Skip to main content
Erschienen in: Cardiovascular Toxicology 3/2017

10.08.2016

Contrary microRNA Expression Pattern Between Fetal and Adult Cardiac Remodeling: Therapeutic Value for Heart Failure

verfasst von: Hualin Yan, Yifei Li, Chuan Wang, Yi Zhang, Cong Liu, Kaiyu Zhou, Yimin Hua

Erschienen in: Cardiovascular Toxicology | Ausgabe 3/2017

Einloggen, um Zugang zu erhalten

Abstract

microRNAs (miRNAs) belong to a class of non-coding RNAs that regulate post-transcriptional gene expression during development and disease. Growing evidence indicates abundant miRNA expression changes and their important role in cardiac hypertrophy and failure. However, the role of miRNAs in fetal cardiac remodeling is little known. Here, we investigated the altered expression of fifteen miRNAs in rat fetal cardiac remodeling compared with adult cardiac remodeling. Among fifteen tested miRNAs, eleven and five miRNAs (miR-199a-5p, miR-214-3p, miR-155-3p, miR-155-5p and miR-499-5p) are significantly differentially expressed in fetal and adult cardiac remodeling, respectively. After comparison of miRNA expression in fetal and adult cardiac remodeling, we find that miRNA expression returns to the fetal level in adult cardiac failure and is activated in advance of the adult level in fetal failure. The current study highlights the contrary expression pattern between fetal and adult cardiac remodeling and that supports a novel potential therapeutic approach to treating heart failure.
Literatur
1.
Zurück zum Zitat Gjesdal, O., Bluemke, D. A., & Lima, J. A. (2011). Cardiac remodeling at the population level—Risk factors, screening, and outcomes. Nature Reviews Cardiology, 8(12), 673–685.CrossRefPubMed Gjesdal, O., Bluemke, D. A., & Lima, J. A. (2011). Cardiac remodeling at the population level—Risk factors, screening, and outcomes. Nature Reviews Cardiology, 8(12), 673–685.CrossRefPubMed
2.
Zurück zum Zitat Hill, J. A., & Olson, E. N. (2008). Cardiac plasticity. New England Journal of Medicine, 358(13), 1370–1380.CrossRefPubMed Hill, J. A., & Olson, E. N. (2008). Cardiac plasticity. New England Journal of Medicine, 358(13), 1370–1380.CrossRefPubMed
3.
Zurück zum Zitat Balasubramanian, S., et al. (2015). Dasatinib attenuates pressure overload induced cardiac fibrosis in a murine transverse aortic constriction model. PLoS One, 10(10), e0140273.CrossRefPubMedPubMedCentral Balasubramanian, S., et al. (2015). Dasatinib attenuates pressure overload induced cardiac fibrosis in a murine transverse aortic constriction model. PLoS One, 10(10), e0140273.CrossRefPubMedPubMedCentral
4.
Zurück zum Zitat Greco, C. M., & Condorelli, G. (2015). Epigenetic modifications and noncoding RNAs in cardiac hypertrophy and failure. Nature Reviews Cardiology, 12(8), 488–497.CrossRefPubMed Greco, C. M., & Condorelli, G. (2015). Epigenetic modifications and noncoding RNAs in cardiac hypertrophy and failure. Nature Reviews Cardiology, 12(8), 488–497.CrossRefPubMed
5.
Zurück zum Zitat Thum, T., & Condorelli, G. (2015). Long noncoding RNAs and microRNAs in cardiovascular pathophysiology. Circulation Research, 116(4), 751–762.CrossRefPubMed Thum, T., & Condorelli, G. (2015). Long noncoding RNAs and microRNAs in cardiovascular pathophysiology. Circulation Research, 116(4), 751–762.CrossRefPubMed
6.
Zurück zum Zitat van Rooij, E., et al. (2007). Control of stress-dependent cardiac growth and gene expression by a microRNA. Science, 316(5824), 575–579.CrossRefPubMed van Rooij, E., et al. (2007). Control of stress-dependent cardiac growth and gene expression by a microRNA. Science, 316(5824), 575–579.CrossRefPubMed
7.
Zurück zum Zitat Thakur, V., et al. (2013). Diagnosis and management of fetal heart failure. Canadian Journal of Cardiology, 29(7), 759–767.CrossRefPubMed Thakur, V., et al. (2013). Diagnosis and management of fetal heart failure. Canadian Journal of Cardiology, 29(7), 759–767.CrossRefPubMed
8.
Zurück zum Zitat Huhta, J. C. (2015). Diagnosis and treatment of foetal heart failure: Foetal echocardiography and foetal hydrops. Cardiology in the Young, 25(Suppl 2), 100–106.CrossRefPubMed Huhta, J. C. (2015). Diagnosis and treatment of foetal heart failure: Foetal echocardiography and foetal hydrops. Cardiology in the Young, 25(Suppl 2), 100–106.CrossRefPubMed
9.
Zurück zum Zitat Huhta, J. C., & Paul, J. J. (2010). Doppler in fetal heart failure. Clinical Obstetrics and Gynecology, 53(4), 915–929.CrossRefPubMed Huhta, J. C., & Paul, J. J. (2010). Doppler in fetal heart failure. Clinical Obstetrics and Gynecology, 53(4), 915–929.CrossRefPubMed
10.
Zurück zum Zitat Zhou, K., et al. (2013). Evaluation of therapeutic effect and cytokine change during transplacental Digoxin treatment for fetal heart failure associated with fetal tachycardia, a case-control study. International Journal of Cardiology, 169(4), e62–e64.CrossRefPubMed Zhou, K., et al. (2013). Evaluation of therapeutic effect and cytokine change during transplacental Digoxin treatment for fetal heart failure associated with fetal tachycardia, a case-control study. International Journal of Cardiology, 169(4), e62–e64.CrossRefPubMed
11.
Zurück zum Zitat Li, Y., et al. (2014). The study of fetal rat model of intra-amniotic isoproterenol injection induced heart dysfunction and phenotypic switch of contractile proteins. BioMed Research International, 2014, 360687.PubMedPubMedCentral Li, Y., et al. (2014). The study of fetal rat model of intra-amniotic isoproterenol injection induced heart dysfunction and phenotypic switch of contractile proteins. BioMed Research International, 2014, 360687.PubMedPubMedCentral
12.
Zurück zum Zitat Fang, J., et al. (2015). Antithetical regulation of alpha-myosin heavy chain between fetal and adult heart failure though shuttling of HDAC5 regulating YY-1 function. Cardiovascular Toxicology, 15(2), 147–156.CrossRefPubMed Fang, J., et al. (2015). Antithetical regulation of alpha-myosin heavy chain between fetal and adult heart failure though shuttling of HDAC5 regulating YY-1 function. Cardiovascular Toxicology, 15(2), 147–156.CrossRefPubMed
13.
Zurück zum Zitat Huang, D. W., Sherman, B. T., & Lempicki, R. A. (2009). Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature Protocols, 4(1), 44–57.CrossRef Huang, D. W., Sherman, B. T., & Lempicki, R. A. (2009). Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature Protocols, 4(1), 44–57.CrossRef
14.
Zurück zum Zitat Thum, T., et al. (2007). microRNAs in the human heart: A clue to fetal gene reprogramming in heart failure [Erratum appears in Circulation. 2007 Jul 17;116(3):e135]. Circulation, 116(3), 258–267.CrossRefPubMed Thum, T., et al. (2007). microRNAs in the human heart: A clue to fetal gene reprogramming in heart failure [Erratum appears in Circulation. 2007 Jul 17;116(3):e135]. Circulation, 116(3), 258–267.CrossRefPubMed
15.
Zurück zum Zitat Li, Q., et al. (2010). NFATc4 is negatively regulated in miR-133a-mediated cardiomyocyte hypertrophic repression. American Journal of Physiology Heart and Circulatory Physiology, 298(5), H1340–H1347.CrossRefPubMedPubMedCentral Li, Q., et al. (2010). NFATc4 is negatively regulated in miR-133a-mediated cardiomyocyte hypertrophic repression. American Journal of Physiology Heart and Circulatory Physiology, 298(5), H1340–H1347.CrossRefPubMedPubMedCentral
16.
Zurück zum Zitat Dong, D. L., et al. (2010). Reciprocal repression between microRNA-133 and calcineurin regulates cardiac hypertrophy: A novel mechanism for progressive cardiac hypertrophy. Hypertension, 55(4), 946–952.CrossRefPubMed Dong, D. L., et al. (2010). Reciprocal repression between microRNA-133 and calcineurin regulates cardiac hypertrophy: A novel mechanism for progressive cardiac hypertrophy. Hypertension, 55(4), 946–952.CrossRefPubMed
17.
Zurück zum Zitat Care, A., et al. (2007). microRNA-133 controls cardiac hypertrophy. Nature Medicine, 13(5), 613–618.CrossRefPubMed Care, A., et al. (2007). microRNA-133 controls cardiac hypertrophy. Nature Medicine, 13(5), 613–618.CrossRefPubMed
18.
Zurück zum Zitat Duisters, R. F., et al. (2009). MiR-133 and miR-30 regulate connective tissue growth factor: Implications for a role of microRNAs in myocardial matrix remodeling. Circ Res., 104(2), 170–178. 6p following 178.CrossRefPubMed Duisters, R. F., et al. (2009). MiR-133 and miR-30 regulate connective tissue growth factor: Implications for a role of microRNAs in myocardial matrix remodeling. Circ Res., 104(2), 170–178. 6p following 178.CrossRefPubMed
19.
Zurück zum Zitat Castoldi, G., et al. (2012). MiR-133a regulates collagen 1A1: Potential role of miR-133a in myocardial fibrosis in angiotensin II-dependent hypertension. Journal of Cellular Physiology, 227(2), 850–856.CrossRefPubMed Castoldi, G., et al. (2012). MiR-133a regulates collagen 1A1: Potential role of miR-133a in myocardial fibrosis in angiotensin II-dependent hypertension. Journal of Cellular Physiology, 227(2), 850–856.CrossRefPubMed
20.
Zurück zum Zitat Curtis, A. M., et al. (2015). Circadian control of innate immunity in macrophages by miR-155 targeting Bmal1. Proceedings of the National Academy of Sciences, 112(23), 7231–7236.CrossRef Curtis, A. M., et al. (2015). Circadian control of innate immunity in macrophages by miR-155 targeting Bmal1. Proceedings of the National Academy of Sciences, 112(23), 7231–7236.CrossRef
21.
Zurück zum Zitat Bao, J. L., & Lin, L. (2014). MiR-155 and miR-148a reduce cardiac injury by inhibiting NF-kappaB pathway during acute viral myocarditis. European Review for Medical and Pharmacological Sciences, 18(16), 2349–2356.PubMed Bao, J. L., & Lin, L. (2014). MiR-155 and miR-148a reduce cardiac injury by inhibiting NF-kappaB pathway during acute viral myocarditis. European Review for Medical and Pharmacological Sciences, 18(16), 2349–2356.PubMed
22.
Zurück zum Zitat Seok, H. Y., et al. (2014). Loss of microRNA-155 protects the heart from pathological cardiac hypertrophy. Circulation Research, 114(10), 1585–1595.CrossRefPubMedPubMedCentral Seok, H. Y., et al. (2014). Loss of microRNA-155 protects the heart from pathological cardiac hypertrophy. Circulation Research, 114(10), 1585–1595.CrossRefPubMedPubMedCentral
23.
Zurück zum Zitat Escobar, T. M., et al. (2014). MiR-155 activates cytokine gene expression in Th17 cells by regulating the DNA-binding protein Jarid2 to relieve polycomb-mediated repression. Immunity, 40(6), 865–879.CrossRefPubMedPubMedCentral Escobar, T. M., et al. (2014). MiR-155 activates cytokine gene expression in Th17 cells by regulating the DNA-binding protein Jarid2 to relieve polycomb-mediated repression. Immunity, 40(6), 865–879.CrossRefPubMedPubMedCentral
24.
Zurück zum Zitat Heymans, S., et al. (2013). Macrophage microRNA-155 promotes cardiac hypertrophy and failure. Circulation, 128(13), 1420–1432.CrossRefPubMed Heymans, S., et al. (2013). Macrophage microRNA-155 promotes cardiac hypertrophy and failure. Circulation, 128(13), 1420–1432.CrossRefPubMed
25.
Zurück zum Zitat el Azzouzi, H., et al. (2013). The hypoxia-inducible microRNA cluster miR-199a approximately 214 targets myocardial PPARdelta and impairs mitochondrial fatty acid oxidation. Cell Metabolism, 18(3), 341–354.CrossRefPubMed el Azzouzi, H., et al. (2013). The hypoxia-inducible microRNA cluster miR-199a approximately 214 targets myocardial PPARdelta and impairs mitochondrial fatty acid oxidation. Cell Metabolism, 18(3), 341–354.CrossRefPubMed
26.
Zurück zum Zitat Rane, S., et al. (2009). Downregulation of miR-199a derepresses hypoxia-inducible factor-1alpha and Sirtuin 1 and recapitulates hypoxia preconditioning in cardiac myocytes. Circulation Research, 104(7), 879–886.CrossRefPubMedPubMedCentral Rane, S., et al. (2009). Downregulation of miR-199a derepresses hypoxia-inducible factor-1alpha and Sirtuin 1 and recapitulates hypoxia preconditioning in cardiac myocytes. Circulation Research, 104(7), 879–886.CrossRefPubMedPubMedCentral
27.
Zurück zum Zitat Song, X. W., et al. (2010). microRNAs are dynamically regulated in hypertrophic hearts, and miR-199a is essential for the maintenance of cell size in cardiomyocytes. Journal of Cellular Physiology, 225(2), 437–443.CrossRefPubMed Song, X. W., et al. (2010). microRNAs are dynamically regulated in hypertrophic hearts, and miR-199a is essential for the maintenance of cell size in cardiomyocytes. Journal of Cellular Physiology, 225(2), 437–443.CrossRefPubMed
28.
Zurück zum Zitat Haghikia, A., et al. (2011). Signal transducer and activator of transcription 3-mediated regulation of miR-199a-5p links cardiomyocyte and endothelial cell function in the heart: A key role for ubiquitin-conjugating enzymes. European Heart Journal, 32(10), 1287–1297.CrossRefPubMed Haghikia, A., et al. (2011). Signal transducer and activator of transcription 3-mediated regulation of miR-199a-5p links cardiomyocyte and endothelial cell function in the heart: A key role for ubiquitin-conjugating enzymes. European Heart Journal, 32(10), 1287–1297.CrossRefPubMed
29.
Zurück zum Zitat da Costa Martins, P. A., et al. (2010). microRNA-199b targets the nuclear kinase Dyrk1a in an auto-amplification loop promoting calcineurin/NFAT signalling. Nature Cell Biology, 12(12), 1220–1227.CrossRefPubMed da Costa Martins, P. A., et al. (2010). microRNA-199b targets the nuclear kinase Dyrk1a in an auto-amplification loop promoting calcineurin/NFAT signalling. Nature Cell Biology, 12(12), 1220–1227.CrossRefPubMed
30.
Zurück zum Zitat Sun, M., et al. (2015). microRNA-214 mediates isoproterenol-induced proliferation and collagen synthesis in cardiac fibroblasts. Scientific Reports, 5, 18351.CrossRefPubMedPubMedCentral Sun, M., et al. (2015). microRNA-214 mediates isoproterenol-induced proliferation and collagen synthesis in cardiac fibroblasts. Scientific Reports, 5, 18351.CrossRefPubMedPubMedCentral
31.
Zurück zum Zitat Duan, Q., et al. (2015). microRNA regulation of unfolded protein response transcription factor XBP1 in the progression of cardiac hypertrophy and heart failure in vivo. Journal of Translational Medicine, 13, 363.CrossRefPubMedPubMedCentral Duan, Q., et al. (2015). microRNA regulation of unfolded protein response transcription factor XBP1 in the progression of cardiac hypertrophy and heart failure in vivo. Journal of Translational Medicine, 13, 363.CrossRefPubMedPubMedCentral
32.
Zurück zum Zitat Duan, Q., et al. (2015). microRNA-214 is upregulated in heart failure patients and suppresses XBP1-mediated endothelial cells angiogenesis. Journal of Cellular Physiology, 230(8), 1964–1973.CrossRefPubMedPubMedCentral Duan, Q., et al. (2015). microRNA-214 is upregulated in heart failure patients and suppresses XBP1-mediated endothelial cells angiogenesis. Journal of Cellular Physiology, 230(8), 1964–1973.CrossRefPubMedPubMedCentral
33.
Zurück zum Zitat Yang, T., et al. (2013). microRNA-214 provokes cardiac hypertrophy via repression of EZH2. Biochemical and Biophysical Research Communications, 436(4), 578–584.CrossRefPubMed Yang, T., et al. (2013). microRNA-214 provokes cardiac hypertrophy via repression of EZH2. Biochemical and Biophysical Research Communications, 436(4), 578–584.CrossRefPubMed
34.
35.
Zurück zum Zitat Wang, J., et al. (2014). MiR-499 protects cardiomyocytes from H2O 2-induced apoptosis via its effects on Pdcd4 and Pacs2. RNA Biology, 11(4), 339–350.CrossRefPubMedPubMedCentral Wang, J., et al. (2014). MiR-499 protects cardiomyocytes from H2O 2-induced apoptosis via its effects on Pdcd4 and Pacs2. RNA Biology, 11(4), 339–350.CrossRefPubMedPubMedCentral
36.
Zurück zum Zitat Houser, S. R., et al. (2012). Animal models of heart failure: A scientific statement from the American Heart Association. Circulation Research, 111(1), 131–150.CrossRefPubMed Houser, S. R., et al. (2012). Animal models of heart failure: A scientific statement from the American Heart Association. Circulation Research, 111(1), 131–150.CrossRefPubMed
37.
Zurück zum Zitat Teerlink, J. R., Pfeffer, J. M., & Pfeffer, M. A. (1994). Progressive ventricular remodeling in response to diffuse isoproterenol-induced myocardial necrosis in rats. Circulation Research, 75(1), 105–113.CrossRefPubMed Teerlink, J. R., Pfeffer, J. M., & Pfeffer, M. A. (1994). Progressive ventricular remodeling in response to diffuse isoproterenol-induced myocardial necrosis in rats. Circulation Research, 75(1), 105–113.CrossRefPubMed
38.
Zurück zum Zitat Lefkowitz, R. J., Rockman, H. A., & Koch, W. J. (2000). Catecholamines, cardiac beta-adrenergic receptors, and heart failure. Circulation, 101(14), 1634–1637.CrossRefPubMed Lefkowitz, R. J., Rockman, H. A., & Koch, W. J. (2000). Catecholamines, cardiac beta-adrenergic receptors, and heart failure. Circulation, 101(14), 1634–1637.CrossRefPubMed
39.
Zurück zum Zitat Hou, Y., et al. (2012). Beta-adrenoceptor regulates miRNA expression in rat heart. Medical Science Monitor, 18(8), BR309–BR314.PubMedPubMedCentral Hou, Y., et al. (2012). Beta-adrenoceptor regulates miRNA expression in rat heart. Medical Science Monitor, 18(8), BR309–BR314.PubMedPubMedCentral
40.
Zurück zum Zitat Sang, H. Q., et al. (2015). microRNA-133a improves the cardiac function and fibrosis through inhibiting Akt in heart failure rats. Biomedicine and Pharmacotherapy, 71, 185–189.CrossRefPubMed Sang, H. Q., et al. (2015). microRNA-133a improves the cardiac function and fibrosis through inhibiting Akt in heart failure rats. Biomedicine and Pharmacotherapy, 71, 185–189.CrossRefPubMed
41.
Zurück zum Zitat van Rooij, E., et al. (2006). A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proceedings of the National Academy of Sciences, 103(48), 18255–18260.CrossRef van Rooij, E., et al. (2006). A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proceedings of the National Academy of Sciences, 103(48), 18255–18260.CrossRef
42.
43.
Zurück zum Zitat Rajabi, M., et al. (2007). Return to the fetal gene program protects the stressed heart: a strong hypothesis. Heart Failure Reviews, 12(3–4), 331–343.CrossRefPubMed Rajabi, M., et al. (2007). Return to the fetal gene program protects the stressed heart: a strong hypothesis. Heart Failure Reviews, 12(3–4), 331–343.CrossRefPubMed
44.
Zurück zum Zitat Razeghi, P., et al. (2001). Metabolic gene expression in fetal and failing human heart. Circulation, 104(24), 2923–2931.CrossRefPubMed Razeghi, P., et al. (2001). Metabolic gene expression in fetal and failing human heart. Circulation, 104(24), 2923–2931.CrossRefPubMed
45.
Zurück zum Zitat Kinugawa, K., et al. (2001). Signaling pathways responsible for fetal gene induction in the failing human heart: Evidence for altered thyroid hormone receptor gene expression. Circulation, 103(8), 1089–1094.CrossRefPubMed Kinugawa, K., et al. (2001). Signaling pathways responsible for fetal gene induction in the failing human heart: Evidence for altered thyroid hormone receptor gene expression. Circulation, 103(8), 1089–1094.CrossRefPubMed
46.
Zurück zum Zitat Taegtmeyer, H., Sen, S., & Vela, D. (2010). Return to the fetal gene program: A suggested metabolic link to gene expression in the heart. Annals of the New York Academy of Sciences, 1188, 191–198.CrossRefPubMedPubMedCentral Taegtmeyer, H., Sen, S., & Vela, D. (2010). Return to the fetal gene program: A suggested metabolic link to gene expression in the heart. Annals of the New York Academy of Sciences, 1188, 191–198.CrossRefPubMedPubMedCentral
47.
Zurück zum Zitat van Bilsen, M., et al. (2004). Metabolic remodelling of the failing heart: The cardiac burn-out syndrome? Cardiovascular Research, 61(2), 218–226.CrossRefPubMed van Bilsen, M., et al. (2004). Metabolic remodelling of the failing heart: The cardiac burn-out syndrome? Cardiovascular Research, 61(2), 218–226.CrossRefPubMed
48.
Zurück zum Zitat Cheng, L., et al. (2004). Cardiomyocyte-restricted peroxisome proliferator-activated receptor-delta deletion perturbs myocardial fatty acid oxidation and leads to cardiomyopathy. Nature Medicine, 10(11), 1245–1250.CrossRefPubMed Cheng, L., et al. (2004). Cardiomyocyte-restricted peroxisome proliferator-activated receptor-delta deletion perturbs myocardial fatty acid oxidation and leads to cardiomyopathy. Nature Medicine, 10(11), 1245–1250.CrossRefPubMed
49.
Zurück zum Zitat Lee, L., et al. (2005). Metabolic modulation with perhexiline in chronic heart failure: A randomized, controlled trial of short-term use of a novel treatment. Circulation, 112(21), 3280–3288.CrossRefPubMed Lee, L., et al. (2005). Metabolic modulation with perhexiline in chronic heart failure: A randomized, controlled trial of short-term use of a novel treatment. Circulation, 112(21), 3280–3288.CrossRefPubMed
50.
Zurück zum Zitat Kolwicz, S. C, Jr., et al. (2012). Cardiac-specific deletion of acetyl CoA carboxylase 2 prevents metabolic remodeling during pressure-overload hypertrophy. Circulation Research, 111(6), 728–738.CrossRefPubMedPubMedCentral Kolwicz, S. C, Jr., et al. (2012). Cardiac-specific deletion of acetyl CoA carboxylase 2 prevents metabolic remodeling during pressure-overload hypertrophy. Circulation Research, 111(6), 728–738.CrossRefPubMedPubMedCentral
Metadaten
Titel
Contrary microRNA Expression Pattern Between Fetal and Adult Cardiac Remodeling: Therapeutic Value for Heart Failure
verfasst von
Hualin Yan
Yifei Li
Chuan Wang
Yi Zhang
Cong Liu
Kaiyu Zhou
Yimin Hua
Publikationsdatum
10.08.2016
Verlag
Springer US
Erschienen in
Cardiovascular Toxicology / Ausgabe 3/2017
Print ISSN: 1530-7905
Elektronische ISSN: 1559-0259
DOI
https://doi.org/10.1007/s12012-016-9381-z

Weitere Artikel der Ausgabe 3/2017

Cardiovascular Toxicology 3/2017 Zur Ausgabe