Skip to main content
Erschienen in: Inflammation 1/2017

05.10.2016 | ORIGINAL ARTICLE

Coumestrol Counteracts Interleukin-1β-Induced Catabolic Effects by Suppressing Inflammation in Primary Rat Chondrocytes

verfasst von: Jae-Seek You, In-A Cho, Kyeong-Rok Kang, Ji-Su Oh, Sang-Joun Yu, Gyeong-Je Lee, Yo-Seob Seo, Su-Gwan Kim, Chun Sung Kim, Do Kyung Kim, Hee-Jeong Im, Jae-Sung Kim

Erschienen in: Inflammation | Ausgabe 1/2017

Einloggen, um Zugang zu erhalten

Abstract

In the present study, we investigated the anti-catabolic effects of coumestrol, a phytoestrogen derived from herbal plants, against interleukin-1β-induced cartilage degeneration in primary rat chondrocytes and articular cartilage. Coumestrol did not affect the viability of human normal oral keratinocytes and primary rat chondrocytes treated for 24 h and 21 days, respectively. Although coumestrol did not significantly increase the proteoglycan contents in long-term culture, it abolished the interleukin-1β-induced loss of proteoglycans in primary rat chondrocytes and knee articular cartilage. Furthermore, coumestrol suppressed the expression of matrix-degrading enzymes such as matrix metalloproteinase-13, −3, and −1 in primary rat chondrocytes stimulated with interleukin-1β. Moreover, the expression of catabolic factors such as nitric oxide synthase, cyclooxygenase-2, prostaglandin E2, and inflammatory cytokines in interleukin-1β-stimulated primary rat chondrocytes was suppressed by coumestrol. In summary, these results indicate that coumestrol counteracts the catabolic effects induced by interleukin-1β through the suppression of inflammation. Therefore, based on its biological activity and safety profile, coumestrol could be used as a potential anti-catabolic biomaterial for osteoarthritis.
Literatur
1.
Zurück zum Zitat Kean, W.F., R. Kean, and W.W. Buchanan. 2004. Osteoarthritis: symptoms, signs and source of pain. Inflammopharmacology 12: 3–31.CrossRefPubMed Kean, W.F., R. Kean, and W.W. Buchanan. 2004. Osteoarthritis: symptoms, signs and source of pain. Inflammopharmacology 12: 3–31.CrossRefPubMed
2.
Zurück zum Zitat Akkiraju, H., and A. Nohe. 2015. Role of chondrocytes in cartilage formation, progression of osteoarthritis and cartilage regeneration. Journal of Developmental Biology 3: 177–192.CrossRefPubMedPubMedCentral Akkiraju, H., and A. Nohe. 2015. Role of chondrocytes in cartilage formation, progression of osteoarthritis and cartilage regeneration. Journal of Developmental Biology 3: 177–192.CrossRefPubMedPubMedCentral
3.
Zurück zum Zitat Crepaldi, G., and L. Punzi. 2003. Aging and osteoarthritis. Aging Clinical and Experimental Research 15: 355–358.CrossRefPubMed Crepaldi, G., and L. Punzi. 2003. Aging and osteoarthritis. Aging Clinical and Experimental Research 15: 355–358.CrossRefPubMed
5.
Zurück zum Zitat Loeser, R.F. 2009. Aging and osteoarthritis: the role of chondrocyte senescence and aging changes in the cartilage matrix. Osteoarthritis and Cartilage 17: 971–979.CrossRefPubMedPubMedCentral Loeser, R.F. 2009. Aging and osteoarthritis: the role of chondrocyte senescence and aging changes in the cartilage matrix. Osteoarthritis and Cartilage 17: 971–979.CrossRefPubMedPubMedCentral
6.
Zurück zum Zitat Le Maitre, C.L., A. Pockert, D.J. Buttle, A.J. Freemont, and J.A. Hoyland. 2007. Matrix synthesis and degradation in human intervertebral disc degeneration. Biochemical Society Transactions 35: 652–655.CrossRefPubMed Le Maitre, C.L., A. Pockert, D.J. Buttle, A.J. Freemont, and J.A. Hoyland. 2007. Matrix synthesis and degradation in human intervertebral disc degeneration. Biochemical Society Transactions 35: 652–655.CrossRefPubMed
7.
Zurück zum Zitat Kim, J.S., M.B. Ellman, H.S. An, A.J. van Wijnen, J.A. Borgia, and H.J. Im. 2010. Insulin-like growth factor 1 synergizes with bone morphogenetic protein 7-mediated anabolism in bovine intervertebral disc cells. Arthritis and Rheumatism 62: 3706–37015.CrossRefPubMedPubMedCentral Kim, J.S., M.B. Ellman, H.S. An, A.J. van Wijnen, J.A. Borgia, and H.J. Im. 2010. Insulin-like growth factor 1 synergizes with bone morphogenetic protein 7-mediated anabolism in bovine intervertebral disc cells. Arthritis and Rheumatism 62: 3706–37015.CrossRefPubMedPubMedCentral
8.
Zurück zum Zitat Martín-Millán, M., and S. Castañeda. 2013. Estrogens, osteoarthritis and inflammation. Joint, Bone, Spine 80: 368–373.CrossRefPubMed Martín-Millán, M., and S. Castañeda. 2013. Estrogens, osteoarthritis and inflammation. Joint, Bone, Spine 80: 368–373.CrossRefPubMed
9.
Zurück zum Zitat Lee, G.J., I.A. Cho, K.R. Kang, K. Kim do, H.M. Sohn, J.W. You, J.S. Oh, Y.S. Seo, S.J. Yu, J.S. You, C.S. Kim, S.G. Kim, H.J. Im, and J.S. Kim. 2015. Biological effects of the herbal plant-derived phytoestrogen bavachin in primary rat chondrocytes. Biological & Pharmaceutical Bulletin 38: 1199–1207.CrossRef Lee, G.J., I.A. Cho, K.R. Kang, K. Kim do, H.M. Sohn, J.W. You, J.S. Oh, Y.S. Seo, S.J. Yu, J.S. You, C.S. Kim, S.G. Kim, H.J. Im, and J.S. Kim. 2015. Biological effects of the herbal plant-derived phytoestrogen bavachin in primary rat chondrocytes. Biological & Pharmaceutical Bulletin 38: 1199–1207.CrossRef
10.
Zurück zum Zitat Bickoff, E.M., A.N. Booth, R.L. Lyman, A.L. Livingston, C.R. Thompson, and F. Deeds. 1957. Coumestrol, a new estrogen isolated from forage crops. Science 126: 969–970.CrossRefPubMed Bickoff, E.M., A.N. Booth, R.L. Lyman, A.L. Livingston, C.R. Thompson, and F. Deeds. 1957. Coumestrol, a new estrogen isolated from forage crops. Science 126: 969–970.CrossRefPubMed
11.
Zurück zum Zitat Bickoff, E.M., A.L. Livingston, and A.N. Booth. 1960. Estrogenic activity of coumestrol and related compounds. Archives of Biochemistry and Biophysics 88: 262–266.CrossRefPubMed Bickoff, E.M., A.L. Livingston, and A.N. Booth. 1960. Estrogenic activity of coumestrol and related compounds. Archives of Biochemistry and Biophysics 88: 262–266.CrossRefPubMed
12.
Zurück zum Zitat Jantaratnotai, N., P. Utaisincharoen, P. Sanvarinda, A. Thampithak, and Y. Sanvarinda. 2013. Phytoestrogens mediated anti-inflammatory effect through suppression of IRF-1 and pSTAT1 expressions in lipopolysaccharide-activated microglia. International Immunopharmacology 17: 483–488.CrossRefPubMed Jantaratnotai, N., P. Utaisincharoen, P. Sanvarinda, A. Thampithak, and Y. Sanvarinda. 2013. Phytoestrogens mediated anti-inflammatory effect through suppression of IRF-1 and pSTAT1 expressions in lipopolysaccharide-activated microglia. International Immunopharmacology 17: 483–488.CrossRefPubMed
13.
Zurück zum Zitat Jin, S.E., Y.K. Son, B.S. Min, H.A. Jung, and J.S. Choi. 2012. Anti-inflammatory and antioxidant activities of constituents isolated from Pueraria lobata roots. Archives of Pharmacal Research 35: 823–837.CrossRefPubMed Jin, S.E., Y.K. Son, B.S. Min, H.A. Jung, and J.S. Choi. 2012. Anti-inflammatory and antioxidant activities of constituents isolated from Pueraria lobata roots. Archives of Pharmacal Research 35: 823–837.CrossRefPubMed
14.
Zurück zum Zitat Oh, J.S., I.A. Cho, K.R. Kang, J.S. You, S.J. Yu, G.J. Lee, Y.S. Seo, C.S. Kim, K. Kim do, S.G. Kim, Y.W. Seo, H.J. Im, and J.S. Kim. 2016. Biochanin-A antagonizes the interleukin-1beta-induced catabolic inflammation through the modulation of NFkB cellular signaling in primary rat chondrocytes. Biochemical and Biophysical Research Communications 477: 723–730.CrossRefPubMed Oh, J.S., I.A. Cho, K.R. Kang, J.S. You, S.J. Yu, G.J. Lee, Y.S. Seo, C.S. Kim, K. Kim do, S.G. Kim, Y.W. Seo, H.J. Im, and J.S. Kim. 2016. Biochanin-A antagonizes the interleukin-1beta-induced catabolic inflammation through the modulation of NFkB cellular signaling in primary rat chondrocytes. Biochemical and Biophysical Research Communications 477: 723–730.CrossRefPubMed
15.
Zurück zum Zitat Kim, J.S., M.B. Ellman, H.S. An, D. Yan, A.J. van Wijnen, G. Murphy, D.W. Hoskin, and H.J. Im. 2012. Lactoferricin mediates anabolic and anti-catabolic effects in the intervertebral disc. Journal of Cellular Physiology 227: 1512–1520.CrossRefPubMed Kim, J.S., M.B. Ellman, H.S. An, D. Yan, A.J. van Wijnen, G. Murphy, D.W. Hoskin, and H.J. Im. 2012. Lactoferricin mediates anabolic and anti-catabolic effects in the intervertebral disc. Journal of Cellular Physiology 227: 1512–1520.CrossRefPubMed
16.
Zurück zum Zitat Park, M.R., S.G. Kim, I.A. Cho, D. Oh, K.R. Kang, S.Y. Lee, S.M. Moon, S.S. Cho, G. Yoon, C.S. Kim, J.S. Oh, J.S. You, D.K. Kim, Y.S. Seo, H.J. Im, and J.S. Kim. 2015. Licochalcone-A induces intrinsic and extrinsic apoptosis via ERK1/2 and p38 phosphorylation-mediated TRAIL expression in head and neck squamous carcinoma FaDu cells. Food and Chemical Toxicology 77: 34–43.CrossRefPubMedPubMedCentral Park, M.R., S.G. Kim, I.A. Cho, D. Oh, K.R. Kang, S.Y. Lee, S.M. Moon, S.S. Cho, G. Yoon, C.S. Kim, J.S. Oh, J.S. You, D.K. Kim, Y.S. Seo, H.J. Im, and J.S. Kim. 2015. Licochalcone-A induces intrinsic and extrinsic apoptosis via ERK1/2 and p38 phosphorylation-mediated TRAIL expression in head and neck squamous carcinoma FaDu cells. Food and Chemical Toxicology 77: 34–43.CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat Kim, J.S., M.B. Ellman, D. Yan, H.S. An, R. Kc, X. Li, D. Chen, G. Xiao, G. Cs-Szabo, D.W. Hoskin, D.D. Buechter, A.J. Van Wijnen, and H.J. Im. 2013. Lactoferricin mediates anti-inflammatory and anti-catabolic effects via inhibition of IL-1 and LPS activity in the intervertebral disc. Journal of Cellular Physiology 228: 1884–1896.CrossRefPubMed Kim, J.S., M.B. Ellman, D. Yan, H.S. An, R. Kc, X. Li, D. Chen, G. Xiao, G. Cs-Szabo, D.W. Hoskin, D.D. Buechter, A.J. Van Wijnen, and H.J. Im. 2013. Lactoferricin mediates anti-inflammatory and anti-catabolic effects via inhibition of IL-1 and LPS activity in the intervertebral disc. Journal of Cellular Physiology 228: 1884–1896.CrossRefPubMed
18.
Zurück zum Zitat Heidari, B. 2011. Knee osteoarthritis prevalence, risk factors, pathogenesis and features: Part I. Caspian Journal of Internal Medicine 2: 205–212.PubMedPubMedCentral Heidari, B. 2011. Knee osteoarthritis prevalence, risk factors, pathogenesis and features: Part I. Caspian Journal of Internal Medicine 2: 205–212.PubMedPubMedCentral
19.
Zurück zum Zitat Huang, B.J., J.C. Hu, and K.A. Athanasiou. 2016. Cell-based tissue engineering strategies used in the clinical repair of articular cartilage. Biomaterials 98: 1–22.CrossRefPubMed Huang, B.J., J.C. Hu, and K.A. Athanasiou. 2016. Cell-based tissue engineering strategies used in the clinical repair of articular cartilage. Biomaterials 98: 1–22.CrossRefPubMed
20.
Zurück zum Zitat Lee, A.S., M.B. Ellman, D. Yan, J.S. Kroin, B.J. Cole, A.J. van Wijnen, and H.J. Im. 2013. A current review of molecular mechanisms regarding osteoarthritis and pain. Gene 527: 440–447.CrossRefPubMedPubMedCentral Lee, A.S., M.B. Ellman, D. Yan, J.S. Kroin, B.J. Cole, A.J. van Wijnen, and H.J. Im. 2013. A current review of molecular mechanisms regarding osteoarthritis and pain. Gene 527: 440–447.CrossRefPubMedPubMedCentral
21.
Zurück zum Zitat Oshima, A., W. Mine, M. Nakada, and E. Yanase. 2016. Analysis of isoflavones and coumestrol in soybean sprouts. Bioscience Biotechnology and Biochemistry 13: 1–3. Oshima, A., W. Mine, M. Nakada, and E. Yanase. 2016. Analysis of isoflavones and coumestrol in soybean sprouts. Bioscience Biotechnology and Biochemistry 13: 1–3.
22.
Zurück zum Zitat Knuckles, B.E., D. deFremery, and G.O. Kohler. 1976. Coumestrol content of fractions obtained during wet processing of alfalfa. Journal of Agricultural and Food Chemistry 24: 1177–1180.CrossRefPubMed Knuckles, B.E., D. deFremery, and G.O. Kohler. 1976. Coumestrol content of fractions obtained during wet processing of alfalfa. Journal of Agricultural and Food Chemistry 24: 1177–1180.CrossRefPubMed
23.
Zurück zum Zitat Sokolove, J., and C.M. Lepus. 2013. Role of inflammation in the pathogenesis of osteoarthritis: latest findings and interpretations. Therapeutic Advances in Musculoskeletal Disease 5: 77–94.CrossRefPubMedPubMedCentral Sokolove, J., and C.M. Lepus. 2013. Role of inflammation in the pathogenesis of osteoarthritis: latest findings and interpretations. Therapeutic Advances in Musculoskeletal Disease 5: 77–94.CrossRefPubMedPubMedCentral
24.
Zurück zum Zitat Hedbom, E., and H.J. Hauselmann. 2002. Molecular aspects of pathogenesis in osteoarthritis: the role of inflammation. Cellular and Molecular Life Sciences 59: 45–53.CrossRefPubMed Hedbom, E., and H.J. Hauselmann. 2002. Molecular aspects of pathogenesis in osteoarthritis: the role of inflammation. Cellular and Molecular Life Sciences 59: 45–53.CrossRefPubMed
25.
Zurück zum Zitat Archer, C.W., and P. Francis-West. 2003. The chondrocyte. The International Journal of Biochemistry & Cell Biology 35: 401–404.CrossRef Archer, C.W., and P. Francis-West. 2003. The chondrocyte. The International Journal of Biochemistry & Cell Biology 35: 401–404.CrossRef
26.
Zurück zum Zitat Reed, K.N., G. Wilson, A. Pearsall, and V.I. Grishko. 2014. The role of mitochondrial reactive oxygen species in cartilage matrix destruction. Molecular and Cellular Biochemistry 397: 195–201.CrossRefPubMed Reed, K.N., G. Wilson, A. Pearsall, and V.I. Grishko. 2014. The role of mitochondrial reactive oxygen species in cartilage matrix destruction. Molecular and Cellular Biochemistry 397: 195–201.CrossRefPubMed
27.
Zurück zum Zitat Ruiz-Romero, C., V. Calamia, J. Mateos, V. Carreira, M. Martinez-Gomariz, M. Fernandez, and F.J. Blanco. 2009. Mitochondrial dysregulation of osteoarthritic human articular chondrocytes analyzed by proteomics: a decrease in mitochondrial superoxide dismutase points to a redox imbalance. Molecular & Cellular Proteomics 8: 172–189.CrossRef Ruiz-Romero, C., V. Calamia, J. Mateos, V. Carreira, M. Martinez-Gomariz, M. Fernandez, and F.J. Blanco. 2009. Mitochondrial dysregulation of osteoarthritic human articular chondrocytes analyzed by proteomics: a decrease in mitochondrial superoxide dismutase points to a redox imbalance. Molecular & Cellular Proteomics 8: 172–189.CrossRef
28.
Zurück zum Zitat Henrotin, Y.E., P. Bruckner, and J.P. Pujol. 2003. The role of reactive oxygen species in homeostasis and degradation of cartilage. Osteoarthritis and Cartilage 11: 747–755.CrossRefPubMed Henrotin, Y.E., P. Bruckner, and J.P. Pujol. 2003. The role of reactive oxygen species in homeostasis and degradation of cartilage. Osteoarthritis and Cartilage 11: 747–755.CrossRefPubMed
29.
Zurück zum Zitat Konttinen, Y.T., T. Sillat, G. Barreto, M. Ainola, and D.C.E. Nordstrom. 2012. Osteoarthritis as an autoinflammatory disease caused by chondrocyte-mediated inflammatory responses. Arthritis and Rheumatism 64: 613–616.CrossRefPubMed Konttinen, Y.T., T. Sillat, G. Barreto, M. Ainola, and D.C.E. Nordstrom. 2012. Osteoarthritis as an autoinflammatory disease caused by chondrocyte-mediated inflammatory responses. Arthritis and Rheumatism 64: 613–616.CrossRefPubMed
30.
Zurück zum Zitat Berenbaum, F. 2013. Osteoarthritis as an inflammatory disease (osteoarthritis is not osteoarthrosis!). Osteoarthritis and Cartilage 21: 16–21.CrossRefPubMed Berenbaum, F. 2013. Osteoarthritis as an inflammatory disease (osteoarthritis is not osteoarthrosis!). Osteoarthritis and Cartilage 21: 16–21.CrossRefPubMed
31.
Zurück zum Zitat Yuan, P.W., D.Y. Liu, X.D. Chu, Y.Q. Hao, C. Zhu, and Q.A. Qu. 2010. Effects of preventive administration of juanbi capsules on TNF-alpha, IL-1 and IL-6 contents of joint fluid in the rabbit with knee osteoarthritis. Journal of Traditional Chinese Medicine 30: 254–258.CrossRefPubMed Yuan, P.W., D.Y. Liu, X.D. Chu, Y.Q. Hao, C. Zhu, and Q.A. Qu. 2010. Effects of preventive administration of juanbi capsules on TNF-alpha, IL-1 and IL-6 contents of joint fluid in the rabbit with knee osteoarthritis. Journal of Traditional Chinese Medicine 30: 254–258.CrossRefPubMed
32.
Zurück zum Zitat Sandell, L.J., X. Xing, C. Franz, S. Davies, L.W. Chang, and D. Patra. 2008. Exuberant expression of chemokine genes by adult human articular chondrocytes in response to IL-1beta. Osteoarthritis and Cartilage 16: 1560–1571.CrossRefPubMedPubMedCentral Sandell, L.J., X. Xing, C. Franz, S. Davies, L.W. Chang, and D. Patra. 2008. Exuberant expression of chemokine genes by adult human articular chondrocytes in response to IL-1beta. Osteoarthritis and Cartilage 16: 1560–1571.CrossRefPubMedPubMedCentral
33.
Zurück zum Zitat Ruth, J.H., S. Shahrara, C.C. Park, J.C. Morel, P. Kumar, S. Qin, and A.E. Koch. 2003. Role of macrophage inflammatory protein-3alpha and its ligand CCR6 in rheumatoid arthritis. Laboratory Investigation 83: 579–588.CrossRefPubMed Ruth, J.H., S. Shahrara, C.C. Park, J.C. Morel, P. Kumar, S. Qin, and A.E. Koch. 2003. Role of macrophage inflammatory protein-3alpha and its ligand CCR6 in rheumatoid arthritis. Laboratory Investigation 83: 579–588.CrossRefPubMed
34.
Zurück zum Zitat Yoshida, K., O. Korchynskyi, P.P. Tak, T. Isozaki, J.H. Ruth, P.L. Campbell, D.L. Baeten, D.M. Gerlag, M.A. Amin, and A.E. Koch. 2014. Citrullination of epithelial neutrophil-activating peptide 78/CXCL5 results in conversion from a non-monocyte-recruiting chemokine to a monocyte-recruiting chemokine. Arthritis and Rheumatology 66: 2716–2727.CrossRefPubMed Yoshida, K., O. Korchynskyi, P.P. Tak, T. Isozaki, J.H. Ruth, P.L. Campbell, D.L. Baeten, D.M. Gerlag, M.A. Amin, and A.E. Koch. 2014. Citrullination of epithelial neutrophil-activating peptide 78/CXCL5 results in conversion from a non-monocyte-recruiting chemokine to a monocyte-recruiting chemokine. Arthritis and Rheumatology 66: 2716–2727.CrossRefPubMed
35.
Zurück zum Zitat Huo, L.W., Y.L. Ye, G.W. Wang, and Y.G. Ye. 2015. Fractalkine (CX3CL1): a biomarker reflecting symptomatic severity in patients with knee osteoarthritis. Journal of Investigative Medicine 63: 626–631.CrossRefPubMed Huo, L.W., Y.L. Ye, G.W. Wang, and Y.G. Ye. 2015. Fractalkine (CX3CL1): a biomarker reflecting symptomatic severity in patients with knee osteoarthritis. Journal of Investigative Medicine 63: 626–631.CrossRefPubMed
36.
Zurück zum Zitat Akhtar, N., and T.M. Haqqi. 2011. Epigallocatechin-3-gallate suppresses the global interleukin-1beta-induced inflammatory response in human chondrocytes. Arthritis Research & Therapy 13: R93.CrossRef Akhtar, N., and T.M. Haqqi. 2011. Epigallocatechin-3-gallate suppresses the global interleukin-1beta-induced inflammatory response in human chondrocytes. Arthritis Research & Therapy 13: R93.CrossRef
Metadaten
Titel
Coumestrol Counteracts Interleukin-1β-Induced Catabolic Effects by Suppressing Inflammation in Primary Rat Chondrocytes
verfasst von
Jae-Seek You
In-A Cho
Kyeong-Rok Kang
Ji-Su Oh
Sang-Joun Yu
Gyeong-Je Lee
Yo-Seob Seo
Su-Gwan Kim
Chun Sung Kim
Do Kyung Kim
Hee-Jeong Im
Jae-Sung Kim
Publikationsdatum
05.10.2016
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 1/2017
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-016-0455-7

Weitere Artikel der Ausgabe 1/2017

Inflammation 1/2017 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.