Skip to main content
Erschienen in: Inflammation 1/2017

05.10.2016 | ORIGINAL ARTICLE

Inhibition of IRF8 Negatively Regulates Macrophage Function and Impairs Cutaneous Wound Healing

verfasst von: Yuanyuan Guo, Zhiyin Yang, Shan Wu, Peng Xu, Yinbo Peng, Min Yao

Erschienen in: Inflammation | Ausgabe 1/2017

Einloggen, um Zugang zu erhalten

Abstract

The inflammatory response is essential for normal cutaneous wound healing. Macrophages, as critical inflammatory cells, coordinate inflammation and angiogenesis phases during wound healing. It has been reported that the transcription factor interferon regulatory factor 8 (IRF8), a member of the IRF family, plays a critical role in the development and function of macrophages and is associated with inflammation. However, the role of IRF8 in cutaneous wound healing and its underlying mechanism remain elusive. Through immunohistochemical (IHC) staining, we showed that IRF8 is involved in the wound repair process in mice and patients. Furthermore, we ascertain that the repression of IRF8 by small interfering RNA (siRNA) leads to delayed wound healing. To explore the mechanism by which IRF8 impacts wound healing, we observed its effect on macrophage-related mediators by IHC or real-time PCR. The results demonstrated that the inhibition of IRF8 decreases the mRNA expression of inflammatory mediators associated with M1 macrophage (il-1b, il-6, inos, and tnf-a) but no impact on M2 macrophage-related mediators (arg-1, mrc-1, and il-10) and the number of macrophages in the wounds. Furthermore, the inhibition of IRF8 induced apoptosis in the wounds. In summary, this study demonstrates that the down-regulation of IRF8 in the wound leads to impaired wound healing possibly through the regulation of macrophage function and apoptosis in skin wound.
Literatur
1.
Zurück zum Zitat Martin, P. 1997. Wound healing—Aiming for perfect skin regeneration. Science 276(5309): 75–81.CrossRefPubMed Martin, P. 1997. Wound healing—Aiming for perfect skin regeneration. Science 276(5309): 75–81.CrossRefPubMed
2.
Zurück zum Zitat Xu, Z., H. Xu, V.A. Ploplis, and F.J. Castellino. 2010. Factor VII deficiency impairs cutaneous wound healing in mice. Molecular Medicine 16(5–6): 167–176.PubMedPubMedCentral Xu, Z., H. Xu, V.A. Ploplis, and F.J. Castellino. 2010. Factor VII deficiency impairs cutaneous wound healing in mice. Molecular Medicine 16(5–6): 167–176.PubMedPubMedCentral
3.
Zurück zum Zitat Morris Jr., M.W., M. Allukian 3rd, B.J. Herdrich, R.C. Caskey, C. Zgheib, J. Xu, W. Dorsett-Martin, M.E. Mitchell, and K.W. Liechty. 2014. Modulation of the inflammatory response by increasing fetal wound size or interleukin-10 overexpression determines wound phenotype and scar formation. Wound Repair and Regeneration 22(3): 406–414.CrossRefPubMed Morris Jr., M.W., M. Allukian 3rd, B.J. Herdrich, R.C. Caskey, C. Zgheib, J. Xu, W. Dorsett-Martin, M.E. Mitchell, and K.W. Liechty. 2014. Modulation of the inflammatory response by increasing fetal wound size or interleukin-10 overexpression determines wound phenotype and scar formation. Wound Repair and Regeneration 22(3): 406–414.CrossRefPubMed
4.
5.
Zurück zum Zitat Mahdavian Delavary, B., W.M. van der Veer, M. van Egmond, F.B. Niessen, and R.H. Beelen. 2011. Macrophages in skin injury and repair. Immunobiology 216(7): 753–762.CrossRefPubMed Mahdavian Delavary, B., W.M. van der Veer, M. van Egmond, F.B. Niessen, and R.H. Beelen. 2011. Macrophages in skin injury and repair. Immunobiology 216(7): 753–762.CrossRefPubMed
6.
Zurück zum Zitat Lucas, T., A. Waisman, R. Ranjan, J. Roes, T. Krieg, W. Muller, A. Roers, and S.A. Eming. 2010. Differential roles of macrophages in diverse phases of skin repair. Journal of Immunology 184(7): 3964–3977.CrossRef Lucas, T., A. Waisman, R. Ranjan, J. Roes, T. Krieg, W. Muller, A. Roers, and S.A. Eming. 2010. Differential roles of macrophages in diverse phases of skin repair. Journal of Immunology 184(7): 3964–3977.CrossRef
7.
Zurück zum Zitat Mirza, R., L.A. DiPietro, and T.J. Koh. 2009. Selective and specific macrophage ablation is detrimental to wound healing in mice. The American Journal of Pathology 175(6): 2454–2462.CrossRefPubMedPubMedCentral Mirza, R., L.A. DiPietro, and T.J. Koh. 2009. Selective and specific macrophage ablation is detrimental to wound healing in mice. The American Journal of Pathology 175(6): 2454–2462.CrossRefPubMedPubMedCentral
8.
Zurück zum Zitat Gu, X.Y., S.E. Shen, C.F. Huang, Y.N. Liu, Y.C. Chen, L. Luo, Y. Zeng, and A.P. Wang. 2013. Effect of activated autologous monocytes/macrophages on wound healing in a rodent model of experimental diabetes. Diabetes Research and Clinical Practice 102(1): 53–59.CrossRefPubMed Gu, X.Y., S.E. Shen, C.F. Huang, Y.N. Liu, Y.C. Chen, L. Luo, Y. Zeng, and A.P. Wang. 2013. Effect of activated autologous monocytes/macrophages on wound healing in a rodent model of experimental diabetes. Diabetes Research and Clinical Practice 102(1): 53–59.CrossRefPubMed
9.
Zurück zum Zitat Zhang, Q.Z., W.R. Su, S.H. Shi, P. Wilder-Smith, A.P. Xiang, A. Wong, A.L. Nguyen, C.W. Kwon, and A.D. Le. 2010. Human gingiva-derived mesenchymal stem cells elicit polarization of M2 macrophages and enhance cutaneous wound healing. Stem Cells 28(10): 1856–1868.CrossRefPubMedPubMedCentral Zhang, Q.Z., W.R. Su, S.H. Shi, P. Wilder-Smith, A.P. Xiang, A. Wong, A.L. Nguyen, C.W. Kwon, and A.D. Le. 2010. Human gingiva-derived mesenchymal stem cells elicit polarization of M2 macrophages and enhance cutaneous wound healing. Stem Cells 28(10): 1856–1868.CrossRefPubMedPubMedCentral
10.
Zurück zum Zitat Dror, N., M. Alter-Koltunoff, A. Azriel, N. Amariglio, J. Jacob-Hirsch, S. Zeligson, A. Morgenstern, T. Tamura, H. Hauser, G. Rechavi, K. Ozato, and B.Z. Levi. 2007. Identification of IRF-8 and IRF-1 target genes in activated macrophages. Molecular Immunology 44(4): 338–346.CrossRefPubMed Dror, N., M. Alter-Koltunoff, A. Azriel, N. Amariglio, J. Jacob-Hirsch, S. Zeligson, A. Morgenstern, T. Tamura, H. Hauser, G. Rechavi, K. Ozato, and B.Z. Levi. 2007. Identification of IRF-8 and IRF-1 target genes in activated macrophages. Molecular Immunology 44(4): 338–346.CrossRefPubMed
11.
Zurück zum Zitat Tamura, T., P. Thotakura, T.S. Tanaka, M.S. Ko, and K. Ozato. 2005. Identification of target genes and a unique cis element regulated by IRF-8 in developing macrophages. Blood 106(6): 1938–1947.CrossRefPubMedPubMedCentral Tamura, T., P. Thotakura, T.S. Tanaka, M.S. Ko, and K. Ozato. 2005. Identification of target genes and a unique cis element regulated by IRF-8 in developing macrophages. Blood 106(6): 1938–1947.CrossRefPubMedPubMedCentral
12.
Zurück zum Zitat Langlais, D., L.B. Barreiro, and P. Gros. 2016. The macrophage IRF8/IRF1 regulome is required for protection against infections and is associated with chronic inflammation. The Journal of Experimental Medicine 213(4): 585–603.CrossRefPubMedPubMedCentral Langlais, D., L.B. Barreiro, and P. Gros. 2016. The macrophage IRF8/IRF1 regulome is required for protection against infections and is associated with chronic inflammation. The Journal of Experimental Medicine 213(4): 585–603.CrossRefPubMedPubMedCentral
13.
Zurück zum Zitat Mancino, A., A. Termanini, I. Barozzi, S. Ghisletti, R. Ostuni, E. Prosperini, K. Ozato, and G. Natoli. 2015. A dual cis-regulatory code links IRF8 to constitutive and inducible gene expression in macrophages. Genes & Development 29(4): 394–408.CrossRef Mancino, A., A. Termanini, I. Barozzi, S. Ghisletti, R. Ostuni, E. Prosperini, K. Ozato, and G. Natoli. 2015. A dual cis-regulatory code links IRF8 to constitutive and inducible gene expression in macrophages. Genes & Development 29(4): 394–408.CrossRef
14.
Zurück zum Zitat Tsujimura, H., T. Nagamura-Inoue, T. Tamura, and K. Ozato. 2002. IFN consensus sequence binding protein/IFN regulatory factor-8 guides bone marrow progenitor cells toward the macrophage lineage. Journal of Immunology 169(3): 1261–1269.CrossRef Tsujimura, H., T. Nagamura-Inoue, T. Tamura, and K. Ozato. 2002. IFN consensus sequence binding protein/IFN regulatory factor-8 guides bone marrow progenitor cells toward the macrophage lineage. Journal of Immunology 169(3): 1261–1269.CrossRef
15.
Zurück zum Zitat Paschall, A.V., R. Zhang, C.F. Qi, K. Bardhan, L. Peng, G. Lu, J. Yang, M. Merad, T. McGaha, G. Zhou, A. Mellor, S.I. Abrams, H.C. Morse 3rd, K. Ozato, H. Xiong, and K. Liu. 2015. IFN regulatory factor 8 represses GM-CSF expression in T cells to affect myeloid cell lineage differentiation. Journal of Immunology 194(5): 2369–2379.CrossRef Paschall, A.V., R. Zhang, C.F. Qi, K. Bardhan, L. Peng, G. Lu, J. Yang, M. Merad, T. McGaha, G. Zhou, A. Mellor, S.I. Abrams, H.C. Morse 3rd, K. Ozato, H. Xiong, and K. Liu. 2015. IFN regulatory factor 8 represses GM-CSF expression in T cells to affect myeloid cell lineage differentiation. Journal of Immunology 194(5): 2369–2379.CrossRef
16.
17.
Zurück zum Zitat Kurotaki, D., M. Yamamoto, A. Nishiyama, K. Uno, T. Ban, M. Ichino, H. Sasaki, S. Matsunaga, M. Yoshinari, A. Ryo, M. Nakazawa, K. Ozato, and T. Tamura. 2014. IRF8 inhibits C/EBPalpha activity to restrain mononuclear phagocyte progenitors from differentiating into neutrophils. Nature Communications 5: 4978.CrossRefPubMed Kurotaki, D., M. Yamamoto, A. Nishiyama, K. Uno, T. Ban, M. Ichino, H. Sasaki, S. Matsunaga, M. Yoshinari, A. Ryo, M. Nakazawa, K. Ozato, and T. Tamura. 2014. IRF8 inhibits C/EBPalpha activity to restrain mononuclear phagocyte progenitors from differentiating into neutrophils. Nature Communications 5: 4978.CrossRefPubMed
18.
Zurück zum Zitat Sasaki, H., D. Kurotaki, N. Osato, H. Sato, I. Sasaki, S. Koizumi, H. Wang, C. Kaneda, A. Nishiyama, T. Kaisho, H. Aburatani, H.C. Morse 3rd, K. Ozato, and T. Tamura. 2015. Transcription factor IRF8 plays a critical role in the development of murine basophils and mast cells. Blood 125(2): 358–369.CrossRefPubMedPubMedCentral Sasaki, H., D. Kurotaki, N. Osato, H. Sato, I. Sasaki, S. Koizumi, H. Wang, C. Kaneda, A. Nishiyama, T. Kaisho, H. Aburatani, H.C. Morse 3rd, K. Ozato, and T. Tamura. 2015. Transcription factor IRF8 plays a critical role in the development of murine basophils and mast cells. Blood 125(2): 358–369.CrossRefPubMedPubMedCentral
19.
Zurück zum Zitat Watanabe, T., C. Hotta, S. Koizumi, K. Miyashita, J. Nakabayashi, D. Kurotaki, G.R. Sato, M. Yamamoto, M. Nakazawa, H. Fujita, R. Sakai, S. Fujisawa, A. Nishiyama, Z. Ikezawa, M. Aihara, Y. Ishigatsubo, and T. Tamura. 2013. The transcription factor IRF8 counteracts BCR-ABL to rescue dendritic cell development in chronic myelogenous leukemia. Cancer Research 73(22): 6642–6653.CrossRefPubMed Watanabe, T., C. Hotta, S. Koizumi, K. Miyashita, J. Nakabayashi, D. Kurotaki, G.R. Sato, M. Yamamoto, M. Nakazawa, H. Fujita, R. Sakai, S. Fujisawa, A. Nishiyama, Z. Ikezawa, M. Aihara, Y. Ishigatsubo, and T. Tamura. 2013. The transcription factor IRF8 counteracts BCR-ABL to rescue dendritic cell development in chronic myelogenous leukemia. Cancer Research 73(22): 6642–6653.CrossRefPubMed
20.
Zurück zum Zitat Szelag, M., Piaszyk-Borychowska, A., Plens-Galaska, M., Wesoly, J., and Bluyssen, H.A. 2016. Targeted inhibition of STATs and IRFs as a potential treatment strategy in cardiovascular disease. Oncotarget. doi:10.18632/oncotarget.9195. Szelag, M., Piaszyk-Borychowska, A., Plens-Galaska, M., Wesoly, J., and Bluyssen, H.A. 2016. Targeted inhibition of STATs and IRFs as a potential treatment strategy in cardiovascular disease. Oncotarget. doi:10.​18632/​oncotarget.​9195.
21.
Zurück zum Zitat Chmielewski, S., A. Piaszyk-Borychowska, J. Wesoly, and H.A. Bluyssen. 2015. STAT1 and IRF8 in vascular inflammation and cardiovascular disease: Diagnostic and therapeutic potential. International Reviews of Immunology 25: 1–21. Chmielewski, S., A. Piaszyk-Borychowska, J. Wesoly, and H.A. Bluyssen. 2015. STAT1 and IRF8 in vascular inflammation and cardiovascular disease: Diagnostic and therapeutic potential. International Reviews of Immunology 25: 1–21.
22.
Zurück zum Zitat Yan, M., H. Wang, J. Sun, W. Liao, P. Li, Y. Zhu, C. Xu, J. Joo, Y. Sun, S. Abbasi, A. Kovalchuk, N. Lv, W.J. Leonard, and H.C. Morse. 2016. Cutting edge: Expression of IRF8 in gastric epithelial cells confers protective innate immunity against Helicobacter pylori infection. Journal of Immunology 196(5): 1999–2003.CrossRef Yan, M., H. Wang, J. Sun, W. Liao, P. Li, Y. Zhu, C. Xu, J. Joo, Y. Sun, S. Abbasi, A. Kovalchuk, N. Lv, W.J. Leonard, and H.C. Morse. 2016. Cutting edge: Expression of IRF8 in gastric epithelial cells confers protective innate immunity against Helicobacter pylori infection. Journal of Immunology 196(5): 1999–2003.CrossRef
23.
Zurück zum Zitat Luda, K.M., T. Joeris, E.K. Persson, A. Rivollier, M. Demiri, K.M. Sitnik, L. Pool, J.B. Holm, F. Melo-Gonzalez, L. Richter, B.N. Lambrecht, K. Kristiansen, M.A. Travis, M. Svensson-Frej, K. Kotarsky, and W.W. Agace. 2016. IRF8 transcription-factor-dependent classical dendritic cells are essential for intestinal T cell homeostasis. Immunity 44(4): 860–874.CrossRefPubMed Luda, K.M., T. Joeris, E.K. Persson, A. Rivollier, M. Demiri, K.M. Sitnik, L. Pool, J.B. Holm, F. Melo-Gonzalez, L. Richter, B.N. Lambrecht, K. Kristiansen, M.A. Travis, M. Svensson-Frej, K. Kotarsky, and W.W. Agace. 2016. IRF8 transcription-factor-dependent classical dendritic cells are essential for intestinal T cell homeostasis. Immunity 44(4): 860–874.CrossRefPubMed
24.
Zurück zum Zitat Yoshida, Y., R. Yoshimi, H. Yoshii, D. Kim, A. Dey, H. Xiong, J. Munasinghe, I. Yazawa, M.J. O’Donovan, O.A. Maximova, S. Sharma, J. Zhu, H. Wang, H.C. Morse 3rd, and K. Ozato. 2014. The transcription factor IRF8 activates integrin-mediated TGF-beta signaling and promotes neuroinflammation. Immunity 40(2): 187–198.CrossRefPubMedPubMedCentral Yoshida, Y., R. Yoshimi, H. Yoshii, D. Kim, A. Dey, H. Xiong, J. Munasinghe, I. Yazawa, M.J. O’Donovan, O.A. Maximova, S. Sharma, J. Zhu, H. Wang, H.C. Morse 3rd, and K. Ozato. 2014. The transcription factor IRF8 activates integrin-mediated TGF-beta signaling and promotes neuroinflammation. Immunity 40(2): 187–198.CrossRefPubMedPubMedCentral
25.
Zurück zum Zitat Xiang, M., L. Wang, S. Guo, Y.Y. Lu, H. Lei, D.S. Jiang, Y. Zhang, Y. Liu, Y. Zhou, X.D. Zhang, and H. Li. 2014. Interferon regulatory factor 8 protects against cerebral ischaemic-reperfusion injury. Journal of Neurochemistry 129(6): 988–1001.CrossRefPubMed Xiang, M., L. Wang, S. Guo, Y.Y. Lu, H. Lei, D.S. Jiang, Y. Zhang, Y. Liu, Y. Zhou, X.D. Zhang, and H. Li. 2014. Interferon regulatory factor 8 protects against cerebral ischaemic-reperfusion injury. Journal of Neurochemistry 129(6): 988–1001.CrossRefPubMed
26.
Zurück zum Zitat Tamura, T., T. Nagamura-Inoue, Z. Shmeltzer, T. Kuwata, and K. Ozato. 2000. ICSBP directs bipotential myeloid progenitor cells to differentiate into mature macrophages. Immunity 13(2): 155–165.CrossRefPubMed Tamura, T., T. Nagamura-Inoue, Z. Shmeltzer, T. Kuwata, and K. Ozato. 2000. ICSBP directs bipotential myeloid progenitor cells to differentiate into mature macrophages. Immunity 13(2): 155–165.CrossRefPubMed
27.
Zurück zum Zitat Koschwanez, H., M. Vurnek, J. Weinman, J. Tarlton, C. Whiting, S. Amirapu, S. Colgan, D. Long, P. Jarrett, and E. Broadbent. 2015. Stress-related changes to immune cells in the skin prior to wounding may impair subsequent healing. Brain, Behavior, and Immunity 50: 47–51.CrossRefPubMed Koschwanez, H., M. Vurnek, J. Weinman, J. Tarlton, C. Whiting, S. Amirapu, S. Colgan, D. Long, P. Jarrett, and E. Broadbent. 2015. Stress-related changes to immune cells in the skin prior to wounding may impair subsequent healing. Brain, Behavior, and Immunity 50: 47–51.CrossRefPubMed
29.
Zurück zum Zitat Masuda, T., S. Iwamoto, S. Mikuriya, H. Tozaki-Saitoh, T. Tamura, M. Tsuda, and K. Inoue. 2015. Transcription factor IRF1 is responsible for IRF8-mediated IL-1beta expression in reactive microglia. Journal of Pharmacological Sciences 128(4): 216–220.CrossRefPubMed Masuda, T., S. Iwamoto, S. Mikuriya, H. Tozaki-Saitoh, T. Tamura, M. Tsuda, and K. Inoue. 2015. Transcription factor IRF1 is responsible for IRF8-mediated IL-1beta expression in reactive microglia. Journal of Pharmacological Sciences 128(4): 216–220.CrossRefPubMed
30.
Zurück zum Zitat Simon, P.S., S.K. Sharman, C. Lu, D. Yang, A.V. Paschall, S.S. Tulachan, and K. Liu. 2015. The NF-kappaB p65 and p50 homodimer cooperate with IRF8 to activate iNOS transcription. BMC Cancer 15: 770.CrossRefPubMedPubMedCentral Simon, P.S., S.K. Sharman, C. Lu, D. Yang, A.V. Paschall, S.S. Tulachan, and K. Liu. 2015. The NF-kappaB p65 and p50 homodimer cooperate with IRF8 to activate iNOS transcription. BMC Cancer 15: 770.CrossRefPubMedPubMedCentral
31.
Zurück zum Zitat Yang, D., M. Thangaraju, D.D. Browning, Z. Dong, B. Korchin, D.C. Lev, V. Ganapathy, and K. Liu. 2007. IFN regulatory factor 8 mediates apoptosis in nonhemopoietic tumor cells via regulation of Fas expression. Journal of Immunology 179(7): 4775–4782.CrossRef Yang, D., M. Thangaraju, D.D. Browning, Z. Dong, B. Korchin, D.C. Lev, V. Ganapathy, and K. Liu. 2007. IFN regulatory factor 8 mediates apoptosis in nonhemopoietic tumor cells via regulation of Fas expression. Journal of Immunology 179(7): 4775–4782.CrossRef
32.
Zurück zum Zitat Hu, X., D. Yang, M. Zimmerman, F. Liu, J. Yang, S. Kannan, A. Burchert, Z. Szulc, A. Bielawska, K. Ozato, K. Bhalla, and K. Liu. 2011. IRF8 regulates acid ceramidase expression to mediate apoptosis and suppresses myelogeneous leukemia. Cancer Research 71(8): 2882–2891.CrossRefPubMedPubMedCentral Hu, X., D. Yang, M. Zimmerman, F. Liu, J. Yang, S. Kannan, A. Burchert, Z. Szulc, A. Bielawska, K. Ozato, K. Bhalla, and K. Liu. 2011. IRF8 regulates acid ceramidase expression to mediate apoptosis and suppresses myelogeneous leukemia. Cancer Research 71(8): 2882–2891.CrossRefPubMedPubMedCentral
Metadaten
Titel
Inhibition of IRF8 Negatively Regulates Macrophage Function and Impairs Cutaneous Wound Healing
verfasst von
Yuanyuan Guo
Zhiyin Yang
Shan Wu
Peng Xu
Yinbo Peng
Min Yao
Publikationsdatum
05.10.2016
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 1/2017
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-016-0454-8

Weitere Artikel der Ausgabe 1/2017

Inflammation 1/2017 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.