiobolomycosis in tropical areas) [6, 9, 13, 14]. While Conidiobolus spp. are supposedly ubiquitous and have even been isolated in environmental samples of northern European countries [20], detection of Conidiobolus spp. from clinical specimens has rarely been reported in Europe [14, 21]. The fact that Conidiobolus spp. require a high level of humidity for their growth and development could explain why their pathogenicity is usually limited to tropical areas [2]. Whether climate changes and global warming may alter the epidemiology of invasive fungal infections in the future, with emergence of tropical fungi in temperate regions, remains an open question. It is noteworthy that the present case occurred during a summer period, when an unusual heat wave took place in Europe, including in Switzerland. Increasing use of molecular tools may also impact fungal epidemiology by revealing novel fungal pathogens that could be missed by conventional culture methods.

Acknowledgments

We are grateful to the patient for her consent for the publication of this case.
Not applicable.
Written informed consent was obtained from the patient for the publication of this case report. A copy of the written consent is available upon request of the editors.

Competing interests

None to declare (all authors).
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Shaikh N, Hussain KA, Petraitiene R, Schuetz AN, Walsh TJ. Entomophthoramycosis: a neglected tropical mycosis. Clin Microbiol Infect. 2016;22:688–94.CrossRef Shaikh N, Hussain KA, Petraitiene R, Schuetz AN, Walsh TJ. Entomophthoramycosis: a neglected tropical mycosis. Clin Microbiol Infect. 2016;22:688–94.CrossRef
2.
Zurück zum Zitat Vilela R, Mendoza L. Human pathogenic Entomophthorales. Clin Microbiol Rev. 2018;31:e00014–8.CrossRef Vilela R, Mendoza L. Human pathogenic Entomophthorales. Clin Microbiol Rev. 2018;31:e00014–8.CrossRef
3.
Zurück zum Zitat Prabhu RM, Patel R. Mucormycosis and entomophthoramycosis: a review of the clinical manifestations, diagnosis and treatment. Clin Microbiol Infect. 2004;10(Suppl 1):31–47.CrossRef Prabhu RM, Patel R. Mucormycosis and entomophthoramycosis: a review of the clinical manifestations, diagnosis and treatment. Clin Microbiol Infect. 2004;10(Suppl 1):31–47.CrossRef
4.
Zurück zum Zitat Ribes JA, Vanover-Sams CL, Baker DJ. Zygomycetes in human disease. Clin Microbiol Rev. 2000;13:236–301.CrossRef Ribes JA, Vanover-Sams CL, Baker DJ. Zygomycetes in human disease. Clin Microbiol Rev. 2000;13:236–301.CrossRef
5.
Zurück zum Zitat Busapakum R, Youngchaiyud U, Sriumpai S, Segretain G, Fromentin H. Disseminated infection with Conidiobolus incongruus. Sabouraudia. 1983;21:323–30.CrossRef Busapakum R, Youngchaiyud U, Sriumpai S, Segretain G, Fromentin H. Disseminated infection with Conidiobolus incongruus. Sabouraudia. 1983;21:323–30.CrossRef
6.
Zurück zum Zitat Erker C, Huppler AR, Walsh TJ, McCormick ME, Suchi M, Bhatt NS, et al. Successful treatment of invasive Conidiobolus infection during therapy for acute lymphoblastic leukemia. J Pediatr Hematol Oncol. 2018;40:e446–e9.CrossRef Erker C, Huppler AR, Walsh TJ, McCormick ME, Suchi M, Bhatt NS, et al. Successful treatment of invasive Conidiobolus infection during therapy for acute lymphoblastic leukemia. J Pediatr Hematol Oncol. 2018;40:e446–e9.CrossRef
7.
Zurück zum Zitat Gilbert EF, Khoury GH, Pore RS. Histopathological identification of Entomophthora phycomycosis. Deep mycotic infection in an infant. Arch Pathol. 1970;90:583–7.PubMed Gilbert EF, Khoury GH, Pore RS. Histopathological identification of Entomophthora phycomycosis. Deep mycotic infection in an infant. Arch Pathol. 1970;90:583–7.PubMed
8.
Zurück zum Zitat Jaffey PB, Haque AK, el-Zaatari M, Pasarell L, McGinnis MR. Disseminated Conidiobolus infection with endocarditis in a cocaine abuser. Arch Pathol Lab Med. 1990;114:1276–8.PubMed Jaffey PB, Haque AK, el-Zaatari M, Pasarell L, McGinnis MR. Disseminated Conidiobolus infection with endocarditis in a cocaine abuser. Arch Pathol Lab Med. 1990;114:1276–8.PubMed
9.
Zurück zum Zitat Kimura M, Yaguchi T, Sutton DA, Fothergill AW, Thompson EH, Wickes BL. Disseminated human conidiobolomycosis due to Conidiobolus lamprauges. J Clin Microbiol. 2011;49:752–6.CrossRef Kimura M, Yaguchi T, Sutton DA, Fothergill AW, Thompson EH, Wickes BL. Disseminated human conidiobolomycosis due to Conidiobolus lamprauges. J Clin Microbiol. 2011;49:752–6.CrossRef
10.
Zurück zum Zitat King DS, Jong SC. Identity of the etiological agent of the first deep entomophthoraceous infection of man in the United States. Mycologia. 1976;68:181–3.CrossRef King DS, Jong SC. Identity of the etiological agent of the first deep entomophthoraceous infection of man in the United States. Mycologia. 1976;68:181–3.CrossRef
11.
Zurück zum Zitat Radhakrishnan N, Sachdeva A, Oberoi J, Yadav SP. Conidiobolomycosis in relapsed acute lymphoblastic leukemia. Pediatr Blood Cancer. 2009;53:1321–3.CrossRef Radhakrishnan N, Sachdeva A, Oberoi J, Yadav SP. Conidiobolomycosis in relapsed acute lymphoblastic leukemia. Pediatr Blood Cancer. 2009;53:1321–3.CrossRef
12.
Zurück zum Zitat Walker SD, Clark RV, King CT, Humphries JE, Lytle LS, Butkus DE. Fatal disseminated Conidiobolus coronatus infection in a renal transplant patient. Am J Clin Pathol. 1992;98:559–64.CrossRef Walker SD, Clark RV, King CT, Humphries JE, Lytle LS, Butkus DE. Fatal disseminated Conidiobolus coronatus infection in a renal transplant patient. Am J Clin Pathol. 1992;98:559–64.CrossRef
13.
Zurück zum Zitat Walsh TJ, Renshaw G, Andrews J, Kwon-Chung J, Cunnion RC, Pass HI, et al. Invasive zygomycosis due to Conidiobolus incongruus. Clin Infect Dis. 1994;19:423–30.CrossRef Walsh TJ, Renshaw G, Andrews J, Kwon-Chung J, Cunnion RC, Pass HI, et al. Invasive zygomycosis due to Conidiobolus incongruus. Clin Infect Dis. 1994;19:423–30.CrossRef
14.
Zurück zum Zitat Wuppenhorst N, Lee MK, Rappold E, Kayser G, Beckervordersandforth J, de With K, et al. Rhino-orbitocerebral zygomycosis caused by Conidiobolus incongruus in an immunocompromised patient in Germany. J Clin Microbiol. 2010;48:4322–5.CrossRef Wuppenhorst N, Lee MK, Rappold E, Kayser G, Beckervordersandforth J, de With K, et al. Rhino-orbitocerebral zygomycosis caused by Conidiobolus incongruus in an immunocompromised patient in Germany. J Clin Microbiol. 2010;48:4322–5.CrossRef
15.
Zurück zum Zitat Greub G, Sahli R, Brouillet R, Jaton K. Ten years of R&D and full automation in molecular diagnosis. Future Microbiol. 2016;11:403–25.CrossRef Greub G, Sahli R, Brouillet R, Jaton K. Ten years of R&D and full automation in molecular diagnosis. Future Microbiol. 2016;11:403–25.CrossRef
16.
Zurück zum Zitat Bernasconi M, Casutt A, Koutsokera A, Letovanec I, Tissot F, Nicod LP, et al. Radial ultrasound-assisted Transbronchial biopsy: a new diagnostic approach for non-resolving pulmonary infiltrates in Neutropenic Hemato-oncological patients. Lung. 2016;194:917–21.CrossRef Bernasconi M, Casutt A, Koutsokera A, Letovanec I, Tissot F, Nicod LP, et al. Radial ultrasound-assisted Transbronchial biopsy: a new diagnostic approach for non-resolving pulmonary infiltrates in Neutropenic Hemato-oncological patients. Lung. 2016;194:917–21.CrossRef
17.
Zurück zum Zitat Nie Y, Qin L, Yu DS, Liu XY, Huang B. Two new species of Conidiobolus occurring in Anhui, China. Mycol Progress. 2018;17:1203–11.CrossRef Nie Y, Qin L, Yu DS, Liu XY, Huang B. Two new species of Conidiobolus occurring in Anhui, China. Mycol Progress. 2018;17:1203–11.CrossRef
18.
Zurück zum Zitat Guarro J, Aguilar C, Pujol I. In-vitro antifungal susceptibilities of Basidiobolus and Conidiobolus spp. strains. J Antimicrob Chemother. 1999;44:557–60.CrossRef Guarro J, Aguilar C, Pujol I. In-vitro antifungal susceptibilities of Basidiobolus and Conidiobolus spp. strains. J Antimicrob Chemother. 1999;44:557–60.CrossRef
19.
Zurück zum Zitat Tondolo JSM, Loreto ES, Jesus FPK, Dutra V, Nakazato L, Alves SH, et al. In vitro assessment of antifungal drugs and Sulfamethoxazole-trimethoprim against clinical isolates of Conidiobolus lamprauges. Antimicrob Agents Chemother. 2018;62. Tondolo JSM, Loreto ES, Jesus FPK, Dutra V, Nakazato L, Alves SH, et al. In vitro assessment of antifungal drugs and Sulfamethoxazole-trimethoprim against clinical isolates of Conidiobolus lamprauges. Antimicrob Agents Chemother. 2018;62.
20.
Zurück zum Zitat Smith MF, Callaghan AA. Quantitative survey of Conidiobolus and Basidiobolus in soils and litter. Trans Br Mycol Soc. 1987;89:179–85.CrossRef Smith MF, Callaghan AA. Quantitative survey of Conidiobolus and Basidiobolus in soils and litter. Trans Br Mycol Soc. 1987;89:179–85.CrossRef
21.
Zurück zum Zitat Falces-Romero I, Alastruey-Izquierdo A, Garcia-Rodriguez J. First isolation of Conidiobolus sp in a respiratory sample of a patient in Europe. Clin Microbiol Infect. 2017;23:834.CrossRef Falces-Romero I, Alastruey-Izquierdo A, Garcia-Rodriguez J. First isolation of Conidiobolus sp in a respiratory sample of a patient in Europe. Clin Microbiol Infect. 2017;23:834.CrossRef
Metadaten
Titel
Conidiobolus pachyzygosporus invasive pulmonary infection in a patient with acute myeloid leukemia: case report and review of the literature
verfasst von
E. Stavropoulou
A. T. Coste
C. Beigelman-Aubry
I. Letovanec
O. Spertini
A. Lovis
T. Krueger
R. Burger
P. Y. Bochud
F. Lamoth
Publikationsdatum
01.12.2020
Verlag
BioMed Central
Erschienen in
BMC Infectious Diseases / Ausgabe 1/2020
Elektronische ISSN: 1471-2334
DOI
https://doi.org/10.1186/s12879-020-05218-w

Weitere Artikel der Ausgabe 1/2020

BMC Infectious Diseases 1/2020 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Notfall-TEP der Hüfte ist auch bei 90-Jährigen machbar

26.04.2024 Hüft-TEP Nachrichten

Ob bei einer Notfalloperation nach Schenkelhalsfraktur eine Hemiarthroplastik oder eine totale Endoprothese (TEP) eingebaut wird, sollte nicht allein vom Alter der Patientinnen und Patienten abhängen. Auch über 90-Jährige können von der TEP profitieren.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Bei schweren Reaktionen auf Insektenstiche empfiehlt sich eine spezifische Immuntherapie

Insektenstiche sind bei Erwachsenen die häufigsten Auslöser einer Anaphylaxie. Einen wirksamen Schutz vor schweren anaphylaktischen Reaktionen bietet die allergenspezifische Immuntherapie. Jedoch kommt sie noch viel zu selten zum Einsatz.

Therapiestart mit Blutdrucksenkern erhöht Frakturrisiko

25.04.2024 Hypertonie Nachrichten

Beginnen ältere Männer im Pflegeheim eine Antihypertensiva-Therapie, dann ist die Frakturrate in den folgenden 30 Tagen mehr als verdoppelt. Besonders häufig stürzen Demenzkranke und Männer, die erstmals Blutdrucksenker nehmen. Dafür spricht eine Analyse unter US-Veteranen.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.