Skip to main content
Erschienen in: Cancer Cell International 1/2018

Open Access 01.12.2018 | Review

Crosstalk between VEGFR and other receptor tyrosine kinases for TKI therapy of metastatic renal cell carcinoma

verfasst von: Yongchang Lai, Zhijian Zhao, Tao Zeng, Xiongfa Liang, Dong Chen, Xiaolu Duan, Guohua Zeng, Wenqi Wu

Erschienen in: Cancer Cell International | Ausgabe 1/2018

Abstract

Clear cell renal cell carcinoma (ccRCC) is the most common subtype of renal cell carcinoma (RCC), and is frequently accompanied by the genetic features of von Hippel–Lindau (VHL) loss. VHL loss increases the expression of hypoxia-inducible factors (HIFs) and their targets, including epidermal growth factor (EGF), vascular endothelial growth factor (VEGF), and platelet-derived growth factor (PDGF). The primary treatment for metastatic RCC (mRCC) is molecular-targeted therapy, especially anti-angiogenic therapy. VEGF monoclonal antibodies and VEGF receptor (VEGFR) tyrosine kinase inhibitors (TKIs) are the main drugs used in anti-angiogenic therapy. However, crosstalk between VEGFR and other tyrosine kinase or downstream pathways produce resistance to TKI treatment, and the multi-target inhibitors, HIF inhibitors or combination strategies are promising strategies for mRCC. HIFs are upstream of the crosstalk between the growth factors, and these factors may regulate the expression of VEGR, EGF, PDGF and other growth factors. The frequent VHL loss in ccRCC increases HIF expression, and HIFs may be an ideal candidate to overcome the TKI resistance. The combination of HIF inhibitors and immune checkpoint inhibitors is also anticipated. Various clinical trials of programmed cell death protein 1 inhibitors are planned. The present study reviews the effects of current and potential TKIs on mRCC, with a focus on VEGF/VEGFR and other targets for mRCC therapy.
Hinweise
Yongchang Lai, Zhijian Zhao and Tao Zeng equally contributed to this work
Abkürzungen
RCC
renal cell carcinoma
ccRCC
clear cell renal cell carcinoma
mRCC
metastatic renal cell carcinoma
VHL
von Hippel–Lindau
HIFs
hypoxia-inducible factors
EGF
epidermal growth factor
VEGF
vascular endothelial growth factor
PDGF
platelet-derived growth factor
TKIs
tyrosine kinase inhibitors
mTOR
mammalian target of rapamycin
PD-1
programmed cell death protein 1
PD-L1
programmed death ligand 1
EGFR
epidermal growth factor receptor
VEGFR
vascular endothelial growth factor receptor
FGFR
fibroblast growth factor receptor
PDGFR
platelet-derived growth factor receptor
IGF-1R
insulin-like growth factor 1 receptor
TK
tyrosine kinase
RTK
receptor tyrosine kinase
PI3K
phosphatidylinositol 3-kinase
PLC
phospholipase C
STAT
the signal transducer and activator of transcription
NSCLC
non-smallcell lung cancer
lncRNA
long non-coding RNA
IL
interleukin
mTORC1
mTOR/raptor complex
PFS
progression-free survival
HB-EGF
heparin-binding EGF-like growth factor
TGFα
transforming growth factor alpha
α-SMA
α-smooth muscle actin
EMT
epithelial to mesenchymal transformation
BIM
Bcl-2 interacting mediator of cell death
P-gp
P-glycoprotein
MDR1
multidrug resistance protein 1
GSTs
glutathione S-transferase
MRP
multidrug resistance-associated protein
CSF-1
colony stimulating factor 1
FLT3
Fms-like tyrosine kinase 3
BDNF
brain-derived neurotrophic factor
GDNF
glial cell line-derived neurotrophic factor
NGF
nerve growth factor
NRG2β
neuregulin 2β
Trk
tyrosine receptor kinase
HGF
hepatocyte growth factor
ALK
anaplastic lymphoma kinase

Background

Renal cell carcinoma (RCC) is the most common kidney solid neoplasm, and 12 drugs are approved in US for metastatic RCC (mRCC). RCC is distinguished into three major histopathological classifications: clear cell RCC (ccRCC; 70–75%), papillary RCC (pRCC; 10–16%), and chromophobe RCC (chRCC; 5%) [1]. Approximately 60–80% of ccRCC cases exhibit the most frequent genetic feature, the loss of von Hippel–Lindau (VHL) [2, 3], which increases the expression of hypoxia-inducible factors (HIFs), their targets, and cell survival [4, 5]. HIF-2 is implicated in angiogenesis, and some ccRCCs are HIF-2 independent [6], which triggered biomarker-driven clinical trials. Biomarkers to predict outcome using targeted therapy in metastatic ccRCC exhibited some promise but further validation is needed [711]. Patients confronted with rare kidney cancers are often treated in the same manner as ccRCC patients [12]. The prognosis of mRCC is poor and the primary treatment is molecular-targeted therapy. Targeted therapy developed quickly and tyrosine kinase inhibitors (TKIs), mammalian target of rapamycin (mTOR) inhibitors and the programmed cell death protein 1 (PD-1)/programmed death ligand 1 (PD-L1) checkpoint inhibitors (such as nivolumab) are the standard target therapies for mRCC [1315].
Receptor tyrosine kinases (RTKs), include epidermal growth factor receptor (EGFR), vascular endothelial growth factor receptor (VEGFR), fibroblast growth factor receptor (FGFR), platelet-derived growth factor receptor (PDGFR), and insulin-like growth factor 1 receptor (IGF-1R). Activation of tyrosine kinases (TKs) initiates multiple downstream signalling pathways, including phosphatidylinositol 3-kinase (PI3K)/AKT, Ras/Raf/MEK/ERK1/2, phospholipase C (PLC), signal transducer and activator of transcription (STAT)3 and STAT5 pathways [16, 17]. These multiple downstream signalling pathways are the basis of the crosstalk between TKs (Fig. 1).
Twelve TKs (e.g., ABL2, CSF1R, and MET) are significantly upregulated in ccRCC, and 7 TKs (e.g., ERBB4, PDGFRA, ERBB2, and FGFR3) are downregulated [18]. Selective TKIs exhibited promise in the treatment of cancers driven by activated TKs. For example, TKIs for direct to Bcr-Abl, c-Kit and EGFR exhibited promise in the treatment of chronic myelogenous leukaemia, stromal tumours, and non-smallcell lung cancer (NSCLC) respectively. Numerous monoclonal antibodies directed against receptors or ligands and TKIs, such as cabozantinib [19], XMD8-87 (ACK inhibitor) [20] and axitinib [21, 22], were developed or approved (Table 1).
Table 1
Ligands and inhibitors of protein tyrosine kinases
Protein tyrosine kinase
Ligand
Monoclonal antibody of ligand
Representative TKI
VEGFR
VEGF (A, -B, -C, -D, -E)
Bevacizumab, aflibercept, ramucirumab (anti-VEGFR2)
Sorafenib, sunitinib, axitinib, pazopanib
EGFR
EGF, TGFα, HB-EGF, amphiregulin, epiregulin, epigen, β-cellulin, NRG 2 β
Nimotuzumab, panitumumab, cetuximab, necitumumab (anti-EGFR)
Erlotinib, afatinib, osimertinib, sapitinib
PDGFR
PDGF
Olaratumab (anti-PDGFRα)
Imatinib, pazopanib
c-MET (HGFR)
HGF
 
Cabozantinib [19], crizotinib
HER2
 
Trastuzumab,ramucirumab, pertuzumab
Lapatinib, sapitinib
IGF-1R
IGF-1
 
Linsitinib, GSK1904529A
FGFR
FGF
 
Nintedanib, NVP-BGJ398
FLT3
FLT3 ligand
 
Quizartinib, dovitinib
c-Kit
Stem cell factor
 
Dovitinib, pazopanib
Tie-2
Angiopoietin
 
Pexmetinib
c-RET
GDNF, neurturin, artemin, persephin
 
Regorafenib
TAM receptor
Gas6, protein S
 
Sitravatinib
CSF-1R
CSF-1
 
Linifanib
Ephrin receptor
Ephrins
 
Sitravatinib
Trk receptor
BDNF, NGF
 
Sitravatinib, larotrectinib
ACK
  
XMD8-87 [20]
Src
  
Bosutinib
ALK
  
Crizotinib

VEGF/VEGFR downstream pathway and VEGFR-TKI

VEGF family members in mammals consist of VEGF-A, -B, -C, -D, -E and placenta growth factor (PLGF). There are three main isoforms of VEGFR, VEGFR-1, VEGFR-2 and VEGFR-3, and VEGFR-2 plays a key role in angiogenesis [23]. VEGFR-3 is primarily expressed on lymphatic vessels, but the other VEGFR and the Tie receptor family are primarily expressed specifically in the endothelium. VEGF-A stimulates VEGFR2, which is autophosphorylated and activates various downstream signaling pathways [24]. Anti-angiogenesis, especially VEGF/VEGFR targeted theraphy, emerged as the standard of care for mRCC. Numerous VEGFR-TKIs were designed and developed (Table 2). VEGFR2-TKIs, such as sorafenib or sunitinib, are valuable treatment approaches for patients with mRCC [25]. VEGF and VEGFR polymorphisms affected outcomes in sunitinib-treated mRCC patients, especially VEGFR1 polymorphisms [26].
Table 2
Familiar VEGFR tyrosine kinase inhibitors and their targets
TKI
VEGFR-1
VEGFR-2
VEGFR-3
Other targets
Sorafenib
 
+
 
Raf-1, B-Raf, B-Raf (V599E)
Sunitinib
 
+
 
c-Kit, FLT3, PDGFRβ
Lenvatinib
+
+
+
PDGFRα, PDGFRβ, FGFR1
Cabozantinib [19]
 
+
 
c-MET, AXL, RET, KIT, FLT3, TRKB, Tie-2
Axitinib [21, 22]
+
+
+
PDGFRα, PDGFRβ, Kit, BCR-ABL1
Vandetanib
 
+
+
EGFR
Dovitinib
+
+
+
c-Kit, FLT3, FGFR1
Pazopanib
+
+
+
PDGFR, FGFR, c-Kit
Foretinib
+
+
+
MET, Tie2
Apatinib
 
+
 
RET

Mechanisms of TKI resistance

TKIs treatments are associated with dynamic changes in relevant biomarkers, including other protein TKs [27]. For example, VEGFR-TKI treatment significantly reduced vessel density (CD31) and phospho-S6K, PD-L1, and FOXP3 expression and significantly increased Ki-67, cytoplasmic FGF-2 and MET receptor expression in vessels [27]. However, long-lasting efficacy is seldom achieved, and evasive resistance eventually occurs under anti-angiogenic TKI therapy [28]. A recent study suggested that long non-coding RNAs (lncRNAs) play a significant role in TKI resistance in RCC. lncRNA-SRLR may be resistant to sorafenib and serve as a predictive biomarker for sorafenib tolerance via directly binding to NF-κB and the promotion of IL-6 transcription, which leads to STAT3 activation [29].
Exosomes also play a key role in resistance to drug theraphy. Stromal cells orchestrate an intricate crosstalk with tumour cells via utilization of exosomes to expand therapy resistance and reinitiate tumour growth [30]. lncARSR may promote and disseminate sunitinib resistance via competitively binding to miR-34/miR-449 to facilitate AXL and c-MET expression, incorporating into exosomes and transmitting to sensitive in RCC cells [31]. MiR-21 and miR-126 are targets of lncRNAs, and these molecules may be probable prognostic markers and therapeutic targets in RCC [32].
Various multi-targeted TKIs were developed because resistance to TKI treatment is inevitable. Sorafenib is a multi-targeted TKI that significantly improved clinical outcomes of mRCC patients [33]. However, no significant differences between sorafenib and sunitinib were observed in the treatment of advanced renal cancer in Chinese patients [34]. Axitinib, bevacizumab, and pazopanib are also anti-angiogenic drugs that approved for use in mRCC. Interleukin (IL)-8 expression is elevated, during sunitinib resistance, which suggests that IL-8 is also an key contributor and a potential therapeutic target to reverse sunitinib resistance in ccRCC [35]. Patients with high concentrations of IL-8, osteopontin and HGF exhibited shorter progression-free survival (PFS) compared to patients with low IL-8 concentrations using pazopanib as a treatment drug [36]. Cabozantinib is an important new standard-of-care treatment option for patients with advanced RCC who previously received anti-angiogenic therapy [37, 38]. VEGF is the downstream target of the HIF signal, and drugs that inhibit HIF-2 are in various stages of clinical testing [5]. The targeting of angiogenesis and hypoxia pathways may provide a resolution for the anti-angiogenesis resistance [28]. The HIF2α antagonist PT2385 is a novel therapeutics for RCC, and it exhibited cogent preclinical efficacy and improved tolerability [39]. Table 3 shows the factors, genes, proteins and other molecules (e.g., P-gp, MRP, and GSTs) involved in TKI resistance.
Table 3
Factors, genes or proteins involved in TKI resistance
Resistance type
Factors
Genes
Proteins
Intrinsic resistance
High glucose uptake
Tumour suppressor gene loss, polymorphism or mutation, such as VHL, TP53, PTEN, EGFR T790M and so on
TP53, BIM, HIF, P-gp, MDR1, GSTs, MRP and so on
Acquired resistance
Exosomes; lncRNA-SRLR and lncRNA-ARSR; miRNA 451, 221, 30a and so on [90]; EMT
Crosstalk, bypass and downstream signal activation or amplification (such as PI3K/AKT pathway)
IL-8, VEGFR-3, KRAS, BRAF, PDGFR, EGFR, FGFR, c-MET, AXL and so on

Side effects of TKIs

The development of TKIs is revolutionary progress, but TKIs exhibit side effects, including cardiovascular side effects, especially hypertension and congestive heart failure, and continual clinical monitoring should be emphasized in the use of new TKI agents [40, 41]. Cardiac damage from TKIs (sorafenib and sunitinib) treatment is a largely underrated phenomenon, but it is manageable with careful cardiovascular monitoring and cardiac treatment at the first signs of myocardial damage [42]. Another TKIs, cabozantinib, also exhibited a manageable adverse events profile in patients with advanced RCC [37]. Sunitinib increases buccodental toxicity compared to chemotherapy [43].

TKIs and immunotherapy

Immunotherapy enjoyed tremendous development recently in the form of immune checkpoint inhibition and vaccines [44]. VEGF-A/VEGFR-2 is also related to with tumour escape. VEGF-A directly triggers Treg proliferation, and VEGF-A/VEGFR-2 blockade inhibits this effect. Therefore, anti-VEGF-A therapies may also exert immunological effects [45]. A combination of immunotherapy treatment is also in process [46]. The combination of an IL-6 inhibitors (tocilizumab) and TKIs (sorafenib) may be a novel therapeutic approach for RCC [47]. Anti-VEGF (bevacizumab) in combination with an anti-PD-L1 (atezolizumab) improved antigen-specific T cell migration in mRCC [48]. More drug combination experiments will be performed with the design and development of less toxic novel immune checkpoint inhibitors and TKIs.

VEGFR-TKIs and other signalling pathways

Molecular crosstalk between VEGFR and other TKs or downstream pathways, such as EGFR, c-Met, FGFR, PDGFR, IGF-1R, c-Kit and PI3K/AKT/mTOR, may have great therapeutic and resistance implications [23, 49]. The crosstalk between these factors contributes to TKI resistance, but multi-targets or combination drugs may exhibit good synergy. Therefore, various multi-target inhibitors were examined or in process and some of these are listed below.

The mTOR pathway and its inhibitors

The mTOR/Raptor complex (mTORC1) is a key molecule in the PI3K/AKT/mTOR signalling pathway, and its activation increases protein synthesis and cell survival via direct phosphorylation of its effectors. Inhibitors of mTOR, such as everolimus and temsirolimus, are approved for the treatment of mRCC. Administration of everolimus alone or with lenvatinib is one of the most effective options for mRCC [50]. However, the inhibition of mTORC1 produces a loss of negative feedback loops, which upregulates the downstream effectors of the PI3K/AKT/mTOR pathway and activates of HIFs (an activator of angiogenesis) [51].
A combination of agents targeting the multiple pathways of angiogenesis, including HIF, VEGFR, PI3K and mTORC1/2, will likely be a beneficial choice. Lenvatinib plus everolimus and lenvatinib alone improved PFS in patients with mRCC who progressed after administration of one previous VEGF-targeted therapy [52]. The combination of bevacizumab and temsirolimus in patients previously treated with VEGFR-TKI is possible, but with dose reductions and treatment discontinuations [53]. The antidiabetic drug metformin blocks cell growth via TORC1 inhibition, and the combination of metformin and VEGF-TKI may be effective [54]. Combined treatment with everolimus and a Toll-like receptor 9 agonist immune modulatory oligonucleotide effectively interfered with tumour growth and angiogenesis in VHL wild-type and mutant models of RCC [55].

VEGFR and other tyrosine kinase pathway or TKIs

EGF/EGFR pathway and TKIs

EGF family ligands include EGF, heparin-binding EGF-like growth factor (HB-EGF), transforming growth factor alpha (TGFα), amphiregulin, epiregulin, epigen, β-cellulin, and neuregulin 2β (NRG2β) [56]. The human EGFR family consists of EGFR (ERBB1), HER2 (ERBB2), HER3 (ERBB3), and HER4 (ERBB4) [57]. Activation of HER2 and EGFR activates intracellular pathways, such as RAS/RAF/MEK/ERK, PI3K/AKT/TOR, Src kinases, and STAT transcription factors. The EGFR gene is upregulated in ccRCC [58], and the HIF may activate the TGF-α/EGFR pathway to promote the growth of VHL(−/−) RCC cells [59].
Three generations of EGFR-TKIs were developed. The first generation of EGFR-TKIs such as erlotinib or gefitinib, exhibit resistance after several months of treatment in patients with EGFR-activating mutations, especially in NSCLC patients [60]. The EGFR T790M mutation confers resistance to gefitinib via blockade of drug binding [61]. Therefore, the second generation of EGFR-TKIs such as afatinib and dacomitinib, were developed. However, the expression of FGFR1 and its ligand FGF2 is enhanced in afatinib-resistant cancer cells, which provide an escape mechanism for cell survival [62]. Second-generation drugs inhibit EGFR T790M, but these agents also inhibit wild-type EGFR. Therefore the dose-limiting toxicities from wild-type EGFR inhibition prevent the administration of doses that are sufficient to fully suppress T790M. The third generation of EGFR-TKIs, such as osimertinib, were developed to overcome these limitations [63].
Compensatory TK signalling is observed in EGFR-TKI therapy, and KRAS, anaplastic lymphoma kinase (ALK), c-MET and BRAF mutations are also associated with poor responses to anti-EGFR therapy in some cancers. Adaptation to TKI treatment also reactivates ERK signalling in TK-driven malignancies [64]. A novel dual inhibitor of EGFR and c-MET, TC-N19, was investigated as a potential new-generation TKI inhibitor to treat resistance to current TKI-targeting therapies [65]. Resistance to EGFR-targeted agents may also be related to increased VEGF levels. Vandetanib, is an inhibitor of EGFR, VEGFR and RET TK that exhibited therapeutic efficacy, and it received FDA approval for the treatment of advanced medullary thyroid carcinoma [66].
AEE788 is another potent inhibitor of EGFR and VEGFR TKs at the isolated enzyme level and in cellular systems [67], AEE788 profoundly reduce RCC cells growth in vitro [68]. However, the VEGF/VEGFR signal is the primary target because the universal VHL loss in ccRCC, and the mTORC1, MET and IL–8, but not the EGFR or PI3K pathways are secondary targets based on the available clinical and preclinical studies in mRCC [4].

PDGF/PDGFR and TKIs

The PDGF family consists of PDGF-A to -D polypeptide homodimers and the PDGF-AB heterodimer, and these ligands can bind to PDGFR-α and -β tyrosine kinase receptors [23]. The HIF signalling pathway regulates the target genes VEGF, EGF, TGF-β, and PDGF. High expression of PDGFR-β and α-smooth muscle actin (α-SMA) and low vessel density were significantly associated with short survival in RCC [69]. Other PTK pathways, such as PDGF/PDGFR and FGF/FGFR pathways, provide underlying escape mechanisms from anti-VEGF/VEGFR therapy that may promote resumption of tumor growth [23]. Multiple inhibitors, such as sunitinib, pazopanib, axitinib, tivozanib, linifanib, telatinib and motesanib, that inhibit VEGFR and PDGFR TKs have been used [70].

HGF/c-MET and TKIs

Met and its ligand, hepatocyte growth factor (HGF), play significant roles in multiple oncogenic cellular processes, including regulation of cell proliferation, invasion, angiogenesis and alternative pathways to the VEGF [49]. MET mutations are frequently found in Papillary RCC (pRCC) [71]. PD-L1 and PD-L2 in ccRCC is associated with adverse features of c-MET and VEGF expression, respectively [72].
The role for Met in resistance to other RTK-targeted therapies is associated with crosstalk between Met and other receptors, such as EGFR, HER2 and VEGFR [49]. Combination targeting of the VEGF and c-MET pathways in a ccRCC model exhibited a better anti-tumour effect than single agent administration [73]. Cabozantinib is a TKI inhibitor of VEGFR, c-MET and other TKs that exhibited significant clinical benefit in PFS and objective response rate over the standard-of-care sunitinib as first-line therapy in patients with intermediate- or poor-risk mRCC [74].

IGF system pathway

The insulin-like growth factor (IGF) system is comprised of multiple growth factor receptors, including IGF-1R, insulin receptor (IR)-A and -B [75]. IR is primarily expressed in adipose tissue, the muscle and liver in adult tissues, and IGF-1R is expressed in most human tissues [76]. As a TK receptor for IGF-1 and IGF-2, IGF-1R plays a key role in proliferation, malignant transformation, anti-apoptosis and metastasis. IGF-1R expression in RCC is associated with poor long-term patient survival [77]. The risk of death for patients with IGF-1R overexpression increases 70% compared to ccRCC patients with tumours without IGF-1R expression [78].
IGF-1 co-culture with cells facilitates angiogenesis via the PI3K/Akt signalling pathway [79]. IGF-1R also exhibits crosstalk with the VEGF/VEGFR, EGF/EGFR pathway [80, 81]. IGF-1R also confers resistance to EGFR or VEGFR family targeted therapies [75]. A bi-functional antibody-receptor domain fusion protein that targeted IGF-IR and VEGF for degradation, bi-AbCap, exhibited superior inhibition of tumour growth in RCC, colon cancer, and pancreatic cancer compared to a combination of anti-IGF-IR and anti-VEGF therapies [82].

Other TKIs

Table 1 shows other RTKs, such as FGFR (FGFR1-4), tyrosine receptor kinase (Trk), ephrin receptor, ALK and Src. FGF/FGFR regulates normal and tumour cells growth, differentiation and angiogenesis, and the complex interaction and crosstalk between tumour angiogenic factors, such as FGF2 and PDGFR, promoted tumour growth and metastasis [83].
TrkA and TrkB are neurotrophin receptors. TrkB activation or overexpression could promotes proliferation, survival, angiogenesis, anoikis-resistance and metastasis in tumours. Brain-derived neurotrophic factor binds to TrkB and p75NTR and induces cell survival and migration via p75NTR, which is independent of TrkB activation [84], which indicates a resistance mechanism of TKIs for TrkB. TrkB silencing improved the anticancer efficiency of sorafenib in anoikis-resistant ACHN (a renal cancer cell line derived from metastatic site) RCC cells via inactivation of PI3K/Akt and MEK/ERK pathways [85].
Many other non-receptor TKs exist and numerous TKIs are under investigation.

Conclusions

System treatment using multi-target drugs, immune checkpoint inhibitors or drugs combinations may be a promising approach to RCC therapy in the future because of the emergence of drug resistance to VEGFR-TKI, which may facilitate tumour invasiveness and metastasis. Three new second-line treatments received FDA approval in the last year for use after anti-angiogenic therapy: nivolumab, cabozantinib, and the combination of the TKI lenvatinib and everolimus (the mTOR inhibitor) [86]. Nivolumab is an immune checkpoint inhibitor, and cabozantinib is a multi-target TKI. The potential synergistic activity of antiangiogenic agents and TKIs or immunotherapy in NSCLC was summarized previously [87].
Combinations of VEGFR-TKIs, immune checkpoint inhibitors, and HIF inhibitors may provide good options to overcome drug resistance. Increasing evidence supports a primary role for the HIF-2α subunit in ccRCC over HIF-1α. Due to the frequently VHL loss in ccRCC, which causes increased expression of HIFs, targeting HIFs may be a promising strategy for ccRCC because of frequent VHL loss, which increases HIF expression. HIFs are upstream of the crosstalk between growth factors and regulate the expression of VEGR, EGF, PDGF and other growth factors, which supports targeting HIFs to overcome TKI resistance. Recent preclinical and clinical data on ccRCC indicate that PT2385 and PT2399 effectively inhibit cancer cell growth, proliferation, and tumour angiogenesis characteristic [88, 89]. The combination of HIF and immune checkpoint inhibitors is also anticipated, and various clinical trials for PD-1 inhibitors are planned.

Authors’ contributions

WW, GZ and YL designed the research. YL and ZZ drafted the manuscript. YL, WW and TZ critically revised the manuscript. XD, XL and DC discussed and revised the manuscript. All authors read and approved the final manuscript.

Acknowledgements

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Availability of data and materials

The materials supporting the conclusions of this review are included in the article.
This is not applicable for this review.
Not applicable.

Funding

This work was sustained in part by the National Natural Science Foundation of China (contract No. 81402430).

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.
Literatur
1.
Zurück zum Zitat Shuch B, Amin A, Armstrong AJ, Eble JN, Ficarra V, Lopez-Beltran A, Martignoni G, Rini BI, Kutikov A. Understanding pathologic variants of renal cell carcinoma: distilling therapeutic opportunities from biologic complexity. Eur Urol. 2015;67(1):85–97.CrossRefPubMed Shuch B, Amin A, Armstrong AJ, Eble JN, Ficarra V, Lopez-Beltran A, Martignoni G, Rini BI, Kutikov A. Understanding pathologic variants of renal cell carcinoma: distilling therapeutic opportunities from biologic complexity. Eur Urol. 2015;67(1):85–97.CrossRefPubMed
2.
Zurück zum Zitat Cancer Genome Atlas Research Network. Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature. 2013;499(7456):43–9.CrossRef Cancer Genome Atlas Research Network. Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature. 2013;499(7456):43–9.CrossRef
3.
Zurück zum Zitat Schodel J, Grampp S, Maher ER, Moch H, Ratcliffe PJ, Russo P, Mole DR. Hypoxia, hypoxia-inducible transcription factors, and renal cancer. Eur Urol. 2016;69(4):646–57.CrossRefPubMed Schodel J, Grampp S, Maher ER, Moch H, Ratcliffe PJ, Russo P, Mole DR. Hypoxia, hypoxia-inducible transcription factors, and renal cancer. Eur Urol. 2016;69(4):646–57.CrossRefPubMed
4.
Zurück zum Zitat Hsieh JJ, Purdue MP, Signoretti S, Swanton C, Albiges L, Schmidinger M, Heng DY, Larkin J, Ficarra V. Renal cell carcinoma. Nat Rev Dis Primers. 2017;3:17009.CrossRefPubMed Hsieh JJ, Purdue MP, Signoretti S, Swanton C, Albiges L, Schmidinger M, Heng DY, Larkin J, Ficarra V. Renal cell carcinoma. Nat Rev Dis Primers. 2017;3:17009.CrossRefPubMed
5.
Zurück zum Zitat Shen C, Kaelin WJ. The VHL/HIF axis in clear cell renal carcinoma. Semin Cancer Biol. 2013;23(1):18–25.CrossRefPubMed Shen C, Kaelin WJ. The VHL/HIF axis in clear cell renal carcinoma. Semin Cancer Biol. 2013;23(1):18–25.CrossRefPubMed
6.
Zurück zum Zitat Chen W, Hill H, Christie A, Kim MS, Holloman E, Pavia-Jimenez A, Homayoun F, Ma Y, Patel N, Yell P, et al. Targeting renal cell carcinoma with a HIF-2 antagonist. Nature. 2016;539(7627):112–7.CrossRefPubMedPubMedCentral Chen W, Hill H, Christie A, Kim MS, Holloman E, Pavia-Jimenez A, Homayoun F, Ma Y, Patel N, Yell P, et al. Targeting renal cell carcinoma with a HIF-2 antagonist. Nature. 2016;539(7627):112–7.CrossRefPubMedPubMedCentral
7.
Zurück zum Zitat Stewart GD, O’Mahony FC, Laird A, Rashid S, Martin SA, Eory L, Lubbock AL, Nanda J, O’Donnell M, Mackay A, et al. Carbonic anhydrase 9 expression increases with vascular endothelial growth factor-targeted therapy and is predictive of outcome in metastatic clear cell renal cancer. Eur Urol. 2014;66(5):956–63.CrossRefPubMedPubMedCentral Stewart GD, O’Mahony FC, Laird A, Rashid S, Martin SA, Eory L, Lubbock AL, Nanda J, O’Donnell M, Mackay A, et al. Carbonic anhydrase 9 expression increases with vascular endothelial growth factor-targeted therapy and is predictive of outcome in metastatic clear cell renal cancer. Eur Urol. 2014;66(5):956–63.CrossRefPubMedPubMedCentral
8.
Zurück zum Zitat Xu J, Pham CG, Albanese SK, Dong Y, Oyama T, Lee CH, Rodrik-Outmezguine V, Yao Z, Han S, Chen D, et al. Mechanistically distinct cancer-associated mTOR activation clusters predict sensitivity to rapamycin. J Clin Investig. 2016;126(9):3526–40.CrossRefPubMedPubMedCentral Xu J, Pham CG, Albanese SK, Dong Y, Oyama T, Lee CH, Rodrik-Outmezguine V, Yao Z, Han S, Chen D, et al. Mechanistically distinct cancer-associated mTOR activation clusters predict sensitivity to rapamycin. J Clin Investig. 2016;126(9):3526–40.CrossRefPubMedPubMedCentral
9.
Zurück zum Zitat Voss MH, Chen D, Marker M, Hakimi AA, Lee CH, Hsieh JJ, Knox JJ, Voi M, Motzer RJ. Circulating biomarkers and outcome from a randomised phase II trial of sunitinib vs everolimus for patients with metastatic renal cell carcinoma. Br J Cancer. 2016;114(6):642–9.CrossRefPubMedPubMedCentral Voss MH, Chen D, Marker M, Hakimi AA, Lee CH, Hsieh JJ, Knox JJ, Voi M, Motzer RJ. Circulating biomarkers and outcome from a randomised phase II trial of sunitinib vs everolimus for patients with metastatic renal cell carcinoma. Br J Cancer. 2016;114(6):642–9.CrossRefPubMedPubMedCentral
10.
Zurück zum Zitat Voss MH, Hakimi AA, Pham CG, Brannon AR, Chen YB, Cunha LF, Akin O, Liu H, Takeda S, Scott SN, et al. Tumor genetic analyses of patients with metastatic renal cell carcinoma and extended benefit from mTOR inhibitor therapy. Clin Cancer Res. 2014;20(7):1955–64.CrossRefPubMedPubMedCentral Voss MH, Hakimi AA, Pham CG, Brannon AR, Chen YB, Cunha LF, Akin O, Liu H, Takeda S, Scott SN, et al. Tumor genetic analyses of patients with metastatic renal cell carcinoma and extended benefit from mTOR inhibitor therapy. Clin Cancer Res. 2014;20(7):1955–64.CrossRefPubMedPubMedCentral
11.
Zurück zum Zitat Funakoshi T, Lee CH, Hsieh JJ. A systematic review of predictive and prognostic biomarkers for VEGF-targeted therapy in renal cell carcinoma. Cancer Treat Rev. 2014;40(4):533–47.CrossRefPubMed Funakoshi T, Lee CH, Hsieh JJ. A systematic review of predictive and prognostic biomarkers for VEGF-targeted therapy in renal cell carcinoma. Cancer Treat Rev. 2014;40(4):533–47.CrossRefPubMed
12.
Zurück zum Zitat Giles RH, Choueiri TK, Heng DY, Albiges L, Hsieh JJ, Linehan WM, Pal S, Maskens D, Paseman B, Jonasch E, et al. Recommendations for the management of rare kidney cancers. Eur Urol. 2017;72(6):974–83.CrossRefPubMed Giles RH, Choueiri TK, Heng DY, Albiges L, Hsieh JJ, Linehan WM, Pal S, Maskens D, Paseman B, Jonasch E, et al. Recommendations for the management of rare kidney cancers. Eur Urol. 2017;72(6):974–83.CrossRefPubMed
13.
Zurück zum Zitat Escudier B, Lougheed JC, Albiges L. Cabozantinib for the treatment of renal cell carcinoma. Expert Opin Pharmacother. 2016;17(18):2499–504.CrossRefPubMed Escudier B, Lougheed JC, Albiges L. Cabozantinib for the treatment of renal cell carcinoma. Expert Opin Pharmacother. 2016;17(18):2499–504.CrossRefPubMed
14.
Zurück zum Zitat Hsieh JJ, Chen D, Wang PI, Marker M, Redzematovic A, Chen YB, Selcuklu SD, Weinhold N, Bouvier N, Huberman KH, et al. Genomic biomarkers of a randomized trial comparing first-line everolimus and sunitinib in patients with metastatic renal cell carcinoma. Eur Urol. 2017;71(3):405–14.CrossRefPubMed Hsieh JJ, Chen D, Wang PI, Marker M, Redzematovic A, Chen YB, Selcuklu SD, Weinhold N, Bouvier N, Huberman KH, et al. Genomic biomarkers of a randomized trial comparing first-line everolimus and sunitinib in patients with metastatic renal cell carcinoma. Eur Urol. 2017;71(3):405–14.CrossRefPubMed
15.
Zurück zum Zitat Powles T, Albiges L, Staehler M, Bensalah K, Dabestani S, Giles RH, Hofmann F, Hora M, Kuczyk MA, Lam TB, et al. Updated european association of urology guidelines recommendations for the treatment of first-line metastatic clear cell renal cancer. Eur Urol. 2018:73(3):311–5.CrossRef Powles T, Albiges L, Staehler M, Bensalah K, Dabestani S, Giles RH, Hofmann F, Hora M, Kuczyk MA, Lam TB, et al. Updated european association of urology guidelines recommendations for the treatment of first-line metastatic clear cell renal cancer. Eur Urol. 2018:73(3):311–5.CrossRef
16.
Zurück zum Zitat Mitsudomi T, Yatabe Y. Epidermal growth factor receptor in relation to tumor development: EGFR gene and cancer. FEBS J. 2010;277(2):301–8.CrossRefPubMed Mitsudomi T, Yatabe Y. Epidermal growth factor receptor in relation to tumor development: EGFR gene and cancer. FEBS J. 2010;277(2):301–8.CrossRefPubMed
17.
Zurück zum Zitat Roskoski RJ. The ErbB/HER family of protein-tyrosine kinases and cancer. Pharmacol Res. 2014;79:34–74.CrossRefPubMed Roskoski RJ. The ErbB/HER family of protein-tyrosine kinases and cancer. Pharmacol Res. 2014;79:34–74.CrossRefPubMed
18.
Zurück zum Zitat Behbahani TE, Thierse C, Baumann C, Holl D, Bastian PJ, von Ruecker A, Muller SC, Ellinger J, Hauser S. Tyrosine kinase expression profile in clear cell renal cell carcinoma. World J Urol. 2012;30(4):559–65.CrossRefPubMed Behbahani TE, Thierse C, Baumann C, Holl D, Bastian PJ, von Ruecker A, Muller SC, Ellinger J, Hauser S. Tyrosine kinase expression profile in clear cell renal cell carcinoma. World J Urol. 2012;30(4):559–65.CrossRefPubMed
19.
Zurück zum Zitat Yakes FM, Chen J, Tan J, Yamaguchi K, Shi Y, Yu P, Qian F, Chu F, Bentzien F, Cancilla B, et al. Cabozantinib (XL184), a novel MET and VEGFR2 inhibitor, simultaneously suppresses metastasis, angiogenesis, and tumor growth. Mol Cancer Ther. 2011;10(12):2298–308.CrossRefPubMed Yakes FM, Chen J, Tan J, Yamaguchi K, Shi Y, Yu P, Qian F, Chu F, Bentzien F, Cancilla B, et al. Cabozantinib (XL184), a novel MET and VEGFR2 inhibitor, simultaneously suppresses metastasis, angiogenesis, and tumor growth. Mol Cancer Ther. 2011;10(12):2298–308.CrossRefPubMed
20.
Zurück zum Zitat Maxson JE, Abel ML, Wang J, Deng X, Reckel S, Luty SB, Sun H, Gorenstein J, Hughes SB, Bottomly D, et al. Identification and characterization of tyrosine kinase nonreceptor 2 mutations in leukemia through Integration of kinase inhibitor screening and genomic analysis. Cancer Res. 2016;76(1):127–38.CrossRefPubMed Maxson JE, Abel ML, Wang J, Deng X, Reckel S, Luty SB, Sun H, Gorenstein J, Hughes SB, Bottomly D, et al. Identification and characterization of tyrosine kinase nonreceptor 2 mutations in leukemia through Integration of kinase inhibitor screening and genomic analysis. Cancer Res. 2016;76(1):127–38.CrossRefPubMed
21.
Zurück zum Zitat Hu-Lowe DD, Zou HY, Grazzini ML, Hallin ME, Wickman GR, Amundson K, Chen JH, Rewolinski DA, Yamazaki S, Wu EY, et al. Nonclinical antiangiogenesis and antitumor activities of axitinib (AG-013736), an oral, potent, and selective inhibitor of vascular endothelial growth factor receptor tyrosine kinases 1, 2, 3. Clin Cancer Res. 2008;14(22):7272–83.CrossRefPubMed Hu-Lowe DD, Zou HY, Grazzini ML, Hallin ME, Wickman GR, Amundson K, Chen JH, Rewolinski DA, Yamazaki S, Wu EY, et al. Nonclinical antiangiogenesis and antitumor activities of axitinib (AG-013736), an oral, potent, and selective inhibitor of vascular endothelial growth factor receptor tyrosine kinases 1, 2, 3. Clin Cancer Res. 2008;14(22):7272–83.CrossRefPubMed
22.
Zurück zum Zitat Pemovska T, Johnson E, Kontro M, Repasky GA, Chen J, Wells P, Cronin CN, McTigue M, Kallioniemi O, Porkka K, et al. Axitinib effectively inhibits BCR-ABL1(T315I) with a distinct binding conformation. Nature. 2015;519(7541):102–5.CrossRefPubMed Pemovska T, Johnson E, Kontro M, Repasky GA, Chen J, Wells P, Cronin CN, McTigue M, Kallioniemi O, Porkka K, et al. Axitinib effectively inhibits BCR-ABL1(T315I) with a distinct binding conformation. Nature. 2015;519(7541):102–5.CrossRefPubMed
23.
24.
Zurück zum Zitat Kowanetz M, Ferrara N. Vascular endothelial growth factor signaling pathways: therapeutic perspective. Clin Cancer Res. 2006;12(17):5018–22.CrossRefPubMed Kowanetz M, Ferrara N. Vascular endothelial growth factor signaling pathways: therapeutic perspective. Clin Cancer Res. 2006;12(17):5018–22.CrossRefPubMed
25.
Zurück zum Zitat Zhang L, Wang X, Bullock AJ, Callea M, Shah H, Song J, Moreno K, Visentin B, Deutschman D, Alsop DC, et al. Anti-S1P antibody as a novel therapeutic strategy for VEGFR TKI-resistant renal cancer. Clin Cancer Res. 2015;21(8):1925–34.CrossRefPubMedPubMedCentral Zhang L, Wang X, Bullock AJ, Callea M, Shah H, Song J, Moreno K, Visentin B, Deutschman D, Alsop DC, et al. Anti-S1P antibody as a novel therapeutic strategy for VEGFR TKI-resistant renal cancer. Clin Cancer Res. 2015;21(8):1925–34.CrossRefPubMedPubMedCentral
26.
Zurück zum Zitat Miao C, Cao J, Wang Y, Liu B, Wang Z. Effects of VEGF and VEGFR polymorphisms on the outcome of patients with metastatic renal cell carcinoma treated with sunitinib: a systematic review and meta-analysis. Oncotarget. 2017;8(40):68854–62.CrossRefPubMedPubMedCentral Miao C, Cao J, Wang Y, Liu B, Wang Z. Effects of VEGF and VEGFR polymorphisms on the outcome of patients with metastatic renal cell carcinoma treated with sunitinib: a systematic review and meta-analysis. Oncotarget. 2017;8(40):68854–62.CrossRefPubMedPubMedCentral
27.
Zurück zum Zitat Sharpe K, Stewart GD, Mackay A, Van Neste C, Rofe C, Berney D, Kayani I, Bex A, Wan E, O’Mahony FC, et al. The effect of VEGF-targeted therapy on biomarker expression in sequential tissue from patients with metastatic clear cell renal cancer. Clin Cancer Res. 2013;19(24):6924–34.CrossRefPubMed Sharpe K, Stewart GD, Mackay A, Van Neste C, Rofe C, Berney D, Kayani I, Bex A, Wan E, O’Mahony FC, et al. The effect of VEGF-targeted therapy on biomarker expression in sequential tissue from patients with metastatic clear cell renal cancer. Clin Cancer Res. 2013;19(24):6924–34.CrossRefPubMed
28.
Zurück zum Zitat Lai XM, Liu SY, Tsai YT, Sun GH, Chang SY, Huang SM, Cha TL. HAF mediates the evasive resistance of anti-angiogenesis TKI through disrupting HIF-1alpha and HIF-2alpha balance in renal cell carcinoma. Oncotarget. 2017;8(30):49713–24.PubMedPubMedCentral Lai XM, Liu SY, Tsai YT, Sun GH, Chang SY, Huang SM, Cha TL. HAF mediates the evasive resistance of anti-angiogenesis TKI through disrupting HIF-1alpha and HIF-2alpha balance in renal cell carcinoma. Oncotarget. 2017;8(30):49713–24.PubMedPubMedCentral
29.
Zurück zum Zitat Xu Z, Yang F, Wei D, Liu B, Chen C, Bao Y, Wu Z, Wu D, Tan H, Li J, et al. Long noncoding RNA-SRLR elicits intrinsic sorafenib resistance via evoking IL-6/STAT3 axis in renal cell carcinoma. Oncogene. 2017;36(14):1965–77.CrossRefPubMed Xu Z, Yang F, Wei D, Liu B, Chen C, Bao Y, Wu Z, Wu D, Tan H, Li J, et al. Long noncoding RNA-SRLR elicits intrinsic sorafenib resistance via evoking IL-6/STAT3 axis in renal cell carcinoma. Oncogene. 2017;36(14):1965–77.CrossRefPubMed
30.
Zurück zum Zitat Boelens MC, Wu TJ, Nabet BY, Xu B, Qiu Y, Yoon T, Azzam DJ, Twyman-Saint VC, Wiemann BZ, Ishwaran H, et al. Exosome transfer from stromal to breast cancer cells regulates therapy resistance pathways. Cell. 2014;159(3):499–513.CrossRefPubMedPubMedCentral Boelens MC, Wu TJ, Nabet BY, Xu B, Qiu Y, Yoon T, Azzam DJ, Twyman-Saint VC, Wiemann BZ, Ishwaran H, et al. Exosome transfer from stromal to breast cancer cells regulates therapy resistance pathways. Cell. 2014;159(3):499–513.CrossRefPubMedPubMedCentral
31.
Zurück zum Zitat Qu L, Ding J, Chen C, Wu ZJ, Liu B, Gao Y, Chen W, Liu F, Sun W, Li XF, et al. Exosome-transmitted lncARSR promotes sunitinib resistance in renal cancer by acting as a competing endogenous RNA. Cancer Cell. 2016;29(5):653–68.CrossRefPubMed Qu L, Ding J, Chen C, Wu ZJ, Liu B, Gao Y, Chen W, Liu F, Sun W, Li XF, et al. Exosome-transmitted lncARSR promotes sunitinib resistance in renal cancer by acting as a competing endogenous RNA. Cancer Cell. 2016;29(5):653–68.CrossRefPubMed
32.
Zurück zum Zitat Gu L, Li H, Chen L, Ma X, Gao Y, Li X, Zhang Y, Fan Y, Zhang X. MicroRNAs as prognostic molecular signatures in renal cell carcinoma: a systematic review and meta-analysis. Oncotarget. 2015;6(32):32545–60.PubMedPubMedCentral Gu L, Li H, Chen L, Ma X, Gao Y, Li X, Zhang Y, Fan Y, Zhang X. MicroRNAs as prognostic molecular signatures in renal cell carcinoma: a systematic review and meta-analysis. Oncotarget. 2015;6(32):32545–60.PubMedPubMedCentral
33.
Zurück zum Zitat Escudier B, Eisen T, Stadler WM, Szczylik C, Oudard S, Siebels M, Negrier S, Chevreau C, Solska E, Desai AA, et al. Sorafenib in advanced clear-cell renal-cell carcinoma. N Engl J Med. 2007;356(2):125–34.CrossRefPubMed Escudier B, Eisen T, Stadler WM, Szczylik C, Oudard S, Siebels M, Negrier S, Chevreau C, Solska E, Desai AA, et al. Sorafenib in advanced clear-cell renal-cell carcinoma. N Engl J Med. 2007;356(2):125–34.CrossRefPubMed
34.
Zurück zum Zitat Sheng X, Chi Z, Cui C, Si L, Li S, Tang B, Mao L, Lian B, Wang X, Yan X, et al. Efficacy and safety of sorafenib versus sunitinib as first-line treatment in patients with metastatic renal cell carcinoma: largest single-center retrospective analysis. Oncotarget. 2016;7(19):27044–54.CrossRefPubMedPubMedCentral Sheng X, Chi Z, Cui C, Si L, Li S, Tang B, Mao L, Lian B, Wang X, Yan X, et al. Efficacy and safety of sorafenib versus sunitinib as first-line treatment in patients with metastatic renal cell carcinoma: largest single-center retrospective analysis. Oncotarget. 2016;7(19):27044–54.CrossRefPubMedPubMedCentral
35.
Zurück zum Zitat Huang D, Ding Y, Zhou M, Rini BI, Petillo D, Qian CN, Kahnoski R, Futreal PA, Furge KA, Teh BT. Interleukin-8 mediates resistance to antiangiogenic agent sunitinib in renal cell carcinoma. Cancer Res. 2010;70(3):1063–71.CrossRefPubMedPubMedCentral Huang D, Ding Y, Zhou M, Rini BI, Petillo D, Qian CN, Kahnoski R, Futreal PA, Furge KA, Teh BT. Interleukin-8 mediates resistance to antiangiogenic agent sunitinib in renal cell carcinoma. Cancer Res. 2010;70(3):1063–71.CrossRefPubMedPubMedCentral
36.
Zurück zum Zitat Tran HT, Liu Y, Zurita AJ, Lin Y, Baker-Neblett KL, Martin AM, Figlin RA, Hutson TE, Sternberg CN, Amado RG, et al. Prognostic or predictive plasma cytokines and angiogenic factors for patients treated with pazopanib for metastatic renal-cell cancer: a retrospective analysis of phase 2 and phase 3 trials. Lancet Oncol. 2012;13(8):827–37.CrossRefPubMed Tran HT, Liu Y, Zurita AJ, Lin Y, Baker-Neblett KL, Martin AM, Figlin RA, Hutson TE, Sternberg CN, Amado RG, et al. Prognostic or predictive plasma cytokines and angiogenic factors for patients treated with pazopanib for metastatic renal-cell cancer: a retrospective analysis of phase 2 and phase 3 trials. Lancet Oncol. 2012;13(8):827–37.CrossRefPubMed
37.
Zurück zum Zitat Al-Salama ZT, Keating GM. Cabozantinib: a review in advanced renal cell carcinoma. Drugs. 2016;76(18):1771–8.CrossRefPubMed Al-Salama ZT, Keating GM. Cabozantinib: a review in advanced renal cell carcinoma. Drugs. 2016;76(18):1771–8.CrossRefPubMed
38.
Zurück zum Zitat Choueiri TK, Escudier B, Powles T, Tannir NM, Mainwaring PN, Rini BI, Hammers HJ, Donskov F, Roth BJ, Peltola K, et al. Cabozantinib versus everolimus in advanced renal cell carcinoma (METEOR): final results from a randomised, open-label, phase 3 trial. Lancet Oncol. 2016;17(7):917–27.CrossRefPubMed Choueiri TK, Escudier B, Powles T, Tannir NM, Mainwaring PN, Rini BI, Hammers HJ, Donskov F, Roth BJ, Peltola K, et al. Cabozantinib versus everolimus in advanced renal cell carcinoma (METEOR): final results from a randomised, open-label, phase 3 trial. Lancet Oncol. 2016;17(7):917–27.CrossRefPubMed
39.
Zurück zum Zitat Wallace EM, Rizzi JP, Han G, Wehn PM, Cao Z, Du X, Cheng T, Czerwinski RM, Dixon DD, Goggin BS, et al. A small-molecule antagonist of HIF2alpha is efficacious in preclinical models of renal cell carcinoma. Cancer Res. 2016;76(18):5491–500.CrossRefPubMed Wallace EM, Rizzi JP, Han G, Wehn PM, Cao Z, Du X, Cheng T, Czerwinski RM, Dixon DD, Goggin BS, et al. A small-molecule antagonist of HIF2alpha is efficacious in preclinical models of renal cell carcinoma. Cancer Res. 2016;76(18):5491–500.CrossRefPubMed
40.
Zurück zum Zitat Brown SA, Nhola L, Herrmann J. Cardiovascular toxicities of small molecule tyrosine kinase inhibitors: an opportunity for systems-based approaches. Clin Pharmacol Ther. 2017;101(1):65–80.CrossRefPubMed Brown SA, Nhola L, Herrmann J. Cardiovascular toxicities of small molecule tyrosine kinase inhibitors: an opportunity for systems-based approaches. Clin Pharmacol Ther. 2017;101(1):65–80.CrossRefPubMed
41.
Zurück zum Zitat Santoni M, Guerra F, Conti A, Lucarelli A, Rinaldi S, Belvederesi L, Capucci A, Berardi R. Incidence and risk of cardiotoxicity in cancer patients treated with targeted therapies. Cancer Treat Rev. 2017;59:123–31.CrossRefPubMed Santoni M, Guerra F, Conti A, Lucarelli A, Rinaldi S, Belvederesi L, Capucci A, Berardi R. Incidence and risk of cardiotoxicity in cancer patients treated with targeted therapies. Cancer Treat Rev. 2017;59:123–31.CrossRefPubMed
42.
Zurück zum Zitat Schmidinger M, Zielinski CC, Vogl UM, Bojic A, Bojic M, Schukro C, Ruhsam M, Hejna M, Schmidinger H. Cardiac toxicity of sunitinib and sorafenib in patients with metastatic renal cell carcinoma. J Clin Oncol. 2008;26(32):5204–12.CrossRefPubMed Schmidinger M, Zielinski CC, Vogl UM, Bojic A, Bojic M, Schukro C, Ruhsam M, Hejna M, Schmidinger H. Cardiac toxicity of sunitinib and sorafenib in patients with metastatic renal cell carcinoma. J Clin Oncol. 2008;26(32):5204–12.CrossRefPubMed
43.
Zurück zum Zitat Gilabert M, Provansal M, Cappiello M, Walz Y, Salem N, Tarpin C, Brunelle S, Thomassin J, Gravis G. Buccodental side effects of sunitinib in patients with metastatic renal cell carcinoma. Br J Cancer. 2013;109(7):1750–4.CrossRefPubMedPubMedCentral Gilabert M, Provansal M, Cappiello M, Walz Y, Salem N, Tarpin C, Brunelle S, Thomassin J, Gravis G. Buccodental side effects of sunitinib in patients with metastatic renal cell carcinoma. Br J Cancer. 2013;109(7):1750–4.CrossRefPubMedPubMedCentral
44.
Zurück zum Zitat Liu KG, Gupta S, Goel S. Immunotherapy: incorporation in the evolving paradigm of renal cancer management and future prospects. Oncotarget. 2017;8(10):17313–27.PubMed Liu KG, Gupta S, Goel S. Immunotherapy: incorporation in the evolving paradigm of renal cancer management and future prospects. Oncotarget. 2017;8(10):17313–27.PubMed
45.
Zurück zum Zitat Terme M, Pernot S, Marcheteau E, Sandoval F, Benhamouda N, Colussi O, Dubreuil O, Carpentier AF, Tartour E, Taieb J. VEGFA-VEGFR pathway blockade inhibits tumor-induced regulatory T-cell proliferation in colorectal cancer. Cancer Res. 2013;73(2):539–49.CrossRefPubMed Terme M, Pernot S, Marcheteau E, Sandoval F, Benhamouda N, Colussi O, Dubreuil O, Carpentier AF, Tartour E, Taieb J. VEGFA-VEGFR pathway blockade inhibits tumor-induced regulatory T-cell proliferation in colorectal cancer. Cancer Res. 2013;73(2):539–49.CrossRefPubMed
46.
47.
Zurück zum Zitat Ishibashi K, Haber T, Breuksch I, Gebhard S, Sugino T, Kubo H, Hata J, Koguchi T, Yabe M, Kataoka M, et al. Overriding TKI resistance of renal cell carcinoma by combination therapy with IL-6 receptor blockade. Oncotarget. 2017;8(33):55230–45.CrossRefPubMedPubMedCentral Ishibashi K, Haber T, Breuksch I, Gebhard S, Sugino T, Kubo H, Hata J, Koguchi T, Yabe M, Kataoka M, et al. Overriding TKI resistance of renal cell carcinoma by combination therapy with IL-6 receptor blockade. Oncotarget. 2017;8(33):55230–45.CrossRefPubMedPubMedCentral
48.
Zurück zum Zitat Wallin JJ, Bendell JC, Funke R, Sznol M, Korski K, Jones S, Hernandez G, Mier J, He X, Hodi FS, et al. Atezolizumab in combination with bevacizumab enhances antigen-specific T-cell migration in metastatic renal cell carcinoma. Nat Commun. 2016;7:12624.CrossRefPubMedPubMedCentral Wallin JJ, Bendell JC, Funke R, Sznol M, Korski K, Jones S, Hernandez G, Mier J, He X, Hodi FS, et al. Atezolizumab in combination with bevacizumab enhances antigen-specific T-cell migration in metastatic renal cell carcinoma. Nat Commun. 2016;7:12624.CrossRefPubMedPubMedCentral
49.
Zurück zum Zitat Maroun CR, Rowlands T. The Met receptor tyrosine kinase: a key player in oncogenesis and drug resistance. Pharmacol Ther. 2014;142(3):316–38.CrossRefPubMed Maroun CR, Rowlands T. The Met receptor tyrosine kinase: a key player in oncogenesis and drug resistance. Pharmacol Ther. 2014;142(3):316–38.CrossRefPubMed
50.
Zurück zum Zitat Ghidini M, Petrelli F, Ghidini A, Tomasello G, Hahne JC, Passalacqua R, Barni S. Clinical development of mTor inhibitors for renal cancer. Expert Opin Investig Drugs. 2017;26(11):1–9.CrossRef Ghidini M, Petrelli F, Ghidini A, Tomasello G, Hahne JC, Passalacqua R, Barni S. Clinical development of mTor inhibitors for renal cancer. Expert Opin Investig Drugs. 2017;26(11):1–9.CrossRef
51.
Zurück zum Zitat Figlin RA, Kaufmann I, Brechbiel J. Targeting PI3K and mTORC2 in metastatic renal cell carcinoma: new strategies for overcoming resistance to VEGFR and mTORC1 inhibitors. Int J Cancer. 2013;133(4):788–96.CrossRefPubMed Figlin RA, Kaufmann I, Brechbiel J. Targeting PI3K and mTORC2 in metastatic renal cell carcinoma: new strategies for overcoming resistance to VEGFR and mTORC1 inhibitors. Int J Cancer. 2013;133(4):788–96.CrossRefPubMed
52.
Zurück zum Zitat Motzer RJ, Hutson TE, Glen H, Michaelson MD, Molina A, Eisen T, Jassem J, Zolnierek J, Maroto JP, Mellado B, et al. Lenvatinib, everolimus, and the combination in patients with metastatic renal cell carcinoma: a randomised, phase 2, open-label, multicentre trial. Lancet Oncol. 2015;16(15):1473–82.CrossRefPubMed Motzer RJ, Hutson TE, Glen H, Michaelson MD, Molina A, Eisen T, Jassem J, Zolnierek J, Maroto JP, Mellado B, et al. Lenvatinib, everolimus, and the combination in patients with metastatic renal cell carcinoma: a randomised, phase 2, open-label, multicentre trial. Lancet Oncol. 2015;16(15):1473–82.CrossRefPubMed
53.
Zurück zum Zitat Mahoney KM, Jacobus S, Bhatt RS, Song J, Carvo I, Cheng SC, Simpson M, Fay AP, Puzanov I, Michaelson MD, et al. Phase 2 study of bevacizumab and temsirolimus after VEGFR TKI in metastatic renal cell carcinoma. Clin Genitourin Cancer. 2016;14(4):304–13.CrossRefPubMed Mahoney KM, Jacobus S, Bhatt RS, Song J, Carvo I, Cheng SC, Simpson M, Fay AP, Puzanov I, Michaelson MD, et al. Phase 2 study of bevacizumab and temsirolimus after VEGFR TKI in metastatic renal cell carcinoma. Clin Genitourin Cancer. 2016;14(4):304–13.CrossRefPubMed
54.
Zurück zum Zitat Martin MJ, Hayward R, Viros A, Marais R. Metformin accelerates the growth of BRAF V600E-driven melanoma by upregulating VEGF-A. Cancer Discov. 2012;2(4):344–55.CrossRefPubMedPubMedCentral Martin MJ, Hayward R, Viros A, Marais R. Metformin accelerates the growth of BRAF V600E-driven melanoma by upregulating VEGF-A. Cancer Discov. 2012;2(4):344–55.CrossRefPubMedPubMedCentral
55.
Zurück zum Zitat Damiano V, Rosa R, Formisano L, Nappi L, Gelardi T, Marciano R, Cozzolino I, Troncone G, Agrawal S, Veneziani BM, et al. Toll-like receptor 9 agonist IMO cooperates with everolimus in renal cell carcinoma by interfering with tumour growth and angiogenesis. Br J Cancer. 2013;108(8):1616–23.CrossRefPubMedPubMedCentral Damiano V, Rosa R, Formisano L, Nappi L, Gelardi T, Marciano R, Cozzolino I, Troncone G, Agrawal S, Veneziani BM, et al. Toll-like receptor 9 agonist IMO cooperates with everolimus in renal cell carcinoma by interfering with tumour growth and angiogenesis. Br J Cancer. 2013;108(8):1616–23.CrossRefPubMedPubMedCentral
56.
Zurück zum Zitat Faria J, de Andrade C, Goes AM, Rodrigues MA, Gomes DA. Effects of different ligands on epidermal growth factor receptor (EGFR) nuclear translocation. Biochem Biophys Res Commun. 2016;478(1):39–45.CrossRefPubMedPubMedCentral Faria J, de Andrade C, Goes AM, Rodrigues MA, Gomes DA. Effects of different ligands on epidermal growth factor receptor (EGFR) nuclear translocation. Biochem Biophys Res Commun. 2016;478(1):39–45.CrossRefPubMedPubMedCentral
57.
Zurück zum Zitat Arteaga CL, Engelman JA. ERBB receptors: from oncogene discovery to basic science to mechanism-based cancer therapeutics. Cancer Cell. 2014;25(3):282–303.CrossRefPubMedPubMedCentral Arteaga CL, Engelman JA. ERBB receptors: from oncogene discovery to basic science to mechanism-based cancer therapeutics. Cancer Cell. 2014;25(3):282–303.CrossRefPubMedPubMedCentral
58.
Zurück zum Zitat Matusan-Ilijas K, Damante G, Fabbro D, Dordevic G, Hadzisejdic I, Grahovac M, Avirovic M, Grahovac B, Jonjic N, Lucin K. EGFR expression is linked to osteopontin and Nf-kappaB signaling in clear cell renal cell carcinoma. Clin Transl Oncol. 2013;15(1):65–71.CrossRefPubMed Matusan-Ilijas K, Damante G, Fabbro D, Dordevic G, Hadzisejdic I, Grahovac M, Avirovic M, Grahovac B, Jonjic N, Lucin K. EGFR expression is linked to osteopontin and Nf-kappaB signaling in clear cell renal cell carcinoma. Clin Transl Oncol. 2013;15(1):65–71.CrossRefPubMed
59.
Zurück zum Zitat Gunaratnam L, Morley M, Franovic A, de Paulsen N, Mekhail K, Parolin DA, Nakamura E, Lorimer IA, Lee S. Hypoxia inducible factor activates the transforming growth factor-alpha/epidermal growth factor receptor growth stimulatory pathway in VHL(−/−) renal cell carcinoma cells. J Biol Chem. 2003;278(45):44966–74.CrossRefPubMed Gunaratnam L, Morley M, Franovic A, de Paulsen N, Mekhail K, Parolin DA, Nakamura E, Lorimer IA, Lee S. Hypoxia inducible factor activates the transforming growth factor-alpha/epidermal growth factor receptor growth stimulatory pathway in VHL(−/−) renal cell carcinoma cells. J Biol Chem. 2003;278(45):44966–74.CrossRefPubMed
60.
Zurück zum Zitat van der Wekken AJ, Kuiper JL, Saber A, Terpstra MM, Wei J, Hiltermann T, Thunnissen E, Heideman D, Timens W, Schuuring E, et al. Overall survival in EGFR mutated non-small-cell lung cancer patients treated with afatinib after EGFR TKI and resistant mechanisms upon disease progression. PLoS ONE. 2017;12(8):e182885. van der Wekken AJ, Kuiper JL, Saber A, Terpstra MM, Wei J, Hiltermann T, Thunnissen E, Heideman D, Timens W, Schuuring E, et al. Overall survival in EGFR mutated non-small-cell lung cancer patients treated with afatinib after EGFR TKI and resistant mechanisms upon disease progression. PLoS ONE. 2017;12(8):e182885.
61.
Zurück zum Zitat Guo A, Villen J, Kornhauser J, Lee KA, Stokes MP, Rikova K, Possemato A, Nardone J, Innocenti G, Wetzel R, et al. Signaling networks assembled by oncogenic EGFR and c-Met. Proc Natl Acad Sci USA. 2008;105(2):692–7.CrossRefPubMedPubMedCentral Guo A, Villen J, Kornhauser J, Lee KA, Stokes MP, Rikova K, Possemato A, Nardone J, Innocenti G, Wetzel R, et al. Signaling networks assembled by oncogenic EGFR and c-Met. Proc Natl Acad Sci USA. 2008;105(2):692–7.CrossRefPubMedPubMedCentral
62.
Zurück zum Zitat Azuma K, Kawahara A, Sonoda K, Nakashima K, Tashiro K, Watari K, Izumi H, Kage M, Kuwano M, Ono M, et al. FGFR1 activation is an escape mechanism in human lung cancer cells resistant to afatinib, a pan-EGFR family kinase inhibitor. Oncotarget. 2014;5(15):5908–19.CrossRefPubMedPubMedCentral Azuma K, Kawahara A, Sonoda K, Nakashima K, Tashiro K, Watari K, Izumi H, Kage M, Kuwano M, Ono M, et al. FGFR1 activation is an escape mechanism in human lung cancer cells resistant to afatinib, a pan-EGFR family kinase inhibitor. Oncotarget. 2014;5(15):5908–19.CrossRefPubMedPubMedCentral
63.
64.
Zurück zum Zitat Bruner JK, Ma HS, Li L, Qin A, Rudek MA, Jones RJ, Levis MJ, Pratz KW, Pratilas CA, Small D. Adaptation to TKI treatment reactivates ERK signaling in tyrosine kinase-driven leukemias and other malignancies. Cancer Res. 2017;77(20):5554–63.CrossRefPubMed Bruner JK, Ma HS, Li L, Qin A, Rudek MA, Jones RJ, Levis MJ, Pratz KW, Pratilas CA, Small D. Adaptation to TKI treatment reactivates ERK signaling in tyrosine kinase-driven leukemias and other malignancies. Cancer Res. 2017;77(20):5554–63.CrossRefPubMed
65.
Zurück zum Zitat Wu DW, Chen TC, Huang HS, Lee H. TC-N19, a novel dual inhibitor of EGFR and cMET, efficiently overcomes EGFR-TKI resistance in non-small-cell lung cancer cells. Cell Death Dis. 2016;7(6):e2290.CrossRefPubMedPubMedCentral Wu DW, Chen TC, Huang HS, Lee H. TC-N19, a novel dual inhibitor of EGFR and cMET, efficiently overcomes EGFR-TKI resistance in non-small-cell lung cancer cells. Cell Death Dis. 2016;7(6):e2290.CrossRefPubMedPubMedCentral
66.
Zurück zum Zitat Wells SJ, Robinson BG, Gagel RF, Dralle H, Fagin JA, Santoro M, Baudin E, Elisei R, Jarzab B, Vasselli JR, et al. Vandetanib in patients with locally advanced or metastatic medullary thyroid cancer: a randomized, double-blind phase III trial. J Clin Oncol. 2012;30(2):134–41.CrossRefPubMed Wells SJ, Robinson BG, Gagel RF, Dralle H, Fagin JA, Santoro M, Baudin E, Elisei R, Jarzab B, Vasselli JR, et al. Vandetanib in patients with locally advanced or metastatic medullary thyroid cancer: a randomized, double-blind phase III trial. J Clin Oncol. 2012;30(2):134–41.CrossRefPubMed
67.
Zurück zum Zitat Traxler P, Allegrini PR, Brandt R, Brueggen J, Cozens R, Fabbro D, Grosios K, Lane HA, McSheehy P, Mestan J, et al. AEE788: a dual family epidermal growth factor receptor/ErbB2 and vascular endothelial growth factor receptor tyrosine kinase inhibitor with antitumor and antiangiogenic activity. Cancer Res. 2004;64(14):4931–41.CrossRefPubMed Traxler P, Allegrini PR, Brandt R, Brueggen J, Cozens R, Fabbro D, Grosios K, Lane HA, McSheehy P, Mestan J, et al. AEE788: a dual family epidermal growth factor receptor/ErbB2 and vascular endothelial growth factor receptor tyrosine kinase inhibitor with antitumor and antiangiogenic activity. Cancer Res. 2004;64(14):4931–41.CrossRefPubMed
68.
Zurück zum Zitat Juengel E, Engler J, Mickuckyte A, Jones J, Hudak L, Jonas D, Blaheta RA. Effects of combined valproic acid and the epidermal growth factor/vascular endothelial growth factor receptor tyrosine kinase inhibitor AEE788 on renal cell carcinoma cell lines in vitro. BJU Int. 2010;105(4):549–57.CrossRefPubMed Juengel E, Engler J, Mickuckyte A, Jones J, Hudak L, Jonas D, Blaheta RA. Effects of combined valproic acid and the epidermal growth factor/vascular endothelial growth factor receptor tyrosine kinase inhibitor AEE788 on renal cell carcinoma cell lines in vitro. BJU Int. 2010;105(4):549–57.CrossRefPubMed
69.
Zurück zum Zitat Frodin M, Mezheyeuski A, Corvigno S, Harmenberg U, Sandstrom P, Egevad L, Johansson M, Ostman A. Perivascular PDGFR-beta is an independent marker for prognosis in renal cell carcinoma. Br J Cancer. 2017;116(2):195–201.CrossRefPubMed Frodin M, Mezheyeuski A, Corvigno S, Harmenberg U, Sandstrom P, Egevad L, Johansson M, Ostman A. Perivascular PDGFR-beta is an independent marker for prognosis in renal cell carcinoma. Br J Cancer. 2017;116(2):195–201.CrossRefPubMed
70.
Zurück zum Zitat Roskoski RJ. Vascular endothelial growth factor (VEGF) and VEGF receptor inhibitors in the treatment of renal cell carcinomas. Pharmacol Res. 2017;120:116–32.CrossRefPubMed Roskoski RJ. Vascular endothelial growth factor (VEGF) and VEGF receptor inhibitors in the treatment of renal cell carcinomas. Pharmacol Res. 2017;120:116–32.CrossRefPubMed
71.
Zurück zum Zitat Albiges L, Guegan J, Le Formal A, Verkarre V, Rioux-Leclercq N, Sibony M, Bernhard JC, Camparo P, Merabet Z, Molinie V, et al. MET is a potential target across all papillary renal cell carcinomas: result from a large molecular study of pRCC with CGH array and matching gene expression array. Clin Cancer Res. 2014;20(13):3411–21.CrossRefPubMed Albiges L, Guegan J, Le Formal A, Verkarre V, Rioux-Leclercq N, Sibony M, Bernhard JC, Camparo P, Merabet Z, Molinie V, et al. MET is a potential target across all papillary renal cell carcinomas: result from a large molecular study of pRCC with CGH array and matching gene expression array. Clin Cancer Res. 2014;20(13):3411–21.CrossRefPubMed
72.
Zurück zum Zitat Shin SJ, Jeon YK, Kim PJ, Cho YM, Koh J, Chung DH, Go H. Clinicopathologic analysis of PD-L1 and PD-L2 expression in renal cell carcinoma: association with oncogenic proteins status. Ann Surg Oncol. 2016;23(2):694–702.CrossRefPubMed Shin SJ, Jeon YK, Kim PJ, Cho YM, Koh J, Chung DH, Go H. Clinicopathologic analysis of PD-L1 and PD-L2 expression in renal cell carcinoma: association with oncogenic proteins status. Ann Surg Oncol. 2016;23(2):694–702.CrossRefPubMed
73.
Zurück zum Zitat Ciamporcero E, Miles KM, Adelaiye R, Ramakrishnan S, Shen L, Ku S, Pizzimenti S, Sennino B, Barrera G, Pili R. Combination strategy targeting VEGF and HGF/c-met in human renal cell carcinoma models. Mol Cancer Ther. 2015;14(1):101–10.CrossRefPubMed Ciamporcero E, Miles KM, Adelaiye R, Ramakrishnan S, Shen L, Ku S, Pizzimenti S, Sennino B, Barrera G, Pili R. Combination strategy targeting VEGF and HGF/c-met in human renal cell carcinoma models. Mol Cancer Ther. 2015;14(1):101–10.CrossRefPubMed
74.
Zurück zum Zitat Choueiri TK, Halabi S, Sanford BL, Hahn O, Michaelson MD, Walsh MK, Feldman DR, Olencki T, Picus J, Small EJ, et al. Cabozantinib versus sunitinib as initial targeted therapy for patients with metastatic renal cell carcinoma of poor or intermediate risk: the alliance A031203 CABOSUN trial. J Clin Oncol. 2017;35(6):591–7.CrossRefPubMed Choueiri TK, Halabi S, Sanford BL, Hahn O, Michaelson MD, Walsh MK, Feldman DR, Olencki T, Picus J, Small EJ, et al. Cabozantinib versus sunitinib as initial targeted therapy for patients with metastatic renal cell carcinoma of poor or intermediate risk: the alliance A031203 CABOSUN trial. J Clin Oncol. 2017;35(6):591–7.CrossRefPubMed
75.
Zurück zum Zitat Liefers-Visser J, Meijering R, Reyners A, van der Zee A, de Jong S. IGF system targeted therapy: therapeutic opportunities for ovarian cancer. Cancer Treat Rev. 2017;60:90–9.CrossRefPubMed Liefers-Visser J, Meijering R, Reyners A, van der Zee A, de Jong S. IGF system targeted therapy: therapeutic opportunities for ovarian cancer. Cancer Treat Rev. 2017;60:90–9.CrossRefPubMed
76.
Zurück zum Zitat Solarek W, Czarnecka AM, Escudier B, Bielecka ZF, Lian F, Szczylik C. Insulin and IGFs in renal cancer risk and progression. Endocr Relat Cancer. 2015;22(5):R253–64.CrossRefPubMed Solarek W, Czarnecka AM, Escudier B, Bielecka ZF, Lian F, Szczylik C. Insulin and IGFs in renal cancer risk and progression. Endocr Relat Cancer. 2015;22(5):R253–64.CrossRefPubMed
77.
Zurück zum Zitat Cardillo TM, Trisal P, Arrojo R, Goldenberg DM, Chang CH. Targeting both IGF-1R and mTOR synergistically inhibits growth of renal cell carcinoma in vitro. BMC Cancer. 2013;13:170.CrossRefPubMedPubMedCentral Cardillo TM, Trisal P, Arrojo R, Goldenberg DM, Chang CH. Targeting both IGF-1R and mTOR synergistically inhibits growth of renal cell carcinoma in vitro. BMC Cancer. 2013;13:170.CrossRefPubMedPubMedCentral
78.
79.
Zurück zum Zitat Lin S, Zhang Q, Shao X, Zhang T, Xue C, Shi S, Zhao D, Lin Y. IGF-1 promotes angiogenesis in endothelial cells/adipose-derived stem cells co-culture system with activation of PI3K/Akt signal pathway. Cell Prolif. 2017. https://doi.org/10.1111/cpr.12390. Lin S, Zhang Q, Shao X, Zhang T, Xue C, Shi S, Zhao D, Lin Y. IGF-1 promotes angiogenesis in endothelial cells/adipose-derived stem cells co-culture system with activation of PI3K/Akt signal pathway. Cell Prolif. 2017. https://​doi.​org/​10.​1111/​cpr.​12390.
80.
Zurück zum Zitat Vazquez-Martin A, Cufi S, Oliveras-Ferraros C, Torres-Garcia VZ, Corominas-Faja B, Cuyas E, Bonavia R, Visa J, Martin-Castillo B, Barrajon-Catalan E, et al. IGF-1R/epithelial-to-mesenchymal transition (EMT) crosstalk suppresses the erlotinib-sensitizing effect of EGFR exon 19 deletion mutations. Sci Rep. 2013;3:2560.CrossRefPubMedPubMedCentral Vazquez-Martin A, Cufi S, Oliveras-Ferraros C, Torres-Garcia VZ, Corominas-Faja B, Cuyas E, Bonavia R, Visa J, Martin-Castillo B, Barrajon-Catalan E, et al. IGF-1R/epithelial-to-mesenchymal transition (EMT) crosstalk suppresses the erlotinib-sensitizing effect of EGFR exon 19 deletion mutations. Sci Rep. 2013;3:2560.CrossRefPubMedPubMedCentral
81.
Zurück zum Zitat Rapraeger AC, Ell BJ, Roy M, Li X, Morrison OR, Thomas GM, Beauvais DM. Vascular endothelial-cadherin stimulates syndecan-1-coupled insulin-like growth factor-1 receptor and cross-talk between alphaVbeta3 integrin and vascular endothelial growth factor receptor 2 at the onset of endothelial cell dissemination during angiogenesis. FEBS J. 2013;280(10):2194–206.CrossRefPubMedPubMedCentral Rapraeger AC, Ell BJ, Roy M, Li X, Morrison OR, Thomas GM, Beauvais DM. Vascular endothelial-cadherin stimulates syndecan-1-coupled insulin-like growth factor-1 receptor and cross-talk between alphaVbeta3 integrin and vascular endothelial growth factor receptor 2 at the onset of endothelial cell dissemination during angiogenesis. FEBS J. 2013;280(10):2194–206.CrossRefPubMedPubMedCentral
82.
Zurück zum Zitat Shen Y, Zeng L, Novosyadlyy R, Forest A, Zhu A, Korytko A, Zhang H, Eastman SW, Topper M, Hindi S, et al. A bi-functional antibody-receptor domain fusion protein simultaneously targeting IGF-IR and VEGF for degradation. MABS-AUSTIN. 2015;7(5):931–45.CrossRef Shen Y, Zeng L, Novosyadlyy R, Forest A, Zhu A, Korytko A, Zhang H, Eastman SW, Topper M, Hindi S, et al. A bi-functional antibody-receptor domain fusion protein simultaneously targeting IGF-IR and VEGF for degradation. MABS-AUSTIN. 2015;7(5):931–45.CrossRef
83.
Zurück zum Zitat Cao Y, Cao R, Hedlund EM. R regulation of tumor angiogenesis and metastasis by FGF and PDGF signaling pathways. J Mol Med (Berl). 2008;86(7):785–9.CrossRef Cao Y, Cao R, Hedlund EM. R regulation of tumor angiogenesis and metastasis by FGF and PDGF signaling pathways. J Mol Med (Berl). 2008;86(7):785–9.CrossRef
84.
Zurück zum Zitat De la Cruz-Morcillo MA, Berger J, Sanchez-Prieto R, Saada S, Naves T, Guillaudeau A, Perraud A, Sindou P, Lacroix A, Descazeaud A, et al. p75 neurotrophin receptor and pro-BDNF promote cell survival and migration in clear cell renal cell carcinoma. Oncotarget. 2016;7(23):34480–97.PubMedPubMedCentral De la Cruz-Morcillo MA, Berger J, Sanchez-Prieto R, Saada S, Naves T, Guillaudeau A, Perraud A, Sindou P, Lacroix A, Descazeaud A, et al. p75 neurotrophin receptor and pro-BDNF promote cell survival and migration in clear cell renal cell carcinoma. Oncotarget. 2016;7(23):34480–97.PubMedPubMedCentral
85.
Zurück zum Zitat Zhang P, Xing Z, Li X, Song Y, Zhao J, Xiao Y, Xing Y. Tyrosine receptor kinase B silencing inhibits anoikisresistance and improves anticancer efficiency of sorafenib in human renal cancer cells. Int J Oncol. 2016;48(4):1417–25.CrossRefPubMed Zhang P, Xing Z, Li X, Song Y, Zhao J, Xiao Y, Xing Y. Tyrosine receptor kinase B silencing inhibits anoikisresistance and improves anticancer efficiency of sorafenib in human renal cancer cells. Int J Oncol. 2016;48(4):1417–25.CrossRefPubMed
86.
87.
Zurück zum Zitat Wang J, Chen J, Guo Y, Wang B, Chu H. Strategies targeting angiogenesis in advanced non-small cell lung cancer. Oncotarget. 2017;8(32):53854–72.PubMedPubMedCentral Wang J, Chen J, Guo Y, Wang B, Chu H. Strategies targeting angiogenesis in advanced non-small cell lung cancer. Oncotarget. 2017;8(32):53854–72.PubMedPubMedCentral
88.
Zurück zum Zitat Martinez-Saez O, Gajate BP, Alonso-Gordoa T, Molina-Cerrillo J, Grande E. Targeting HIF-2 alpha in clear cell renal cell carcinoma: a promising therapeutic strategy. Crit Rev Oncol Hematol. 2017;111:117–23.CrossRefPubMed Martinez-Saez O, Gajate BP, Alonso-Gordoa T, Molina-Cerrillo J, Grande E. Targeting HIF-2 alpha in clear cell renal cell carcinoma: a promising therapeutic strategy. Crit Rev Oncol Hematol. 2017;111:117–23.CrossRefPubMed
89.
Zurück zum Zitat Cho H, Kaelin WG. Targeting HIF2 in clear cell renal cell carcinoma. Cold Spring Harb Symp Quant Biol. 2016;81:113–21.CrossRefPubMed Cho H, Kaelin WG. Targeting HIF2 in clear cell renal cell carcinoma. Cold Spring Harb Symp Quant Biol. 2016;81:113–21.CrossRefPubMed
90.
Zurück zum Zitat Prior C, Perez-Gracia JL, Garcia-Donas J, Rodriguez-Antona C, Guruceaga E, Esteban E, Suarez C, Castellano D, Del AA, Lozano MD, et al. Identification of tissue microRNAs predictive of sunitinib activity in patients with metastatic renal cell carcinoma. PLoS ONE. 2014;9(1):e86263.CrossRefPubMedPubMedCentral Prior C, Perez-Gracia JL, Garcia-Donas J, Rodriguez-Antona C, Guruceaga E, Esteban E, Suarez C, Castellano D, Del AA, Lozano MD, et al. Identification of tissue microRNAs predictive of sunitinib activity in patients with metastatic renal cell carcinoma. PLoS ONE. 2014;9(1):e86263.CrossRefPubMedPubMedCentral
Metadaten
Titel
Crosstalk between VEGFR and other receptor tyrosine kinases for TKI therapy of metastatic renal cell carcinoma
verfasst von
Yongchang Lai
Zhijian Zhao
Tao Zeng
Xiongfa Liang
Dong Chen
Xiaolu Duan
Guohua Zeng
Wenqi Wu
Publikationsdatum
01.12.2018
Verlag
BioMed Central
Erschienen in
Cancer Cell International / Ausgabe 1/2018
Elektronische ISSN: 1475-2867
DOI
https://doi.org/10.1186/s12935-018-0530-2

Weitere Artikel der Ausgabe 1/2018

Cancer Cell International 1/2018 Zur Ausgabe

Nodal-negativ nach neoadjuvanter Chemo: Axilladissektion verzichtbar?

03.05.2024 Mammakarzinom Nachrichten

Wenn bei Mammakarzinomen durch eine neoadjuvante Chemotherapie ein Downstaging von nodal-positiv zu nodal-negativ gelingt, scheint es auch ohne Axilladissektion nur selten zu axillären Rezidiven zu kommen.

Wo hapert es noch bei der Umsetzung der POMGAT-Leitlinie?

03.05.2024 DCK 2024 Kongressbericht

Seit November 2023 gibt es evidenzbasierte Empfehlungen zum perioperativen Management bei gastrointestinalen Tumoren (POMGAT) auf S3-Niveau. Vieles wird schon entsprechend der Empfehlungen durchgeführt. Wo es im Alltag noch hapert, zeigt eine Umfrage in einem Klinikverbund.

Bestrahlung nach Prostatektomie: mehr Schaden als Nutzen?

02.05.2024 Prostatakarzinom Nachrichten

Eine adjuvante Radiotherapie nach radikaler Prostata-Op. bringt den Betroffenen wahrscheinlich keinen Vorteil. Im Gegenteil: Durch die Bestrahlung steigt offenbar das Risiko für Harn- und Stuhlinkontinenz.

Endlich: Zi zeigt, mit welchen PVS Praxen zufrieden sind

IT für Ärzte Nachrichten

Darauf haben viele Praxen gewartet: Das Zi hat eine Liste von Praxisverwaltungssystemen veröffentlicht, die von Nutzern positiv bewertet werden. Eine gute Grundlage für wechselwillige Ärzte und Psychotherapeuten.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.