Skip to main content
Erschienen in: BMC Cardiovascular Disorders 1/2021

Open Access 01.12.2021 | COVID-19 | Commentary

The vicious cycle: a history of obesity and COVID-19

verfasst von: Jacek Bil, Olga Możeńska

Erschienen in: BMC Cardiovascular Disorders | Ausgabe 1/2021

Abstract

Recently, we face a surge in the fast-forward Coronavirus Disease 2019 (COVID-19) pandemic with nearly 170 million confirmed cases and almost 3.5 million confirmed deaths at the end of May 2021. Obesity, also known as the pandemic of the 21st century, has been evolving as an adverse prognostic marker. Obesity is associated with a higher risk of being SARS-CoV-2-positive (46%), as well as hospitalization (113%) and death (48%) due to COVID-19. It is especially true for subjects with morbid obesity. Also, observational studies suggest that in the case of COVID-19, no favorable “obesity paradox” is observed. Therefore, it is postulated to introduce a new entity, i.e., coronavirus disease-related cardiometabolic syndrome (CIRCS). In theory, it applies to all stages of COVID-19, i.e., prevention, acute proceedings (from COVID-19 diagnosis to resolution or three months), and long-term outcomes. Consequently, lifestyle changes, glycemic control, and regulation of the renin-angiotensin-aldosterone pathway have crucial implications for preventing and managing subjects with COVID-19. Finally, it is crucial to use cardioprotective drugs such as angiotensin-converting enzyme inhibitors/angiotensin II receptor blockers and statins. Nevertheless, there is the need to conduct prospective studies and registries better to evaluate the issue of obesity in COVID-19 patients.
Hinweise
This article belongs to the Topical Collection: Primary Prevention and Cardiovascular Risk.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
ACE2
Angiotensin-converting enzyme 2
AT-1
Angiotensin II receptor type 1
CIRCS
Coronavirus disease-related cardiometabolic syndrome
COVID-19
Coronavirus Disease 2019
HR
Hazard ratio
OR
Odds ratio
SARS-CoV-2
Severe acute respiratory syndrome coronavirus 2

Background

Recently, we face a surge in the fast-forward Coronavirus Disease 2019 (COVID-19) pandemic with nearly 170 million confirmed cases and almost 3.5 million confirmed deaths at the end of May 2021 [1]. Recently, in BMC Cardiovascular Disorders, several interesting papers have been published focusing on risk factors of severe prognosis and COVID-19 complications.
Li et al. analyzed data of 100 subjects with a severe type of COVID-19 [2]. The multivariable analysis found that male sex (HR 5.09, 95% CI 1.19–22.17) and hypertension (HR 9.88, 95% CI 2.52–28.70) were the risk factors of cardiac injury. The cardiac injury was observed in 25% of cases, and the mortality was 4.0%. Unfortunately, the authors did not assess the role and impact of obesity in the COVID-19 course. Sardu et al. evaluated the effect of ABO blood groups on outcomes in patients with hypertension and COVID-19 [3]. Blood group other than O was associated with a higher risk of cardiac injury (HR 2.57, 95% CI 1.21–5.49) and death (HR 3.71, 95% CI 1.22–11.24). And finally, Silverio et al., in a large meta-analysis (45 studies, over 18,000 subjects), showed that only diabetes was related to in-hospital mortality in subjects with COVID-19 [4].
However, during COVID-19, another critical factor has emerged, i.e., obesity, defined as body mass index over 30.0 kg/m2. Obesity, also known as the pandemic of the 21st century, has evolved as a prognostic marker of worse outcomes. Unfortunately, home isolation, home office, and sedentarism during the COVID-19 pandemic intensify the problem of overweight and obesity—the perfect vicious cycle [5]. Indeed, in large-scale studies, even over 30% of respondents confirmed weight gain during the lockdown (19.5 − 31.5%). Moreover, overweight or obese respondents were more likely to report weight gain during the pandemic than respondents with normal body weight [6].

Main text

Obesity as a negative prognostic marker

Popkin et al., in a recent huge meta-analysis (75 studies, 399,461 patients from Asia, Europe, North America, and South America), proved that subjects with obesity were at a higher risk of being SARS-CoV-2-positive (OR 1.46, 95% CI 1.30–1.65) as well as had a higher risk of complications in the COVID-19 course (hospitalization—OR 2.13, 95% CI 1.74–2.60; intensive care unit admission—OR 1.74, 95% CI 1.46–2.08; and in-hospital death—OR 1.48, 95% CI 1.22–1.80) [7]. The most recent studies focusing on COVID-19 course and obesity are provided in Table 1 [812]. In some of these studies, obesity was defined as BMI > 28 kg/m2 (especially in the Asian population) [8], and in some, the significant impact of COVID-19 was observed only in subjects with morbid obesity with BMI 40–45 kg/m2 [10, 12].
Table 1
Obesity as a risk factor for the worse COVID-19 course
Study
Patients
Hospitalization
OR (95% CI)
ICU admission
OR (95% CI)
In-hospital death
OR (95% CI)
Severe course
OR (95% CI)
Popkin [7]
399,461
2.13 (1.74–2.60)
1.74 (1.46–2.08)
1.48 (1.22–1.80)
Cai [8]
383
3.40 (1.40–2.86)
Simonnet [9]
124
7.36 (1.63–33.14)a
Petrilli [10]b
5,279
1.45 (0.99–2.13)
1.71 (1.10–2.7)
Yates [11]
54,254
3.91 (3.13–4.88)
5.03 (3.94 -6.63)a
1.93 (1.49–2.51)
Kompaniyets [12]b
148,494
1.33 (1.30–1.37)
1.16 (1.11–1.20)
2.08 (1.89–2.29)a
1.61 (1.47 − 1.76)
OR odds ratio, CI confidence interva, ICU intensive care unit
aRequiring invasive mechanical ventilation
bBMI > 40 kg/m2
Interestingly, this was confirmed in a meta-analysis of 76 studies with 17,860,001 subjects. This meta-analysis showed that the worse prognosis of COVID-19 was observed in subjects over 75 years of age, males, and severe obesity (OR 2.57, 95% CI 1.31–5.05) [13]. Also, data from HOPE COVID-19 Registry did not support the presence of, known from other disease entities, the potentially favorable “obesity paradox” in subjects with COVID-19 [14].
However, the question persists why obese subjects are at risk for severe COVID-19 course? Obesity per se is a metabolic entity characterized by systemic metabolism changes, such as insulin resistance, increased serum glucose, a high leptin/adiponectin ratio, and a persistent low-grade inflammatory state [15]. Obesity is a key player in classical cardiometabolic syndrome. Moreover, vascular and lung function alterations, impaired immune response, and viral-bacterial interactions may play a significant role (Fig. 1) [16].
Sarver et al. proved diet- and gender-dependent changes in angiotensin-converting enzyme 2 (ACE2) expression in the trachea and lungs [15]. ACE2 expression was increased in the lungs and trachea of diet-induced obese male mice comparing with lean subjects. Also, in diet-induced obese mice, males characterized more pronounced ACE2 expression in the trachea than females. And ACE2 upregulation may predispose to SARS-CoV-2 infection. Consequently, fatty tissue in subjects with obesity may behave as a milieu for more intense SARS-CoV-2 replication. The large volume of adipose tissue (especially in males) may promote accelerated viral shedding and exaggerated immune response leading to severe complications [18, 19].
Therefore, it is postulated to introduce a new entity, i.e., coronavirus disease-related cardiometabolic syndrome (CIRCS) [20]. It applies to all stages of COVID-19, including its prevention, acute proceedings (from COVID-19 diagnosis to resolution or three months), and long-term outcomes. Components of acute CIRCS include abnormal adiposity, cardiovascular diseases, acute kidney injury, severe acute respiratory syndrome, high insensible water losses, and hypernatremia, encephalopathy, hypercoagulable state, and thromboembolism as well as metabolic disturbances (hypercytokinemia, inflammatory state, severe insulin resistance, hyperglycemia, hyperphosphatemia, and hypocalcemia). Such subjects are at high risk of the unfavorable COVID-19 course, and therefore, we should aggressively manage crucial metabolic risk factors of cardiovascular disorders in COVID-19 subjects (especially those with obesity) [20].

Pharmacotherapy options to improve outcome in obese COVID-19 subjects

One of the crucial elements is the renin-angiotensin-aldosterone pathway. Angiotensin II receptor type 1 (AT-1) blockade by angiotensin II receptor blockers (ARB) or inhibition of angiotensin II formation by ACE inhibitors, frequently administered in obese subjects with arterial hypertension and diabetes mellitus, may theoretically predispose to an increase in transmembrane ACE2 levels with a simultaneous decrease in soluble ACE2 levels. Nevertheless, there is a broad agreement amid professional medical societies in Europe and America to carry on with renin-angiotensin-aldosterone pathway inhibitors in subjects currently taking these medications. Zhang et al. proved that subjects treated with ACE inhibitors/ARB characterized a 63% lower risk of COVID-19 death than subjects who did not receive ACE inhibitors/ARB [21].
Statins are emerging as another group of drugs that could reduce the risk of unfavorable outcomes in subjects with COVID-19. Kow et al., in a meta-analysis, revealed a significantly decreased risk of a fatal or severe course of COVID-19 in subjects taking statins (HR 0.70, 95% CI 0.53–0.94) [22]. Interestingly, there is an ongoing randomized trial, Ruxo-Sim-20, assessing ruxolitinib (JAK1 and JAK2 kinase inhibitor) administered with simvastatin on viral entry and decrease in inflammation in subjects with COVID-19 (NCT04348695).
Also, glucagon-like-1 receptor agonists (GLP-1RAs) may play an important role in obese patients with COVID-19. These drugs have been initially used in diabetes treatment but now are also used in the management of obesity itself. GLP-1RAs exhibit anti-inflammatory properties, exert pulmonary protective effects, and have a beneficial influence on, gut microbiome [23]. However, in some animal studies, GLP-1RAs increased ACE-2 levels promoting SARS-CoV-2 infection [24]. Therefore, further well-conducted clinical studies are still in need.

When one pandemic propels the other

Unfortunately, we observed negative consequences with lockdown and home isolation. De Luis et al. showed an increase in self-reported body weight in obese subjects. It was mainly associated with eating snacks (subgroup eating snacks: 2.60 ± 0.36 vs. subgroup not eating snacks: 1.30 ± 0.17 kg, p < 0.01) in only a 7-week observation [25]. Nowadays, during the COVID-19 pandemic, the rapid upsurge in consumption of high-processed food and decreased energy expenditure in pretty all countries regardless of the income will probably rev up the incidence of overweight, obesity, and other non-communicable diseases in the foreseeable future.

Conclusions

The cumulative incidence of overweight/obese subjects and the elderly is a crucial problem worldwide. Subjects with overweight and obesity outface a higher risk of detrimental COVID-19 complications, like hospitalization, intensive care management, and death. This is especially true for subjects with morbid obesity. Also, observational studies suggest that in the case of COVID-19, no favorable “obesity paradox” is observed. Inflammatory state, a hallmark of aging and obesity, may play a crucial role in promoting an unfavorable COVID-19 course. Lifestyle, glycemic control, and regulation of the renin-angiotensin-aldosterone pathway have important implications for preventing and managing subjects with COVID-19. And it is crucial to use cardioprotective drugs such as ACE inhibitors/ARB and statins. Nevertheless, there is the need to conduct prospective studies and registries better to evaluate the issue of obesity in COVID-19 patients.

Acknowledgements

None.

Declarations

Not applicable.
Not applicable.

Competing interests

The authors declare that they have no competing interests.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
2.
Zurück zum Zitat Li J, Zhang Y, Wang F, et al. Cardiac damage in patients with the severe type of coronavirus disease 2019 (COVID-19). BMC Cardiovasc Disord. 2020;20(1):479.CrossRef Li J, Zhang Y, Wang F, et al. Cardiac damage in patients with the severe type of coronavirus disease 2019 (COVID-19). BMC Cardiovasc Disord. 2020;20(1):479.CrossRef
3.
Zurück zum Zitat Sardu C, Marfella R, Maggi P, et al. Implications of AB0 blood group in hypertensive patients with covid-19. BMC Cardiovasc Disord. 2020;20(1):373.CrossRef Sardu C, Marfella R, Maggi P, et al. Implications of AB0 blood group in hypertensive patients with covid-19. BMC Cardiovasc Disord. 2020;20(1):373.CrossRef
4.
Zurück zum Zitat Silverio A, Di Maio M, Citro R, et al. Cardiovascular risk factors and mortality in hospitalized patients with COVID-19: systematic review and meta-analysis of 45 studies and 18,300 patients. BMC Cardiovasc Disord. 2021;21(1):23.CrossRef Silverio A, Di Maio M, Citro R, et al. Cardiovascular risk factors and mortality in hospitalized patients with COVID-19: systematic review and meta-analysis of 45 studies and 18,300 patients. BMC Cardiovasc Disord. 2021;21(1):23.CrossRef
5.
Zurück zum Zitat Post A, Bakker SJL, Dullaart RPF. Obesity, adipokines and COVID-19. Eur J Clin Investig. 2020;50:e13313.CrossRef Post A, Bakker SJL, Dullaart RPF. Obesity, adipokines and COVID-19. Eur J Clin Investig. 2020;50:e13313.CrossRef
6.
Zurück zum Zitat Pearl RL, Schulte EM. Weight bias during the COVID-19 pandemic. Curr Obes Rep. 2021;10(2):181–190. Pearl RL, Schulte EM. Weight bias during the COVID-19 pandemic. Curr Obes Rep. 2021;10(2):181–190.
7.
Zurück zum Zitat Popkin BM, Du S, Green WD, et al. Individuals with obesity and COVID-19: a global perspective on the epidemiology and biological relationships. Obes Rev. 2020;21(11):e13128.CrossRef Popkin BM, Du S, Green WD, et al. Individuals with obesity and COVID-19: a global perspective on the epidemiology and biological relationships. Obes Rev. 2020;21(11):e13128.CrossRef
8.
Zurück zum Zitat Cai Q, Chen F, Wang T, et al. Obesity and COVID-19 severity in a designated hospital in Shenzhen, China. Diabetes Care. 2020;43(7):1392–8.CrossRef Cai Q, Chen F, Wang T, et al. Obesity and COVID-19 severity in a designated hospital in Shenzhen, China. Diabetes Care. 2020;43(7):1392–8.CrossRef
9.
Zurück zum Zitat Simonnet A, Chetboun M, Poissy J, et al. High prevalence of obesity in Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) requiring invasive mechanical ventilation. Obesity (Silver Spring). 2020;28(7):1195–9.CrossRef Simonnet A, Chetboun M, Poissy J, et al. High prevalence of obesity in Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) requiring invasive mechanical ventilation. Obesity (Silver Spring). 2020;28(7):1195–9.CrossRef
10.
Zurück zum Zitat Petrilli CM, Jones SA, Yang J, et al. Factors associated with hospital admission and critical illness among 5279 people with coronavirus disease 2019 in New York City: prospective cohort study. BMJ. 2020;369(m1966. Petrilli CM, Jones SA, Yang J, et al. Factors associated with hospital admission and critical illness among 5279 people with coronavirus disease 2019 in New York City: prospective cohort study. BMJ. 2020;369(m1966.
11.
Zurück zum Zitat Yates T, Zaccardi F, Islam N, et al. Obesity, ethnicity and risk of critical care, mechanical ventilation and mortality in patients admitted to hospital with COVID-19: analysis of the ISARIC CCP-UK cohort. Obesity (Silver Spring). 2021;29(7):1223–30. Yates T, Zaccardi F, Islam N, et al. Obesity, ethnicity and risk of critical care, mechanical ventilation and mortality in patients admitted to hospital with COVID-19: analysis of the ISARIC CCP-UK cohort. Obesity (Silver Spring). 2021;29(7):1223–30.
12.
Zurück zum Zitat Kompaniyets L, Goodman AB, Belay B, et al. Body Mass Index and risk for COVID-19-related hospitalization, intensive care unit admission, invasive mechanical ventilation, and death—United States, March-December 2020. MMWR Morb Mortal Wkly Rep. 2021;70(10):355–61.CrossRef Kompaniyets L, Goodman AB, Belay B, et al. Body Mass Index and risk for COVID-19-related hospitalization, intensive care unit admission, invasive mechanical ventilation, and death—United States, March-December 2020. MMWR Morb Mortal Wkly Rep. 2021;70(10):355–61.CrossRef
13.
Zurück zum Zitat Booth A, Reed AB, Ponzo S, et al. Population risk factors for severe disease and mortality in COVID-19: a global systematic review and meta-analysis. PLoS ONE. 2021;16(3):e0247461.CrossRef Booth A, Reed AB, Ponzo S, et al. Population risk factors for severe disease and mortality in COVID-19: a global systematic review and meta-analysis. PLoS ONE. 2021;16(3):e0247461.CrossRef
14.
Zurück zum Zitat Abumayyaleh M, Nunez Gil IJ, El-Battrawy I, et al. Does there exist an obesity paradox in COVID-19? Insights of the international HOPE-COVID-19-registry. Obes Res Clin Pract. 2021;15(3):275–80. Abumayyaleh M, Nunez Gil IJ, El-Battrawy I, et al. Does there exist an obesity paradox in COVID-19? Insights of the international HOPE-COVID-19-registry. Obes Res Clin Pract. 2021;15(3):275–80.
15.
Zurück zum Zitat Landecho MF, Marin-Oto M, Recalde-Zamacona B, Bilbao I, Fruhbeck G. Obesity as an adipose tissue dysfunction disease and a risk factor for infections—Covid-19 as a case study. Eur J Intern Med. 2021;S0953–6205(21)00097–2. Landecho MF, Marin-Oto M, Recalde-Zamacona B, Bilbao I, Fruhbeck G. Obesity as an adipose tissue dysfunction disease and a risk factor for infections—Covid-19 as a case study. Eur J Intern Med. 2021;S0953–6205(21)00097–2.
16.
Zurück zum Zitat Guzik TJ, Mohiddin SA, Dimarco A, et al. COVID-19 and the cardiovascular system: implications for risk assessment, diagnosis, and treatment options. Cardiovasc Res. 2020;116(10):1666–87.CrossRef Guzik TJ, Mohiddin SA, Dimarco A, et al. COVID-19 and the cardiovascular system: implications for risk assessment, diagnosis, and treatment options. Cardiovasc Res. 2020;116(10):1666–87.CrossRef
17.
Zurück zum Zitat Sarver DC, Wong GW. Obesity alters Ace2 and Tmprss2 expression in lung, trachea, and esophagus in a sex-dependent manner: implications for COVID-19. Biochem Biophys Res Commun. 2020;538:92–96. Sarver DC, Wong GW. Obesity alters Ace2 and Tmprss2 expression in lung, trachea, and esophagus in a sex-dependent manner: implications for COVID-19. Biochem Biophys Res Commun. 2020;538:92–96.
18.
Zurück zum Zitat Shah H, Khan MSH, Dhurandhar NV, Hegde V. The triumvirate: why hypertension, obesity, and diabetes are risk factors for adverse effects in patients with COVID-19. Acta Diabetol. 2021;58(7):831–43. Shah H, Khan MSH, Dhurandhar NV, Hegde V. The triumvirate: why hypertension, obesity, and diabetes are risk factors for adverse effects in patients with COVID-19. Acta Diabetol. 2021;58(7):831–43.
19.
Zurück zum Zitat Mahase E. Covid-19: Why are age and obesity risk factors for serious disease? BMJ. 2020;371:m4130.CrossRef Mahase E. Covid-19: Why are age and obesity risk factors for serious disease? BMJ. 2020;371:m4130.CrossRef
20.
Zurück zum Zitat Mechanick JI, Rosenson RS, Pinney SP, et al. Coronavirus and cardiometabolic syndrome: JACC focus seminar. J Am Coll Cardiol. 2020;76(17):2024–35.CrossRef Mechanick JI, Rosenson RS, Pinney SP, et al. Coronavirus and cardiometabolic syndrome: JACC focus seminar. J Am Coll Cardiol. 2020;76(17):2024–35.CrossRef
21.
Zurück zum Zitat Zhang P, Zhu L, Cai J, et al. Association of inpatient use of angiotensin-converting enzyme inhibitors and Angiotensin II receptor blockers with mortality among patients with hypertension hospitalized with COVID-19. Circ Res. 2020;126(12):1671–81.CrossRef Zhang P, Zhu L, Cai J, et al. Association of inpatient use of angiotensin-converting enzyme inhibitors and Angiotensin II receptor blockers with mortality among patients with hypertension hospitalized with COVID-19. Circ Res. 2020;126(12):1671–81.CrossRef
22.
Zurück zum Zitat Kow CS, Hasan SS. Meta-analysis of effect of statins in patients with COVID-19. Am J Cardiol. 2020;134:153–5.CrossRef Kow CS, Hasan SS. Meta-analysis of effect of statins in patients with COVID-19. Am J Cardiol. 2020;134:153–5.CrossRef
23.
Zurück zum Zitat Belancic A, Kresovic A, Troskot Dijan M. Glucagon-like peptide-1 receptor agonists in the era of COVID-19: friend or foe? Clin Obes. 2021;11(2):e12439.CrossRef Belancic A, Kresovic A, Troskot Dijan M. Glucagon-like peptide-1 receptor agonists in the era of COVID-19: friend or foe? Clin Obes. 2021;11(2):e12439.CrossRef
24.
Zurück zum Zitat Fandino J, Vaz AA, Toba L, et al. Liraglutide enhances the activity of the ACE-2/Ang(1–7)/Mas receptor pathway in lungs of male pups from food-restricted mothers and prevents the reduction of SP-A. Int J Endocrinol. 2018;2018:6920620.CrossRef Fandino J, Vaz AA, Toba L, et al. Liraglutide enhances the activity of the ACE-2/Ang(1–7)/Mas receptor pathway in lungs of male pups from food-restricted mothers and prevents the reduction of SP-A. Int J Endocrinol. 2018;2018:6920620.CrossRef
25.
Zurück zum Zitat de Luis Roman DA, Izaola O, Primo Martin D, et al. Effect of lockdown for COVID-19 on self-reported body weight gain in a sample of obese patients. Nutr Hosp. 2020;37(6):1232–37. de Luis Roman DA, Izaola O, Primo Martin D, et al. Effect of lockdown for COVID-19 on self-reported body weight gain in a sample of obese patients. Nutr Hosp. 2020;37(6):1232–37.
Metadaten
Titel
The vicious cycle: a history of obesity and COVID-19
verfasst von
Jacek Bil
Olga Możeńska
Publikationsdatum
01.12.2021
Verlag
BioMed Central
Schlagwort
COVID-19
Erschienen in
BMC Cardiovascular Disorders / Ausgabe 1/2021
Elektronische ISSN: 1471-2261
DOI
https://doi.org/10.1186/s12872-021-02134-y

Weitere Artikel der Ausgabe 1/2021

BMC Cardiovascular Disorders 1/2021 Zur Ausgabe

Screening-Mammografie offenbart erhöhtes Herz-Kreislauf-Risiko

26.04.2024 Mammografie Nachrichten

Routinemäßige Mammografien helfen, Brustkrebs frühzeitig zu erkennen. Anhand der Röntgenuntersuchung lassen sich aber auch kardiovaskuläre Risikopatientinnen identifizieren. Als zuverlässiger Anhaltspunkt gilt die Verkalkung der Brustarterien.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Therapiestart mit Blutdrucksenkern erhöht Frakturrisiko

25.04.2024 Hypertonie Nachrichten

Beginnen ältere Männer im Pflegeheim eine Antihypertensiva-Therapie, dann ist die Frakturrate in den folgenden 30 Tagen mehr als verdoppelt. Besonders häufig stürzen Demenzkranke und Männer, die erstmals Blutdrucksenker nehmen. Dafür spricht eine Analyse unter US-Veteranen.

Adipositas-Medikament auch gegen Schlafapnoe wirksam

24.04.2024 Adipositas Nachrichten

Der als Antidiabetikum sowie zum Gewichtsmanagement zugelassene Wirkstoff Tirzepatid hat in Studien bei adipösen Patienten auch schlafbezogene Atmungsstörungen deutlich reduziert, informiert der Hersteller in einer Vorab-Meldung zum Studienausgang.

Update Kardiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.