Skip to main content
Erschienen in: Clinical and Experimental Nephrology 3/2015

01.06.2015 | Original Article

Correction of hyponatremia and osmotic demyelinating syndrome: have we neglected to think intracellularly?

verfasst von: Phuong-Mai T. Pham, Phuong-Anh T. Pham, Son V. Pham, Phuong-Truc T. Pham, Phuong-Thu T. Pham, Phuong-Chi T. Pham

Erschienen in: Clinical and Experimental Nephrology | Ausgabe 3/2015

Einloggen, um Zugang zu erhalten

Abstract

Background

Osmotic demyelination syndrome (ODS) is a complication generally associated with overly rapid correction of hyponatremia. Traditionally, nephrologists have been trained to focus solely on limiting the correction rate. However, there is accumulating evidence to suggest that the prevention of ODS is beyond achieving slow correction rates.

Methods

We (1) reviewed the literature for glial intracellular protective alterations during hyperosmolar stress, a state presumed equivalent to the rapid correction of hyponatremia, and (2) analyzed all available hyponatremia-associated ODS cases from PubMed for possible contributing factors including correction rates and concurrent metabolic disturbances involving hypokalemia, hypophosphatemia, hypomagnesemia, and/or hypoglycemia.

Results

In response to acute hyperosmolar stress, glial cells undergo immediate extracellular free water shift, followed by active intracellular Na+, K+ and amino acid uptake, and eventual idiogenic osmoles synthesis. At minimum, protective mechanisms require K+, Mg2+, phosphate, amino acids, and glucose. There were 158 cases of hyponatremia-associated ODS where both correction rates and other metabolic factors were documented. Compared with the rapid correction group (>0.5 mmol/L/h), the slow correction group (≤0.5 mmol/L/h) had a greater number of cases with concurrent hypokalemia (49.4 vs. 33.3 %, p = 0.04), and a greater number of cases with any concurrent metabolic derangements (55.8 vs. 38.3 %, p = 0.03).

Conclusion

Glial cell minimizes volume changes and injury in response to hyperosmolar stress via mobilization and/or utilization of various electrolytes and metabolic factors. The prevention of ODS likely requires both minimization of correction rate and optimization of intracellular response during the correction phase when a sufficient supply of various factors is necessary.
Literatur
1.
Zurück zum Zitat McDowell ME, Wolf AV, Steer A. Osmotic volume of distribution: idiogenic changes in osmotic pressure associated with administration of hypertonic solutions. Am J Physiol. 1955;180:545–58.PubMed McDowell ME, Wolf AV, Steer A. Osmotic volume of distribution: idiogenic changes in osmotic pressure associated with administration of hypertonic solutions. Am J Physiol. 1955;180:545–58.PubMed
2.
Zurück zum Zitat Chan PH, Wong YP, Fishman RA. Hyperosmolality induced GABA release from rat brain slices. J Neurochem. 1978;30:1363–8.PubMedCrossRef Chan PH, Wong YP, Fishman RA. Hyperosmolality induced GABA release from rat brain slices. J Neurochem. 1978;30:1363–8.PubMedCrossRef
3.
Zurück zum Zitat Chan PH, Fishman RA. Elevation of rat brain amino acids, ammonia and idiogenic osmoles induced by hyperosmolality. Brain Res. 1979;161:293–301.PubMedCrossRef Chan PH, Fishman RA. Elevation of rat brain amino acids, ammonia and idiogenic osmoles induced by hyperosmolality. Brain Res. 1979;161:293–301.PubMedCrossRef
4.
Zurück zum Zitat Pollock AS, Arieff AI. Abnormalities of cell volume regulation and their functional consequences. Am J Physiol. 1980;239(3):F195–205.PubMed Pollock AS, Arieff AI. Abnormalities of cell volume regulation and their functional consequences. Am J Physiol. 1980;239(3):F195–205.PubMed
5.
Zurück zum Zitat Heilig CW, Stromski ME, Blumenfeld JD, Lee JP, Gullans SR. Characterization of the major brain osmolytes that accumulate in salt-loaded rats. Am J Physiol (Renal Fluid Electrolyte Physiol). 1989;257:F1108–16. Heilig CW, Stromski ME, Blumenfeld JD, Lee JP, Gullans SR. Characterization of the major brain osmolytes that accumulate in salt-loaded rats. Am J Physiol (Renal Fluid Electrolyte Physiol). 1989;257:F1108–16.
7.
Zurück zum Zitat Ayus JC, Armstrong DL, Arieff AI. Effects of hypernatraemia in the central nervous system and its therapy in rats and rabbits. J Physiol. 1996;492(Pt 1):243–55.PubMedCentralPubMedCrossRef Ayus JC, Armstrong DL, Arieff AI. Effects of hypernatraemia in the central nervous system and its therapy in rats and rabbits. J Physiol. 1996;492(Pt 1):243–55.PubMedCentralPubMedCrossRef
8.
Zurück zum Zitat Adler S, Simplaceanu V. Effect of acute hyponatremia on rate brain pH and rat brain buffering. Am J Physiol. 1989;256:F113–9.PubMed Adler S, Simplaceanu V. Effect of acute hyponatremia on rate brain pH and rat brain buffering. Am J Physiol. 1989;256:F113–9.PubMed
9.
Zurück zum Zitat De Petris L, Luchetti A, Emma F. Cell volume regulation and transport mechanisms across the blood-brain barrier: implications for the management of hypernatraemic states. Eur J Pediatr. 2001;160:71–7.PubMedCrossRef De Petris L, Luchetti A, Emma F. Cell volume regulation and transport mechanisms across the blood-brain barrier: implications for the management of hypernatraemic states. Eur J Pediatr. 2001;160:71–7.PubMedCrossRef
10.
Zurück zum Zitat Bito LZ, Myers RE. On the physiological response of the cerebral cortex to acute stress (reversible asphyxia). J Physiol (Lond). 1972;221:349–70.CrossRef Bito LZ, Myers RE. On the physiological response of the cerebral cortex to acute stress (reversible asphyxia). J Physiol (Lond). 1972;221:349–70.CrossRef
11.
Zurück zum Zitat Franchi-Gazzola R, Dall’Asta V, Sala R, et al. The role of the neutral amino acid transporter SNAT2 in cell volume regulation. Acta Physiol (Oxf). 2006;187:273–83.CrossRef Franchi-Gazzola R, Dall’Asta V, Sala R, et al. The role of the neutral amino acid transporter SNAT2 in cell volume regulation. Acta Physiol (Oxf). 2006;187:273–83.CrossRef
12.
Zurück zum Zitat Thurston JH, Hauhart RE, Dirgo JA, Schulz DW. Effects of acute hyperosmolar NaCl or urea on brain H2O, Na+, K+, carbohydrate, and amino acid metabolism in weanling mice: NaCl induces insulin secretion and hypoglycemia. Metab Brain Dis. 1986;1(2):129–46.PubMedCrossRef Thurston JH, Hauhart RE, Dirgo JA, Schulz DW. Effects of acute hyperosmolar NaCl or urea on brain H2O, Na+, K+, carbohydrate, and amino acid metabolism in weanling mice: NaCl induces insulin secretion and hypoglycemia. Metab Brain Dis. 1986;1(2):129–46.PubMedCrossRef
13.
Zurück zum Zitat Vallurupalli S, Huesmann G, Gregory J, Jakoby MG IV. Levofloxacin-associated hypoglycaemia complicated by pontine myelinolysis and quadriplegia. Diabetic Med. 2008;25:856–9.PubMedCentralPubMedCrossRef Vallurupalli S, Huesmann G, Gregory J, Jakoby MG IV. Levofloxacin-associated hypoglycaemia complicated by pontine myelinolysis and quadriplegia. Diabetic Med. 2008;25:856–9.PubMedCentralPubMedCrossRef
14.
Zurück zum Zitat Madey JJ, Hannah JA, Lazaridis C. Central pontine myelinolysis following acute hypoglycemia. Clin Neurol Neurosurg. 2013;115(10):2299–300.PubMedCrossRef Madey JJ, Hannah JA, Lazaridis C. Central pontine myelinolysis following acute hypoglycemia. Clin Neurol Neurosurg. 2013;115(10):2299–300.PubMedCrossRef
15.
Zurück zum Zitat Hasegawa Y, Formato JE, Latour LL, et al. Severe transient hypoglycemia causes reversible change in the apparent diffusion coefficient of water. Stroke. 1996;27:1648–55.PubMedCrossRef Hasegawa Y, Formato JE, Latour LL, et al. Severe transient hypoglycemia causes reversible change in the apparent diffusion coefficient of water. Stroke. 1996;27:1648–55.PubMedCrossRef
16.
Zurück zum Zitat Yan S, Rivkees SA. Hypoglycemia influences oligodendrocyte development and myelin formation. Neuroreport. 2006;17:55–9.PubMedCrossRef Yan S, Rivkees SA. Hypoglycemia influences oligodendrocyte development and myelin formation. Neuroreport. 2006;17:55–9.PubMedCrossRef
17.
Zurück zum Zitat Suh WS, Gun ET, Hambu AM, Chan PH, Swanson RA. Hypoglycemic neuronal death is triggered by glucose reperfusion and activation of neuronal NADPH oxidase. J Clin Invest. 2007;117:910–8.PubMedCentralPubMedCrossRef Suh WS, Gun ET, Hambu AM, Chan PH, Swanson RA. Hypoglycemic neuronal death is triggered by glucose reperfusion and activation of neuronal NADPH oxidase. J Clin Invest. 2007;117:910–8.PubMedCentralPubMedCrossRef
18.
Zurück zum Zitat Thompson PD, Gledhill RF, Quinn NP, Rossor MN, Stanley P, Coomes EN. Neurological complications associated with parenteral treatment: central pontine myelinolysis and Wenicke’s encephalopathy. Br Med J. 1986;292(6521):684–5.CrossRef Thompson PD, Gledhill RF, Quinn NP, Rossor MN, Stanley P, Coomes EN. Neurological complications associated with parenteral treatment: central pontine myelinolysis and Wenicke’s encephalopathy. Br Med J. 1986;292(6521):684–5.CrossRef
19.
Zurück zum Zitat Sanders GT, Huijgen HJ, Sanders R. Magnesium in disease: a review with special emphasis on the serum ionized magnesium. Clin Chem Lab Med. 1999;37:1011–33.PubMed Sanders GT, Huijgen HJ, Sanders R. Magnesium in disease: a review with special emphasis on the serum ionized magnesium. Clin Chem Lab Med. 1999;37:1011–33.PubMed
20.
Zurück zum Zitat King JD, Rosner MH. Osmotic demyelination syndrome. Am J Med Sci. 2010;339(6):561–7.PubMed King JD, Rosner MH. Osmotic demyelination syndrome. Am J Med Sci. 2010;339(6):561–7.PubMed
21.
Zurück zum Zitat Adams RD, Victor M, Mancall EL. Central pontine myelinolysis: a hitherto undescribed disease occurring in alcoholic and malnourished patients. AMA Arch Neurol Psychiatry. 1959;81(2):154–72.PubMedCrossRef Adams RD, Victor M, Mancall EL. Central pontine myelinolysis: a hitherto undescribed disease occurring in alcoholic and malnourished patients. AMA Arch Neurol Psychiatry. 1959;81(2):154–72.PubMedCrossRef
22.
Zurück zum Zitat Khan LU, Ahmed J, Khan S, Macfie J. Refeeding syndrome: a literature review. Gastroenterol Res Pract 2011; Article ID 410971. Khan LU, Ahmed J, Khan S, Macfie J. Refeeding syndrome: a literature review. Gastroenterol Res Pract 2011; Article ID 410971.
23.
Zurück zum Zitat Lohr JW. Osmotic demyelination syndrome following correction of hyponatremia: association with hypokalemia. Am J Med. 1994;96(5):408–13.PubMedCrossRef Lohr JW. Osmotic demyelination syndrome following correction of hyponatremia: association with hypokalemia. Am J Med. 1994;96(5):408–13.PubMedCrossRef
24.
Zurück zum Zitat Ruiz S, Alzieu M, Niquet L, Vergne S, Lathuile D, Campistron J. Severe hyponatraemia and central pontine myelinolysis: be careful with other factors! Ann Fr Anesth Reanim. 2009;28(1):96–9.PubMedCrossRef Ruiz S, Alzieu M, Niquet L, Vergne S, Lathuile D, Campistron J. Severe hyponatraemia and central pontine myelinolysis: be careful with other factors! Ann Fr Anesth Reanim. 2009;28(1):96–9.PubMedCrossRef
25.
Zurück zum Zitat Turnbull J, Lumsden D, Siddigui A, Lin JP, Lim M. Osmotic demyelination syndrome associated with hypophosphataemia: 2 cases and a review of literature. Acta Paediatr. 2013;102:164–8.CrossRef Turnbull J, Lumsden D, Siddigui A, Lin JP, Lim M. Osmotic demyelination syndrome associated with hypophosphataemia: 2 cases and a review of literature. Acta Paediatr. 2013;102:164–8.CrossRef
26.
Zurück zum Zitat Michell AW, Burn DJ, Reading PJ. Central pontine myelinolysis temporally related to hypophosphataemia. J Neurol Neurosurg Psychiatry. 2003;74:820.PubMedCentralPubMedCrossRef Michell AW, Burn DJ, Reading PJ. Central pontine myelinolysis temporally related to hypophosphataemia. J Neurol Neurosurg Psychiatry. 2003;74:820.PubMedCentralPubMedCrossRef
27.
Zurück zum Zitat Leens C, Mukendi R, Foret F, Hacourt A, Devuyst O, Colin IM. Central and extrapontine myelinolysis in a patient in spite of a careful correction of hyponatremia. Clin Nephrol. 2011;55(3):248–53. Leens C, Mukendi R, Foret F, Hacourt A, Devuyst O, Colin IM. Central and extrapontine myelinolysis in a patient in spite of a careful correction of hyponatremia. Clin Nephrol. 2011;55(3):248–53.
28.
Zurück zum Zitat Ramaekers VT, Reul J, Kusenbach G, Thron A, Heimann Gn. Central pontine myelinolysis associated with acquired folate depletion. Neuropediatrics. 1997;28(2):126–30.PubMedCrossRef Ramaekers VT, Reul J, Kusenbach G, Thron A, Heimann Gn. Central pontine myelinolysis associated with acquired folate depletion. Neuropediatrics. 1997;28(2):126–30.PubMedCrossRef
29.
Zurück zum Zitat Kishimoto Y, Ikeda K, Murata K, Kawabe K, Hirayama T, Iwasaki Y. Rapid development of central pontine myelinolysis after recovery from wernicke encephalopathy: a non-alcoholic case without hyponatremia. Intern Med. 2012;51(12):1599–603 Epub 2012 Jun 15.PubMedCrossRef Kishimoto Y, Ikeda K, Murata K, Kawabe K, Hirayama T, Iwasaki Y. Rapid development of central pontine myelinolysis after recovery from wernicke encephalopathy: a non-alcoholic case without hyponatremia. Intern Med. 2012;51(12):1599–603 Epub 2012 Jun 15.PubMedCrossRef
30.
Zurück zum Zitat An JY, Park SK, Han SR, Song IU. Central pontine and extrapontine myelinolysis that developed during alcohol withdrawal, without hyponatremia, in a chronic alcoholic. Intern Med. 2010;49(6):615–8 Epub 2010 Mar 15.PubMedCrossRef An JY, Park SK, Han SR, Song IU. Central pontine and extrapontine myelinolysis that developed during alcohol withdrawal, without hyponatremia, in a chronic alcoholic. Intern Med. 2010;49(6):615–8 Epub 2010 Mar 15.PubMedCrossRef
31.
32.
Zurück zum Zitat Ashrafian A, Davey P. A review of the causes of central pontine myelinosis: yet another apoptotic illness? Eur J Neurol. 2001;8(2):103–9.PubMedCrossRef Ashrafian A, Davey P. A review of the causes of central pontine myelinosis: yet another apoptotic illness? Eur J Neurol. 2001;8(2):103–9.PubMedCrossRef
33.
Zurück zum Zitat Rose BD (ed): Clinical physiology of acid-base and electrolyte disorders (ed 4). New York, NY: McGraw-Hill; 1994. p. 679. Rose BD (ed): Clinical physiology of acid-base and electrolyte disorders (ed 4). New York, NY: McGraw-Hill; 1994. p. 679.
34.
Zurück zum Zitat Edelman IS, Leibman J, O’meara MP, Birkenfeld LW. Interrelations between serum sodium concentration, serum osmolarity and total exchangeable sodium, total exchangeable potassium and total body water. J Clin Invest. 1958;37(9):1236–56.PubMedCentralPubMedCrossRef Edelman IS, Leibman J, O’meara MP, Birkenfeld LW. Interrelations between serum sodium concentration, serum osmolarity and total exchangeable sodium, total exchangeable potassium and total body water. J Clin Invest. 1958;37(9):1236–56.PubMedCentralPubMedCrossRef
36.
Zurück zum Zitat Pham PC, Chen PV, Pham PT. Over-correction of hyponatremia: where do we go wrong? Am J Kidney Dis. 2000;36(2):E12.PubMedCrossRef Pham PC, Chen PV, Pham PT. Over-correction of hyponatremia: where do we go wrong? Am J Kidney Dis. 2000;36(2):E12.PubMedCrossRef
37.
Zurück zum Zitat Madhusooman S, Bogunovic OJ, Moise D, Brenner R, Markowitz S, Sotelo J. Hyponatremia associated with psychotropic medications: a review of the literature and spontaneous reports. Advers Drug React Toxicol Rev. 2002;21:17–29.CrossRef Madhusooman S, Bogunovic OJ, Moise D, Brenner R, Markowitz S, Sotelo J. Hyponatremia associated with psychotropic medications: a review of the literature and spontaneous reports. Advers Drug React Toxicol Rev. 2002;21:17–29.CrossRef
38.
Zurück zum Zitat Wilkinson TJ, Begg EJ, Winter AC, Sainsbury R. Incidence of risk factors for hyponatraemia following treatment with fluoxetine or paroxetine in elderly people. Br J Clin Pharmacol. 1999;47:211–7.PubMedCentralPubMedCrossRef Wilkinson TJ, Begg EJ, Winter AC, Sainsbury R. Incidence of risk factors for hyponatraemia following treatment with fluoxetine or paroxetine in elderly people. Br J Clin Pharmacol. 1999;47:211–7.PubMedCentralPubMedCrossRef
39.
Zurück zum Zitat Almond CSD, Shin AY, Fortescue EB, et al. Hyponatremia among runners in the Bostom Marathon. N Engl J Med. 2005;352:1550–6.PubMedCrossRef Almond CSD, Shin AY, Fortescue EB, et al. Hyponatremia among runners in the Bostom Marathon. N Engl J Med. 2005;352:1550–6.PubMedCrossRef
Metadaten
Titel
Correction of hyponatremia and osmotic demyelinating syndrome: have we neglected to think intracellularly?
verfasst von
Phuong-Mai T. Pham
Phuong-Anh T. Pham
Son V. Pham
Phuong-Truc T. Pham
Phuong-Thu T. Pham
Phuong-Chi T. Pham
Publikationsdatum
01.06.2015
Verlag
Springer Japan
Erschienen in
Clinical and Experimental Nephrology / Ausgabe 3/2015
Print ISSN: 1342-1751
Elektronische ISSN: 1437-7799
DOI
https://doi.org/10.1007/s10157-014-1021-y

Weitere Artikel der Ausgabe 3/2015

Clinical and Experimental Nephrology 3/2015 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.