Skip to main content
Erschienen in: Journal of Thrombosis and Thrombolysis 3/2021

17.08.2021 | COVID-19 Zur Zeit gratis

Autonomic dysfunction in SARS-COV-2 infection acute and long-term implications COVID-19 editor’s page series

verfasst von: Richard C. Becker

Erschienen in: Journal of Thrombosis and Thrombolysis | Ausgabe 3/2021

Einloggen, um Zugang zu erhalten

Abstract

The autonomic nervous system (ANS) is a complex network of nerves originating in the brain, brain stem, spinal cord, heart and extracardiac organs that regulates neural and physiological responses to internal and external environments and conditions. A common observation among patients with the 2019 Coronavirus (CoV) (SARS-severe acute respiratory syndrome CoV-2) (SARS-CoV-2) or COVID-19 [CO for corona, VI for virus, D for disease and 19 for when the outbreak was first identified (31 December 2019)] in the acute and chronic phases of the disease is tachycardia, labile blood pressure, muscular fatigue and shortness of breath. Because abnormalities in the ANS can contribute to each of these symptoms, herein a review of autonomic dysfunction in SARS-COV-2 infection is provided to guide diagnostic testing, patient care and research initiatives.

Graphic abstract

The autonomic nervous system is a complex network of nerves originating in the brain, brain stem, spinal cord, heart and extracardiac organs that regulates neural and physiological responses to internal and external environments and conditions. A common collection of signs and symptoms among patients with the 2019 Coronavirus (CoV) (SARS-severe acute respiratory syndrome CoV-2) (SARS-CoV-2) or COVID-19 [CO for corona, VI for virus, D for disease and 19 for when the outbreak was first identified (31 December 2019)] is tachycardia, labile blood pressure, muscular fatigue and shortness of breath. Abnormalities in the autonomic nervous system (ANS) can contribute to each of these identifiers, potentially offering a unifying pathobiology for acute, subacute and the long-term sequelae of SARS-CoV-2 infection (PASC) and a target for intervention.
Literatur
2.
4.
Zurück zum Zitat Koopman FA et al (2011) Restoring the balance of the autonomic nervous system as an innovative approach to the treatment of rheumatoid arthritis. Mol Med 17(9–10):937–948PubMedPubMedCentralCrossRef Koopman FA et al (2011) Restoring the balance of the autonomic nervous system as an innovative approach to the treatment of rheumatoid arthritis. Mol Med 17(9–10):937–948PubMedPubMedCentralCrossRef
5.
Zurück zum Zitat Armour JA et al (1997) Gross and microscopic anatomy of the human intrinsic cardiac nervous system. Anat Rec 247(2):289–298PubMedCrossRef Armour JA et al (1997) Gross and microscopic anatomy of the human intrinsic cardiac nervous system. Anat Rec 247(2):289–298PubMedCrossRef
7.
8.
Zurück zum Zitat Reisert M, Weiller C, Hosp JA (2021) Displaying the autonomic processing network in humans—a global tractography approach. Neuroimage 231:117852PubMedCrossRef Reisert M, Weiller C, Hosp JA (2021) Displaying the autonomic processing network in humans—a global tractography approach. Neuroimage 231:117852PubMedCrossRef
9.
Zurück zum Zitat Shivkumar K et al (2016) Clinical neurocardiology defining the value of neuroscience-based cardiovascular therapeutics. J Physiol 594(14):3911–3954PubMedPubMedCentralCrossRef Shivkumar K et al (2016) Clinical neurocardiology defining the value of neuroscience-based cardiovascular therapeutics. J Physiol 594(14):3911–3954PubMedPubMedCentralCrossRef
10.
Zurück zum Zitat Isaacson SH et al (2021) Management strategies for comorbid supine hypertension in patients with neurogenic orthostatic hypotension. Curr Neurol Neurosci Rep 21(4):18PubMedPubMedCentralCrossRef Isaacson SH et al (2021) Management strategies for comorbid supine hypertension in patients with neurogenic orthostatic hypotension. Curr Neurol Neurosci Rep 21(4):18PubMedPubMedCentralCrossRef
11.
Zurück zum Zitat Becker RC (2020) COVID-19-associated vasculitis and vasculopathy. J Thromb Thrombolysis 50:499–511PubMedCrossRef Becker RC (2020) COVID-19-associated vasculitis and vasculopathy. J Thromb Thrombolysis 50:499–511PubMedCrossRef
12.
Zurück zum Zitat Robles-Cabrera A et al (2014) The cardiovagal, cardiosympathetic and vasosympathetic arterial baroreflexes and the neural control of short-term blood pressure. Rev Neurol 59(11):508–516PubMed Robles-Cabrera A et al (2014) The cardiovagal, cardiosympathetic and vasosympathetic arterial baroreflexes and the neural control of short-term blood pressure. Rev Neurol 59(11):508–516PubMed
13.
14.
Zurück zum Zitat Mortara A et al (1997) Arterial baroreflex modulation of heart rate in chronic heart failure: clinical and hemodynamic correlates and prognostic implications. Circulation 96(10):3450–3458PubMedCrossRef Mortara A et al (1997) Arterial baroreflex modulation of heart rate in chronic heart failure: clinical and hemodynamic correlates and prognostic implications. Circulation 96(10):3450–3458PubMedCrossRef
18.
19.
Zurück zum Zitat O’Rourke MF, Safar ME (2005) Relationship between aortic stiffening and microvascular disease in brain and kidney: cause and logic of therapy. Hypertension 46(1):200–204PubMedCrossRef O’Rourke MF, Safar ME (2005) Relationship between aortic stiffening and microvascular disease in brain and kidney: cause and logic of therapy. Hypertension 46(1):200–204PubMedCrossRef
20.
Zurück zum Zitat Proebstl D et al (2012) Pericytes support neutrophil subendothelial cell crawling and breaching of venular walls in vivo. J Exp Med 209(6):1219–1234PubMedPubMedCentralCrossRef Proebstl D et al (2012) Pericytes support neutrophil subendothelial cell crawling and breaching of venular walls in vivo. J Exp Med 209(6):1219–1234PubMedPubMedCentralCrossRef
21.
Zurück zum Zitat Bohannon DG, Long D, Kim WK (2021) Understanding the heterogeneity of human pericyte subsets in blood-brain barrier homeostasis and neurological diseases. Cells 10(4):890PubMedPubMedCentralCrossRef Bohannon DG, Long D, Kim WK (2021) Understanding the heterogeneity of human pericyte subsets in blood-brain barrier homeostasis and neurological diseases. Cells 10(4):890PubMedPubMedCentralCrossRef
22.
23.
Zurück zum Zitat Dore-Duffy P et al (2000) Pericyte migration from the vascular wall in response to traumatic brain injury. Microvasc Res 60(1):55–69PubMedCrossRef Dore-Duffy P et al (2000) Pericyte migration from the vascular wall in response to traumatic brain injury. Microvasc Res 60(1):55–69PubMedCrossRef
25.
Zurück zum Zitat Muus C et al (2021) Single-cell meta-analysis of SARS-CoV-2 entry genes across tissues and demographics. Nat Med 27(3):546–559PubMedCrossRef Muus C et al (2021) Single-cell meta-analysis of SARS-CoV-2 entry genes across tissues and demographics. Nat Med 27(3):546–559PubMedCrossRef
26.
Zurück zum Zitat Behrens R et al (2021) Mini review: central organization of airway afferent nerve circuits. Neurosci Lett 744:135604PubMedCrossRef Behrens R et al (2021) Mini review: central organization of airway afferent nerve circuits. Neurosci Lett 744:135604PubMedCrossRef
27.
Zurück zum Zitat Driessen AK et al (2018) Reflex regulation of breathing by the paratrigeminal nucleus via multiple bulbar circuits. Brain Struct Funct 223(9):4005–4022PubMedCrossRef Driessen AK et al (2018) Reflex regulation of breathing by the paratrigeminal nucleus via multiple bulbar circuits. Brain Struct Funct 223(9):4005–4022PubMedCrossRef
29.
Zurück zum Zitat Tang LYW et al (2021) Autonomic alterations after pulmonary vein isolation in the CIRCA-DOSE (cryoballoon vs irrigated radiofrequency catheter ablation) study. J Am Heart Assoc 10(5):18610CrossRef Tang LYW et al (2021) Autonomic alterations after pulmonary vein isolation in the CIRCA-DOSE (cryoballoon vs irrigated radiofrequency catheter ablation) study. J Am Heart Assoc 10(5):18610CrossRef
30.
Zurück zum Zitat García-Lunar I et al (2020) Neurohormonal modulation as a therapeutic target in pulmonary hypertension. Cells 9(11):2521PubMedCentralCrossRef García-Lunar I et al (2020) Neurohormonal modulation as a therapeutic target in pulmonary hypertension. Cells 9(11):2521PubMedCentralCrossRef
31.
Zurück zum Zitat Constantine A, Dimopoulos K (2021) Pulmonary artery denervation for pulmonary arterial hypertension. Trends Cardiovasc Med 31(4):252–260PubMedCrossRef Constantine A, Dimopoulos K (2021) Pulmonary artery denervation for pulmonary arterial hypertension. Trends Cardiovasc Med 31(4):252–260PubMedCrossRef
32.
Zurück zum Zitat Perros F et al (2015) Nebivolol for improving endothelial dysfunction, pulmonary vascular remodeling, and right heart function in pulmonary hypertension. J Am Coll Cardiol 65(7):668–680PubMedCrossRef Perros F et al (2015) Nebivolol for improving endothelial dysfunction, pulmonary vascular remodeling, and right heart function in pulmonary hypertension. J Am Coll Cardiol 65(7):668–680PubMedCrossRef
33.
Zurück zum Zitat Tantucci C et al (2021) Respiratory function, autonomic dysfunction, and systemic inflammation are closely linked in patients with COPD and tidal flow limitation: An exploratory study. Respir Physiol Neurobiol 284:103565PubMedCrossRef Tantucci C et al (2021) Respiratory function, autonomic dysfunction, and systemic inflammation are closely linked in patients with COPD and tidal flow limitation: An exploratory study. Respir Physiol Neurobiol 284:103565PubMedCrossRef
34.
Zurück zum Zitat Heindl S et al (2001) Marked sympathetic activation in patients with chronic respiratory failure. Am J Respir Crit Care Med 164(4):597–601PubMedCrossRef Heindl S et al (2001) Marked sympathetic activation in patients with chronic respiratory failure. Am J Respir Crit Care Med 164(4):597–601PubMedCrossRef
35.
Zurück zum Zitat Guardiola J, Saad M, Yu J (2019) Hypertonic saline stimulates vagal afferents that respond to lung deflation. Am J Physiol 317(6):R814–R817 Guardiola J, Saad M, Yu J (2019) Hypertonic saline stimulates vagal afferents that respond to lung deflation. Am J Physiol 317(6):R814–R817
36.
Zurück zum Zitat Koike H (2015) Acute sensory neuropathies and acute autonomic neuropathies. Brain Nerve 67(11):1377–1387PubMed Koike H (2015) Acute sensory neuropathies and acute autonomic neuropathies. Brain Nerve 67(11):1377–1387PubMed
37.
38.
Zurück zum Zitat Reilly CC et al (2020) Breathlessness and dysfunctional breathing in patients with postural orthostatic tachycardia syndrome (POTS): the impact of a physiotherapy intervention. Auton Neurosci 223:102601PubMedCrossRef Reilly CC et al (2020) Breathlessness and dysfunctional breathing in patients with postural orthostatic tachycardia syndrome (POTS): the impact of a physiotherapy intervention. Auton Neurosci 223:102601PubMedCrossRef
40.
Zurück zum Zitat Cherneva RV, Denchev SV, Cherneva ZV (2020) The link between dynamic hyperinflation, autonomic dysfunction and exercise testing parameters with masked heart failure in patients with non-severe obstructive pulmonary disease. J Basic Clin Physiol Pharmacol 32(3):179–188PubMedCrossRef Cherneva RV, Denchev SV, Cherneva ZV (2020) The link between dynamic hyperinflation, autonomic dysfunction and exercise testing parameters with masked heart failure in patients with non-severe obstructive pulmonary disease. J Basic Clin Physiol Pharmacol 32(3):179–188PubMedCrossRef
41.
Zurück zum Zitat Cerri M, Amici R (2021) Thermoregulation and sleep: functional interaction and central nervous control. Compr Physiol 11(2):1591–1604PubMedCrossRef Cerri M, Amici R (2021) Thermoregulation and sleep: functional interaction and central nervous control. Compr Physiol 11(2):1591–1604PubMedCrossRef
42.
Zurück zum Zitat Liang J et al (2018) The independent and combined effects of respiratory events and cortical arousals on the autonomic nervous system across sleep stages. Sleep Breath 22(4):1161–1168PubMedCrossRef Liang J et al (2018) The independent and combined effects of respiratory events and cortical arousals on the autonomic nervous system across sleep stages. Sleep Breath 22(4):1161–1168PubMedCrossRef
43.
Zurück zum Zitat Monti A et al (2002) Autonomic control of the cardiovascular system during sleep in normal subjects. Eur J Appl Physiol 87(2):174–181PubMedCrossRef Monti A et al (2002) Autonomic control of the cardiovascular system during sleep in normal subjects. Eur J Appl Physiol 87(2):174–181PubMedCrossRef
44.
Zurück zum Zitat Kai S et al (2021) Cardiac autonomic nervous system activity during slow breathing in supine position. Rehabil Res Pract 2021:6619571PubMedPubMedCentral Kai S et al (2021) Cardiac autonomic nervous system activity during slow breathing in supine position. Rehabil Res Pract 2021:6619571PubMedPubMedCentral
45.
Zurück zum Zitat Kai S et al (2016) Effectiveness of moderate intensity interval training as an index of autonomic nervous activity. Rehabil Res Pract 2016:6209671PubMedPubMedCentral Kai S et al (2016) Effectiveness of moderate intensity interval training as an index of autonomic nervous activity. Rehabil Res Pract 2016:6209671PubMedPubMedCentral
47.
Zurück zum Zitat Stockelman KA et al (2021) Regular aerobic exercise counteracts endothelial vasomotor dysfunction associated with insufficient sleep. Am J Physiol Heart Circ Physiol 320(3):H1080-h1088PubMedCrossRefPubMedCentral Stockelman KA et al (2021) Regular aerobic exercise counteracts endothelial vasomotor dysfunction associated with insufficient sleep. Am J Physiol Heart Circ Physiol 320(3):H1080-h1088PubMedCrossRefPubMedCentral
48.
Zurück zum Zitat Wirth KJ, Scheibenbogen C (2021) Pathophysiology of skeletal muscle disturbances in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). J Transl Med 19(1):162PubMedPubMedCentralCrossRef Wirth KJ, Scheibenbogen C (2021) Pathophysiology of skeletal muscle disturbances in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). J Transl Med 19(1):162PubMedPubMedCentralCrossRef
49.
Zurück zum Zitat Stute NL, Koopmans PJ (2021) Pushing the needle forward on the relationship between autoimmunity and autonomic dysfunction. J Physiol 599(4):1039–1040PubMedCrossRef Stute NL, Koopmans PJ (2021) Pushing the needle forward on the relationship between autoimmunity and autonomic dysfunction. J Physiol 599(4):1039–1040PubMedCrossRef
50.
51.
Zurück zum Zitat Porges WL et al (2000) Heart-lung interactions: the sigh and autonomic control in the bronchial and coronary circulations. Clin Exp Pharmacol Physiol 27(12):1022–1027PubMedCrossRef Porges WL et al (2000) Heart-lung interactions: the sigh and autonomic control in the bronchial and coronary circulations. Clin Exp Pharmacol Physiol 27(12):1022–1027PubMedCrossRef
52.
Zurück zum Zitat Bowes G et al (1983) Carotid chemoreceptor regulation of expiratory duration. J Appl Physiol Respir Environ Exerc Physiol 54(5):1195–1201PubMed Bowes G et al (1983) Carotid chemoreceptor regulation of expiratory duration. J Appl Physiol Respir Environ Exerc Physiol 54(5):1195–1201PubMed
53.
Zurück zum Zitat Wilhelm FH, Trabert W, Roth WT (2001) Physiologic instability in panic disorder and generalized anxiety disorder. Biol Psychiatry 49(7):596–605PubMedCrossRef Wilhelm FH, Trabert W, Roth WT (2001) Physiologic instability in panic disorder and generalized anxiety disorder. Biol Psychiatry 49(7):596–605PubMedCrossRef
54.
Zurück zum Zitat Boulding R et al (2016) Dysfunctional breathing: a review of the literature and proposal for classification. Eur Respir Rev 25(141):287–294PubMedCrossRef Boulding R et al (2016) Dysfunctional breathing: a review of the literature and proposal for classification. Eur Respir Rev 25(141):287–294PubMedCrossRef
55.
Zurück zum Zitat Courtney R et al (2011) Medically unexplained dyspnea: partly moderated by dysfunctional (thoracic dominant) breathing pattern. J Asthma 48(3):259–265PubMedCrossRef Courtney R et al (2011) Medically unexplained dyspnea: partly moderated by dysfunctional (thoracic dominant) breathing pattern. J Asthma 48(3):259–265PubMedCrossRef
57.
Zurück zum Zitat Bajić D, Đajić V, Milovanović B (2021) Entropy analysis of COVID-19 cardiovascular signals. Entropy (Basel) 23(1):87CrossRef Bajić D, Đajić V, Milovanović B (2021) Entropy analysis of COVID-19 cardiovascular signals. Entropy (Basel) 23(1):87CrossRef
59.
Zurück zum Zitat Denis F et al (2021) A self-assessment web-based app to assess trends of the COVID-19 pandemic in France: observational study. J Med Internet Res 23(3):e26182PubMedPubMedCentralCrossRef Denis F et al (2021) A self-assessment web-based app to assess trends of the COVID-19 pandemic in France: observational study. J Med Internet Res 23(3):e26182PubMedPubMedCentralCrossRef
60.
Zurück zum Zitat Quer G et al (2021) Wearable sensor data and self-reported symptoms for COVID-19 detection. Nat Med 27(1):73–77PubMedCrossRef Quer G et al (2021) Wearable sensor data and self-reported symptoms for COVID-19 detection. Nat Med 27(1):73–77PubMedCrossRef
61.
Zurück zum Zitat Zens M et al (2020) App-based tracking of self-reported COVID-19 symptoms: analysis of questionnaire data. J Med Internet Res 22(9):21956CrossRef Zens M et al (2020) App-based tracking of self-reported COVID-19 symptoms: analysis of questionnaire data. J Med Internet Res 22(9):21956CrossRef
62.
Zurück zum Zitat Johansson M et al (2021) Long-haul post-COVID-19 symptoms presenting as a variant of postural orthostatic tachycardia syndrome: the Swedish experience. JACC Case Rep 3(4):573–580PubMedPubMedCentralCrossRef Johansson M et al (2021) Long-haul post-COVID-19 symptoms presenting as a variant of postural orthostatic tachycardia syndrome: the Swedish experience. JACC Case Rep 3(4):573–580PubMedPubMedCentralCrossRef
65.
Zurück zum Zitat Su XW et al (2020) SARS-CoV-2-associated Guillain–Barré syndrome with dysautonomia. Muscle Nerve 62(2):E48-e49PubMedCrossRef Su XW et al (2020) SARS-CoV-2-associated Guillain–Barré syndrome with dysautonomia. Muscle Nerve 62(2):E48-e49PubMedCrossRef
68.
Zurück zum Zitat Raj SR et al (2009) Propranolol decreases tachycardia and improves symptoms in the postural tachycardia syndrome: less is more. Circulation 120(9):725–734PubMedPubMedCentralCrossRef Raj SR et al (2009) Propranolol decreases tachycardia and improves symptoms in the postural tachycardia syndrome: less is more. Circulation 120(9):725–734PubMedPubMedCentralCrossRef
69.
70.
Zurück zum Zitat Baruscotti M et al (2016) Current understanding of the pathophysiological mechanisms responsible for inappropriate sinus tachycardia: role of the If “funny” current. J Interv Card Electrophysiol 46(1):19–28PubMedCrossRef Baruscotti M et al (2016) Current understanding of the pathophysiological mechanisms responsible for inappropriate sinus tachycardia: role of the If “funny” current. J Interv Card Electrophysiol 46(1):19–28PubMedCrossRef
71.
Zurück zum Zitat Calò L et al (2010) Efficacy of ivabradine administration in patients affected by inappropriate sinus tachycardia. Heart Rhythm 7(9):1318–1323PubMedCrossRef Calò L et al (2010) Efficacy of ivabradine administration in patients affected by inappropriate sinus tachycardia. Heart Rhythm 7(9):1318–1323PubMedCrossRef
72.
Zurück zum Zitat Ptaszynski P et al (2013) Metoprolol succinate vs. ivabradine in the treatment of inappropriate sinus tachycardia in patients unresponsive to previous pharmacological therapy. Europace 15(1):116–121PubMedCrossRef Ptaszynski P et al (2013) Metoprolol succinate vs. ivabradine in the treatment of inappropriate sinus tachycardia in patients unresponsive to previous pharmacological therapy. Europace 15(1):116–121PubMedCrossRef
73.
Zurück zum Zitat Mathew ST, Po SS, Thadani U (2018) Inappropriate sinus tachycardia-symptom and heart rate reduction with ivabradine: a pooled analysis of prospective studies. Heart Rhythm 15(2):240–247PubMedCrossRef Mathew ST, Po SS, Thadani U (2018) Inappropriate sinus tachycardia-symptom and heart rate reduction with ivabradine: a pooled analysis of prospective studies. Heart Rhythm 15(2):240–247PubMedCrossRef
74.
75.
Zurück zum Zitat Paniz-Mondolfi A et al (2020) Central nervous system involvement by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). J Med Virol 92(7):699–702CrossRefPubMed Paniz-Mondolfi A et al (2020) Central nervous system involvement by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). J Med Virol 92(7):699–702CrossRefPubMed
77.
Zurück zum Zitat Kanberg N et al (2020) Neurochemical evidence of astrocytic and neuronal injury commonly found in COVID-19. Neurology 95(12):e1754–e1759PubMedCrossRef Kanberg N et al (2020) Neurochemical evidence of astrocytic and neuronal injury commonly found in COVID-19. Neurology 95(12):e1754–e1759PubMedCrossRef
78.
Zurück zum Zitat Zhou Z et al (2020) Understanding the neurotropic characteristics of SARS-CoV-2: from neurological manifestations of COVID-19 to potential neurotropic mechanisms. J Neurol 267(8):2179–2184PubMedCrossRefPubMedCentral Zhou Z et al (2020) Understanding the neurotropic characteristics of SARS-CoV-2: from neurological manifestations of COVID-19 to potential neurotropic mechanisms. J Neurol 267(8):2179–2184PubMedCrossRefPubMedCentral
79.
Zurück zum Zitat Becker RC (2020) COVID-19-associated vasculitis and vasculopathy. J Thromb Thrombolysis 50(3):499–511PubMedCrossRef Becker RC (2020) COVID-19-associated vasculitis and vasculopathy. J Thromb Thrombolysis 50(3):499–511PubMedCrossRef
80.
Zurück zum Zitat Meinhardt J et al (2021) Olfactory transmucosal SARS-CoV-2 invasion as a port of central nervous system entry in individuals with COVID-19. Nat Neurosci 24(2):168–175PubMedCrossRef Meinhardt J et al (2021) Olfactory transmucosal SARS-CoV-2 invasion as a port of central nervous system entry in individuals with COVID-19. Nat Neurosci 24(2):168–175PubMedCrossRef
81.
Zurück zum Zitat Al-Dalahmah O et al (2020) Neuronophagia and microglial nodules in a SARS-CoV-2 patient with cerebellar hemorrhage. Acta Neuropathol Commun 8(1):147PubMedPubMedCentralCrossRef Al-Dalahmah O et al (2020) Neuronophagia and microglial nodules in a SARS-CoV-2 patient with cerebellar hemorrhage. Acta Neuropathol Commun 8(1):147PubMedPubMedCentralCrossRef
82.
Zurück zum Zitat Boldrini M, Canoll PD, Klein RS (2021) How COVID-19 affects the brain. JAMA Psychiatry 78:682PubMedCrossRef Boldrini M, Canoll PD, Klein RS (2021) How COVID-19 affects the brain. JAMA Psychiatry 78:682PubMedCrossRef
83.
Zurück zum Zitat Blitshteyn S, Whitelaw S (2021) Postural orthostatic tachycardia syndrome (POTS) and other autonomic disorders after COVID-19 infection: a case series of 20 patients. Immunol Res 69:212PubMedCrossRefPubMedCentral Blitshteyn S, Whitelaw S (2021) Postural orthostatic tachycardia syndrome (POTS) and other autonomic disorders after COVID-19 infection: a case series of 20 patients. Immunol Res 69:212PubMedCrossRefPubMedCentral
84.
Zurück zum Zitat Tagaloa E et al (2021) A rare case of Guillain-Barré syndrome with severe pandysautonomia. J Investig Med High Impact Case Rep 9:23247096211019560PubMedPubMedCentral Tagaloa E et al (2021) A rare case of Guillain-Barré syndrome with severe pandysautonomia. J Investig Med High Impact Case Rep 9:23247096211019560PubMedPubMedCentral
85.
Zurück zum Zitat Kaliyaperumal D et al (2021) Characterization of cardiac autonomic function in COVID-19 using heart rate variability: a hospital based preliminary observational study. J Basic Clin Physiol Pharmacol 32:247PubMedCrossRef Kaliyaperumal D et al (2021) Characterization of cardiac autonomic function in COVID-19 using heart rate variability: a hospital based preliminary observational study. J Basic Clin Physiol Pharmacol 32:247PubMedCrossRef
86.
Zurück zum Zitat Guaraldi P et al (2020) Testing cardiovascular autonomic function in the COVID-19 era: lessons from Bologna’s Autonomic Unit. Clin Auton Res 30(4):325–330PubMedPubMedCentralCrossRef Guaraldi P et al (2020) Testing cardiovascular autonomic function in the COVID-19 era: lessons from Bologna’s Autonomic Unit. Clin Auton Res 30(4):325–330PubMedPubMedCentralCrossRef
87.
Zurück zum Zitat Haensel A et al (2008) The relationship between heart rate variability and inflammatory markers in cardiovascular diseases. Psychoneuroendocrinology 33(10):1305–1312PubMedPubMedCentralCrossRef Haensel A et al (2008) The relationship between heart rate variability and inflammatory markers in cardiovascular diseases. Psychoneuroendocrinology 33(10):1305–1312PubMedPubMedCentralCrossRef
88.
Zurück zum Zitat Haarala A et al (2011) Heart rate variability is independently associated with C-reactive protein but not with Serum amyloid A. The cardiovascular risk in young finns study. Eur J Clin Invest 41(9):951–957PubMedCrossRef Haarala A et al (2011) Heart rate variability is independently associated with C-reactive protein but not with Serum amyloid A. The cardiovascular risk in young finns study. Eur J Clin Invest 41(9):951–957PubMedCrossRef
89.
Zurück zum Zitat Martínez-Rosales E et al (2020) Heart rate variability in women with systemic lupus erythematosus: association with health-related parameters and effects of aerobic exercise. Int J Environ Res Public Health 17(24):9501PubMedCentralCrossRef Martínez-Rosales E et al (2020) Heart rate variability in women with systemic lupus erythematosus: association with health-related parameters and effects of aerobic exercise. Int J Environ Res Public Health 17(24):9501PubMedCentralCrossRef
90.
Zurück zum Zitat Baptista AF et al (2020) Applications of non-invasive neuromodulation for the management of disorders related to COVID-19. Front Neurol 11:573718PubMedPubMedCentralCrossRef Baptista AF et al (2020) Applications of non-invasive neuromodulation for the management of disorders related to COVID-19. Front Neurol 11:573718PubMedPubMedCentralCrossRef
91.
Zurück zum Zitat Moroi MK et al (2021) Prevention and management of supine hypertension in patients with orthostatic hypotension. Am J Ther 28(2):e228–e231PubMedCrossRef Moroi MK et al (2021) Prevention and management of supine hypertension in patients with orthostatic hypotension. Am J Ther 28(2):e228–e231PubMedCrossRef
92.
Zurück zum Zitat Kario K et al (2021) Effect of the nonsteroidal mineralocorticoid receptor blocker, esaxerenone, on nocturnal hypertension: a post hoc analysis of the ESAX-HTN study. Am J Hypertens 34(5):540–551PubMedCrossRef Kario K et al (2021) Effect of the nonsteroidal mineralocorticoid receptor blocker, esaxerenone, on nocturnal hypertension: a post hoc analysis of the ESAX-HTN study. Am J Hypertens 34(5):540–551PubMedCrossRef
93.
Zurück zum Zitat Okamoto LE et al (2021) Local passive heat for the treatment of hypertension in autonomic failure. J Am Heart Assoc 10(7):18979CrossRef Okamoto LE et al (2021) Local passive heat for the treatment of hypertension in autonomic failure. J Am Heart Assoc 10(7):18979CrossRef
94.
Zurück zum Zitat Shannon J et al (1997) The hypertension of autonomic failure and its treatment. Hypertension 30(5):1062–1067PubMedCrossRef Shannon J et al (1997) The hypertension of autonomic failure and its treatment. Hypertension 30(5):1062–1067PubMedCrossRef
95.
Zurück zum Zitat Lo A et al (2021) Pharmacokinetics and pharmacodynamics of ampreloxetine, a novel, selective norepinephrine reuptake inhibitor, in symptomatic neurogenic orthostatic hypotension. Clin Auton Res 31:395–403PubMedPubMedCentralCrossRef Lo A et al (2021) Pharmacokinetics and pharmacodynamics of ampreloxetine, a novel, selective norepinephrine reuptake inhibitor, in symptomatic neurogenic orthostatic hypotension. Clin Auton Res 31:395–403PubMedPubMedCentralCrossRef
96.
Zurück zum Zitat Nikolin S et al (2019) Comparison of site localization techniques for brain stimulation. J ECT 35(2):127–132PubMedCrossRef Nikolin S et al (2019) Comparison of site localization techniques for brain stimulation. J ECT 35(2):127–132PubMedCrossRef
97.
Zurück zum Zitat Okano AH et al (2015) Brain stimulation modulates the autonomic nervous system, rating of perceived exertion and performance during maximal exercise. Br J Sports Med 49(18):1213–1218PubMedCrossRef Okano AH et al (2015) Brain stimulation modulates the autonomic nervous system, rating of perceived exertion and performance during maximal exercise. Br J Sports Med 49(18):1213–1218PubMedCrossRef
Metadaten
Titel
Autonomic dysfunction in SARS-COV-2 infection acute and long-term implications COVID-19 editor’s page series
verfasst von
Richard C. Becker
Publikationsdatum
17.08.2021
Verlag
Springer US
Schlagwort
COVID-19
Erschienen in
Journal of Thrombosis and Thrombolysis / Ausgabe 3/2021
Print ISSN: 0929-5305
Elektronische ISSN: 1573-742X
DOI
https://doi.org/10.1007/s11239-021-02549-6

Weitere Artikel der Ausgabe 3/2021

Journal of Thrombosis and Thrombolysis 3/2021 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Notfall-TEP der Hüfte ist auch bei 90-Jährigen machbar

26.04.2024 Hüft-TEP Nachrichten

Ob bei einer Notfalloperation nach Schenkelhalsfraktur eine Hemiarthroplastik oder eine totale Endoprothese (TEP) eingebaut wird, sollte nicht allein vom Alter der Patientinnen und Patienten abhängen. Auch über 90-Jährige können von der TEP profitieren.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Bei schweren Reaktionen auf Insektenstiche empfiehlt sich eine spezifische Immuntherapie

Insektenstiche sind bei Erwachsenen die häufigsten Auslöser einer Anaphylaxie. Einen wirksamen Schutz vor schweren anaphylaktischen Reaktionen bietet die allergenspezifische Immuntherapie. Jedoch kommt sie noch viel zu selten zum Einsatz.

Therapiestart mit Blutdrucksenkern erhöht Frakturrisiko

25.04.2024 Hypertonie Nachrichten

Beginnen ältere Männer im Pflegeheim eine Antihypertensiva-Therapie, dann ist die Frakturrate in den folgenden 30 Tagen mehr als verdoppelt. Besonders häufig stürzen Demenzkranke und Männer, die erstmals Blutdrucksenker nehmen. Dafür spricht eine Analyse unter US-Veteranen.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.