Skip to main content
Erschienen in: Journal of Gastrointestinal Cancer 2/2019

06.02.2019 | Review Article

Curcumin and Gastric Cancer: a Review on Mechanisms of Action

verfasst von: Tohid Hassanalilou, Saeid Ghavamzadeh, Leila Khalili

Erschienen in: Journal of Gastrointestinal Cancer | Ausgabe 2/2019

Einloggen, um Zugang zu erhalten

Abstract

Background and Aim

Gastric cancer, as the fourth cause of death in women and third in men with malignant tumors, is now threatening people’s lives worldwide. Natural anti-tumor products are potential anti-cancer agents with fewer by-effects. Curcumin, an herbal product, has been used as a cosmetic and food additive and as a traditional herbal medicine for thousands of years in Asian countries. Several studies revealed that curcumin can inhibit the invasion and proliferation of gastric cancer cells. This paper analyzes existing data from animal and in vitro studies in order to highlight the mechanisms of therapeutic effects of curcumin in gastric cancer.

Methods

Science Direct and Pub Med databases were searched by using “curcumin” and “gastric cancer” for searching the studies aiming the application of curcumin and the beneficial effects of curcumin in gastric cancer control and treatment.

Results

These results suggested that curcumin can suppress multiple signaling pathways and inhibit cancer cell proliferation, invasion, metastasis, and angiogenesis. According to the studies, curcumin can inhibit gastric cancer by several mechanisms including decreasing proliferation, inducing apoptosis, and reducing chemo-resistance in gastric cancer cells.

Conclusions

The findings of present paper provided novel perceptions about the mechanisms of curcumin action in gastric cancer cell growth inhibition and its therapeutic strategies for gastric cancer control. So, curcumin could be considered as a novel therapeutic strategy to control gastric cancer cell growth.
Literatur
1.
Zurück zum Zitat Xiao X-y, Hao M, X-y Y, Ba Q, Li M, Ni S-j, et al. Licochalcone A inhibits growth of gastric cancer cells by arresting cell cycle progression and inducing apoptosis. Cancer Lett. 2011;302(1):69–75.PubMedCrossRef Xiao X-y, Hao M, X-y Y, Ba Q, Li M, Ni S-j, et al. Licochalcone A inhibits growth of gastric cancer cells by arresting cell cycle progression and inducing apoptosis. Cancer Lett. 2011;302(1):69–75.PubMedCrossRef
2.
Zurück zum Zitat Shah MA, Kelsen DP. Gastric cancer: a primer on the epidemiology and biology of the disease and an overview of the medical management of advanced disease. J Natl Compr Cancer Netw. 2010;8(4):437–47.CrossRef Shah MA, Kelsen DP. Gastric cancer: a primer on the epidemiology and biology of the disease and an overview of the medical management of advanced disease. J Natl Compr Cancer Netw. 2010;8(4):437–47.CrossRef
3.
Zurück zum Zitat Maleki D, Homayouni A, Khalili L, Golkhalkhali B. Probiotics in cancer prevention, updating the evidence. Probiotics, Prebiotics, and Synbiotics: Bioactive Foods in Health Promotion. 2015:781–91. Maleki D, Homayouni A, Khalili L, Golkhalkhali B. Probiotics in cancer prevention, updating the evidence. Probiotics, Prebiotics, and Synbiotics: Bioactive Foods in Health Promotion. 2015:781–91.
4.
Zurück zum Zitat Dennis T, Fanous M, Mousa S. Natural products for chemopreventive and adjunctive therapy in oncologic disease. Nutr Cancer. 2009;61(5):587–97.PubMedCrossRef Dennis T, Fanous M, Mousa S. Natural products for chemopreventive and adjunctive therapy in oncologic disease. Nutr Cancer. 2009;61(5):587–97.PubMedCrossRef
5.
Zurück zum Zitat Anand P, Kunnumakara AB, Sundaram C, Harikumar KB, Tharakan ST, Lai OS, et al. Cancer is a preventable disease that requires major lifestyle changes. Pharm Res. 2008;25(9):2097–116.PubMedPubMedCentralCrossRef Anand P, Kunnumakara AB, Sundaram C, Harikumar KB, Tharakan ST, Lai OS, et al. Cancer is a preventable disease that requires major lifestyle changes. Pharm Res. 2008;25(9):2097–116.PubMedPubMedCentralCrossRef
6.
Zurück zum Zitat Kewitz S, Volkmer I, Staege MS. Curcuma contra cancer? Curcumin and Hodgkin’s lymphoma. Cancer Growth Metastasis. 2013;6:35. Kewitz S, Volkmer I, Staege MS. Curcuma contra cancer? Curcumin and Hodgkin’s lymphoma. Cancer Growth Metastasis. 2013;6:35.
7.
Zurück zum Zitat Gupta SC, Patchva S, Aggarwal BB. Therapeutic roles of curcumin: lessons learned from clinical trials. AAPS J. 2013;15(1):195–218.PubMedCrossRef Gupta SC, Patchva S, Aggarwal BB. Therapeutic roles of curcumin: lessons learned from clinical trials. AAPS J. 2013;15(1):195–218.PubMedCrossRef
8.
Zurück zum Zitat Aggarwal BB, Sundaram C, Malani N, Ichikawa H. Curcumin: the Indian solid gold. InThe molecular targets and therapeutic uses of curcumin in health and disease. Boston, MA: Springer; 2007. p. 1–75. Aggarwal BB, Sundaram C, Malani N, Ichikawa H. Curcumin: the Indian solid gold. InThe molecular targets and therapeutic uses of curcumin in health and disease. Boston, MA: Springer; 2007. p. 1–75.
9.
Zurück zum Zitat Zhou X, Wang W, Li P, Zheng Z, Tu Y, Zhang Y, et al. Curcumin enhances the effects of 5-fluorouracil and oxaliplatin in inducing gastric cancer cell apoptosis both in vitro and in vivo. Oncol Res. 2016;23(1–2):29–34. Zhou X, Wang W, Li P, Zheng Z, Tu Y, Zhang Y, et al. Curcumin enhances the effects of 5-fluorouracil and oxaliplatin in inducing gastric cancer cell apoptosis both in vitro and in vivo. Oncol Res. 2016;23(1–2):29–34.
10.
Zurück zum Zitat Li W, Zhou Y, Yang J, Li H, Zhang H, Zheng P. Curcumin induces apoptotic cell death and protective autophagy in human gastric cancer cells. Oncol Rep. 2017;37(6):3459–66.PubMedCrossRef Li W, Zhou Y, Yang J, Li H, Zhang H, Zheng P. Curcumin induces apoptotic cell death and protective autophagy in human gastric cancer cells. Oncol Rep. 2017;37(6):3459–66.PubMedCrossRef
11.
Zurück zum Zitat Azuine M, Kayal J, Bhide S. Protective role of aqueous turmeric extract against mutagenicity of direct-acting carcinogens as well as benzo [a] pyrene-induced genotoxicity and carcinogenicity. J Cancer Res Clin Oncol. 1992;118(6):447–52.PubMedCrossRef Azuine M, Kayal J, Bhide S. Protective role of aqueous turmeric extract against mutagenicity of direct-acting carcinogens as well as benzo [a] pyrene-induced genotoxicity and carcinogenicity. J Cancer Res Clin Oncol. 1992;118(6):447–52.PubMedCrossRef
12.
Zurück zum Zitat Subramaniam D, May R, Sureban SM, Lee KB, George R, Kuppusamy P, et al. Diphenyl difluoroketone: a curcumin derivative with potent in vivo anticancer activity. Cancer Res. 2008;68(6):1962–9.PubMedCrossRef Subramaniam D, May R, Sureban SM, Lee KB, George R, Kuppusamy P, et al. Diphenyl difluoroketone: a curcumin derivative with potent in vivo anticancer activity. Cancer Res. 2008;68(6):1962–9.PubMedCrossRef
13.
Zurück zum Zitat Moragoda L, Jaszewski R, Majumdar AP. Curcumin induced modulation of cell cycle and apoptosis in gastric and colon cancer cells. Gastroenterology. 2001;120(5):A666.CrossRef Moragoda L, Jaszewski R, Majumdar AP. Curcumin induced modulation of cell cycle and apoptosis in gastric and colon cancer cells. Gastroenterology. 2001;120(5):A666.CrossRef
14.
Zurück zum Zitat Gao C, Ding Z, Liang B, Chen N, Cheng D. Study on the effects of curcumin on angiogenesis. Zhong Yao Cai. 2003;26(7):499–502.PubMed Gao C, Ding Z, Liang B, Chen N, Cheng D. Study on the effects of curcumin on angiogenesis. Zhong Yao Cai. 2003;26(7):499–502.PubMed
15.
Zurück zum Zitat Cai X-Z, Wang J, Xiao-Dong L, Wang G-L, Liu F-N, Cheng M-S, et al. Curcumin suppresses proliferation and invasion in human gastric cancer cells by down-regulation of PAK1 activity and cyclin D1 expression. Cancer Biol Ther. 2009;8(14):1360–8.PubMedCrossRef Cai X-Z, Wang J, Xiao-Dong L, Wang G-L, Liu F-N, Cheng M-S, et al. Curcumin suppresses proliferation and invasion in human gastric cancer cells by down-regulation of PAK1 activity and cyclin D1 expression. Cancer Biol Ther. 2009;8(14):1360–8.PubMedCrossRef
16.
Zurück zum Zitat Tu SP, Jin H, Shi JD, Zhu LM, Suo Y, Lu G, et al. Curcumin induces the differentiation of myeloid-derived suppressor cells and inhibits their interaction with cancer cells and related tumor growth. Cancer Prev Res. 2012;5(2):205–15.CrossRef Tu SP, Jin H, Shi JD, Zhu LM, Suo Y, Lu G, et al. Curcumin induces the differentiation of myeloid-derived suppressor cells and inhibits their interaction with cancer cells and related tumor growth. Cancer Prev Res. 2012;5(2):205–15.CrossRef
17.
Zurück zum Zitat Yu L-L, Wu J-G, Dai N, Yu H-G, Si J-Μ. Curcumin reverses chemoresistance of human gastric cancer cells by downregulating the NF-κB transcription factor. Oncol Rep. 2011;26(5):1197–203.PubMed Yu L-L, Wu J-G, Dai N, Yu H-G, Si J-Μ. Curcumin reverses chemoresistance of human gastric cancer cells by downregulating the NF-κB transcription factor. Oncol Rep. 2011;26(5):1197–203.PubMed
18.
Zurück zum Zitat Koo JY, Kim HJ, Jung K-O, Park K-Y. Curcumin inhibits the growth of AGS human gastric carcinoma cells in vitro and shows synergism with 5-fluorouracil. J Med Food. 2004;7(2):117–21.PubMedCrossRef Koo JY, Kim HJ, Jung K-O, Park K-Y. Curcumin inhibits the growth of AGS human gastric carcinoma cells in vitro and shows synergism with 5-fluorouracil. J Med Food. 2004;7(2):117–21.PubMedCrossRef
19.
Zurück zum Zitat Qin H, Wei L, Zhang J, Tang J. Study on functions and mechanism of curcumin in inducing gastric carcinoma BGC apoptosis. Chinese journal of cellular and molecular immunology. 2011;27(11):1227–30. Qin H, Wei L, Zhang J, Tang J. Study on functions and mechanism of curcumin in inducing gastric carcinoma BGC apoptosis. Chinese journal of cellular and molecular immunology. 2011;27(11):1227–30.
20.
Zurück zum Zitat Cai X, Huang W, Qiao Y, Du S, Chen Y, Chen D, et al. Inhibitory effects of curcumin on gastric cancer cells: a proteomic study of molecular targets. Phytomedicine. 2013;20(6):495–505.PubMedCrossRef Cai X, Huang W, Qiao Y, Du S, Chen Y, Chen D, et al. Inhibitory effects of curcumin on gastric cancer cells: a proteomic study of molecular targets. Phytomedicine. 2013;20(6):495–505.PubMedCrossRef
21.
Zurück zum Zitat Hasan M, Belhaj N, Benachour H, Barberi-Heyob M, Kahn C, Jabbari E, et al. Liposome encapsulation of curcumin: physico-chemical characterizations and effects on MCF7 cancer cell proliferation. Int J Pharm. 2014;461(1):519–28.PubMedCrossRef Hasan M, Belhaj N, Benachour H, Barberi-Heyob M, Kahn C, Jabbari E, et al. Liposome encapsulation of curcumin: physico-chemical characterizations and effects on MCF7 cancer cell proliferation. Int J Pharm. 2014;461(1):519–28.PubMedCrossRef
22.
Zurück zum Zitat Gostjeva EV, Thilly WG. Stem cell stages and the origins of colon cancer. Stem Cell Rev. 2005;1(3):243–51.PubMedCrossRef Gostjeva EV, Thilly WG. Stem cell stages and the origins of colon cancer. Stem Cell Rev. 2005;1(3):243–51.PubMedCrossRef
23.
Zurück zum Zitat Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci. 2003;100(7):3983–8.PubMedCrossRefPubMedCentral Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci. 2003;100(7):3983–8.PubMedCrossRefPubMedCentral
24.
Zurück zum Zitat Fang D, Nguyen TK, Leishear K, Finko R, Kulp AN, Hotz S, et al. A tumorigenic subpopulation with stem cell properties in melanomas. Cancer Res. 2005;65(20):9328–37.PubMedCrossRef Fang D, Nguyen TK, Leishear K, Finko R, Kulp AN, Hotz S, et al. A tumorigenic subpopulation with stem cell properties in melanomas. Cancer Res. 2005;65(20):9328–37.PubMedCrossRef
25.
Zurück zum Zitat Collins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ. Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res. 2005;65(23):10946–51.PubMedCrossRef Collins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ. Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res. 2005;65(23):10946–51.PubMedCrossRef
26.
Zurück zum Zitat Gibbs CP, Kukekov VG, Reith JD, Tchigrinova O, Suslov ON, Scott EW, et al. Stem-like cells in bone sarcomas: implications for tumorigenesis. Neoplasia. 2005;7(11):967–76.PubMedPubMedCentralCrossRef Gibbs CP, Kukekov VG, Reith JD, Tchigrinova O, Suslov ON, Scott EW, et al. Stem-like cells in bone sarcomas: implications for tumorigenesis. Neoplasia. 2005;7(11):967–76.PubMedPubMedCentralCrossRef
27.
Zurück zum Zitat Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, et al. Identification of human brain tumour initiating cells. Nature. 2004;432(7015):396–401.PubMedCrossRef Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, et al. Identification of human brain tumour initiating cells. Nature. 2004;432(7015):396–401.PubMedCrossRef
28.
Zurück zum Zitat Mirzaei M, Mahmoodi M, Hajizadeh M, Bagrezaei F, Akbarpoor V, Bahramabadi R. The survay of curcumin effect on the expressional profile of OCT4, Nanog and Nucleostemin genes in AGS (adenocarcinoma) cancer cell line. Community Health J. 2014;8(2):19–27. Mirzaei M, Mahmoodi M, Hajizadeh M, Bagrezaei F, Akbarpoor V, Bahramabadi R. The survay of curcumin effect on the expressional profile of OCT4, Nanog and Nucleostemin genes in AGS (adenocarcinoma) cancer cell line. Community Health J. 2014;8(2):19–27.
29.
Zurück zum Zitat Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature. 2001;414(6859):105–11.PubMedCrossRef Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature. 2001;414(6859):105–11.PubMedCrossRef
30.
Zurück zum Zitat Avery S, Inniss K, Moore H. The regulation of self-renewal in human embryonic stem cells. Stem Cells Dev. 2006;15(5):729–40.PubMedCrossRef Avery S, Inniss K, Moore H. The regulation of self-renewal in human embryonic stem cells. Stem Cells Dev. 2006;15(5):729–40.PubMedCrossRef
31.
Zurück zum Zitat Yazd EF, Rafiee MR, Soleimani M, Tavallaei M, Salmani MK, Mowla SJ. OCT4B1, a novel spliced variant of OCT4, generates a stable truncated protein with a potential role in stress response. Cancer Lett. 2011;309(2):170–5.CrossRef Yazd EF, Rafiee MR, Soleimani M, Tavallaei M, Salmani MK, Mowla SJ. OCT4B1, a novel spliced variant of OCT4, generates a stable truncated protein with a potential role in stress response. Cancer Lett. 2011;309(2):170–5.CrossRef
32.
Zurück zum Zitat Kern MJ, Argao EA, Potter SS. Homeobox genes and heart development. Trends Cardiovasc Med. 1995;5(2):47–54.PubMedCrossRef Kern MJ, Argao EA, Potter SS. Homeobox genes and heart development. Trends Cardiovasc Med. 1995;5(2):47–54.PubMedCrossRef
33.
Zurück zum Zitat Masui S, Nakatake Y, Toyooka Y, Shimosato D, Yagi R, Takahashi K, et al. Pluripotency governed by Sox2 via regulation of Oct3/4 expression in mouse embryonic stem cells. Nat Cell Biol. 2007;9(6):625–35.PubMedCrossRef Masui S, Nakatake Y, Toyooka Y, Shimosato D, Yagi R, Takahashi K, et al. Pluripotency governed by Sox2 via regulation of Oct3/4 expression in mouse embryonic stem cells. Nat Cell Biol. 2007;9(6):625–35.PubMedCrossRef
34.
Zurück zum Zitat Kumar R, Gururaj AE, Barnes CJ. p21-activated kinases in cancer. Nat Rev Cancer. 2006;6(6):459–71.PubMedCrossRef Kumar R, Gururaj AE, Barnes CJ. p21-activated kinases in cancer. Nat Rev Cancer. 2006;6(6):459–71.PubMedCrossRef
35.
Zurück zum Zitat Nheu TV, He H, Hirokawa Y, Tamaki K, Florin L, Schmitz ML, et al. The K252a derivatives, inhibitors for the PAK/MLK kinase family, selectively block the growth of HAS transformants. Cancer J. 2002;8(4):328–36.PubMedCrossRef Nheu TV, He H, Hirokawa Y, Tamaki K, Florin L, Schmitz ML, et al. The K252a derivatives, inhibitors for the PAK/MLK kinase family, selectively block the growth of HAS transformants. Cancer J. 2002;8(4):328–36.PubMedCrossRef
36.
Zurück zum Zitat Eswaran J, Lee WH, Debreczeni JÉ, Filippakopoulos P, Turnbull A, Fedorov O, et al. Crystal structures of the p21-activated kinases PAK4, PAK5, and PAK6 reveal catalytic domain plasticity of active group II PAKs. Structure. 2007;15(2):201–13.PubMedPubMedCentralCrossRef Eswaran J, Lee WH, Debreczeni JÉ, Filippakopoulos P, Turnbull A, Fedorov O, et al. Crystal structures of the p21-activated kinases PAK4, PAK5, and PAK6 reveal catalytic domain plasticity of active group II PAKs. Structure. 2007;15(2):201–13.PubMedPubMedCentralCrossRef
37.
Zurück zum Zitat Porchia LM, Guerra M, Wang YC, Zhang Y, Espinosa AV, Shinohara M, et al. OSU03012, a celecoxib derivative, directly targets p21 activated kinase. Mol Pharmacol. 2007.. Porchia LM, Guerra M, Wang YC, Zhang Y, Espinosa AV, Shinohara M, et al. OSU03012, a celecoxib derivative, directly targets p21 activated kinase. Mol Pharmacol. 2007..
38.
39.
40.
Zurück zum Zitat Balasenthil S, Sahin AA, Barnes CJ, Wang R-A, Pestell RG, Vadlamudi RK, et al. p21-activated kinase-1 signaling mediates cyclin D1 expression in mammary epithelial and cancer cells. J Biol Chem. 2004;279(2):1422–8.PubMedCrossRef Balasenthil S, Sahin AA, Barnes CJ, Wang R-A, Pestell RG, Vadlamudi RK, et al. p21-activated kinase-1 signaling mediates cyclin D1 expression in mammary epithelial and cancer cells. J Biol Chem. 2004;279(2):1422–8.PubMedCrossRef
41.
Zurück zum Zitat Haghi A, Azimi H, Rahimi R. A comprehensive review on pharmacotherapeutics of three phytochemicals, curcumin, quercetin, and Allicin, in the treatment of gastric cancer. J Gastrointest Cancer. 2017;48(4):314–20.PubMedCrossRef Haghi A, Azimi H, Rahimi R. A comprehensive review on pharmacotherapeutics of three phytochemicals, curcumin, quercetin, and Allicin, in the treatment of gastric cancer. J Gastrointest Cancer. 2017;48(4):314–20.PubMedCrossRef
43.
Zurück zum Zitat Joyce D, Bouzahzah B, Fu M, Albanese C, D’Amico M, Steer J, et al. Integration of Rac-dependent regulation of cyclin D1 transcription through a nuclear factor-κB-dependent pathway. J Biol Chem. 1999;274(36):25245–9.PubMedCrossRef Joyce D, Bouzahzah B, Fu M, Albanese C, D’Amico M, Steer J, et al. Integration of Rac-dependent regulation of cyclin D1 transcription through a nuclear factor-κB-dependent pathway. J Biol Chem. 1999;274(36):25245–9.PubMedCrossRef
44.
Zurück zum Zitat Foryst-Ludwig A, Naumann M. p21-activated kinase 1 activates the nuclear factor κB (NF-κB)-inducing kinase-IκB kinases NF-κB pathway and proinflammatory cytokines in helicobacter pylori infection. J Biol Chem. 2000;275(50):39779–85.PubMedCrossRef Foryst-Ludwig A, Naumann M. p21-activated kinase 1 activates the nuclear factor κB (NF-κB)-inducing kinase-IκB kinases NF-κB pathway and proinflammatory cytokines in helicobacter pylori infection. J Biol Chem. 2000;275(50):39779–85.PubMedCrossRef
46.
Zurück zum Zitat Li Y, Zhang S, Geng J-X, Hu X-Y. Curcumin inhibits human non-small cell lung cancer A549 cell proliferation through regulation of Bcl-2/Bax and cytochrome C. Asian Pac J Cancer Prev. 2013;14(8):4599–602.PubMedCrossRef Li Y, Zhang S, Geng J-X, Hu X-Y. Curcumin inhibits human non-small cell lung cancer A549 cell proliferation through regulation of Bcl-2/Bax and cytochrome C. Asian Pac J Cancer Prev. 2013;14(8):4599–602.PubMedCrossRef
47.
Zurück zum Zitat Singh DV, Agarwal S, Singh P, Godbole MM, Misra K. Curcumin conjugates induce apoptosis via a mitochondrion dependent pathway in MCF-7 and MDA-MB-231 cell lines. Asian Pac J Cancer Prev. 2013;14(10):5797–804.PubMedCrossRef Singh DV, Agarwal S, Singh P, Godbole MM, Misra K. Curcumin conjugates induce apoptosis via a mitochondrion dependent pathway in MCF-7 and MDA-MB-231 cell lines. Asian Pac J Cancer Prev. 2013;14(10):5797–804.PubMedCrossRef
48.
Zurück zum Zitat Gopal PK, Paul M, Paul S. Curcumin induces caspase mediated apoptosis in JURKAT cells by disrupting the redox balance. Asian Pac J Cancer Prev APJCP. 2013;15(1):93–100.CrossRef Gopal PK, Paul M, Paul S. Curcumin induces caspase mediated apoptosis in JURKAT cells by disrupting the redox balance. Asian Pac J Cancer Prev APJCP. 2013;15(1):93–100.CrossRef
49.
Zurück zum Zitat Zhang G-H, Cai L-J, Wang Y-F, Zhou Y-H, An Y-F, Liu Y-C, et al. Novel compound PS-101 exhibits selective inhibition in non-small-cell lung cancer cell by blocking the EGFR-driven antiapoptotic pathway. Biochem Pharmacol. 2013;86(12):1721–30.PubMedCrossRef Zhang G-H, Cai L-J, Wang Y-F, Zhou Y-H, An Y-F, Liu Y-C, et al. Novel compound PS-101 exhibits selective inhibition in non-small-cell lung cancer cell by blocking the EGFR-driven antiapoptotic pathway. Biochem Pharmacol. 2013;86(12):1721–30.PubMedCrossRef
50.
Zurück zum Zitat Wang Y-Q, Zhang S-J, Lu H, Yang B, Ye L-F, Zhang R-SAC. 21-steroidal glycoside isolated from the roots of Cynanchum auriculatum induces cell cycle arrest and apoptosis in human gastric cancer sgc-7901 cells. Evid Based Complement Alternat Med. 2013;2013:1–7. Wang Y-Q, Zhang S-J, Lu H, Yang B, Ye L-F, Zhang R-SAC. 21-steroidal glycoside isolated from the roots of Cynanchum auriculatum induces cell cycle arrest and apoptosis in human gastric cancer sgc-7901 cells. Evid Based Complement Alternat Med. 2013;2013:1–7.
51.
Zurück zum Zitat Tomek M, Akiyama T, Dass CR. Role of Bcl-2 in tumour cell survival and implications for pharmacotherapy. J Pharm Pharmacol. 2012;64(12):1695–702.PubMedCrossRef Tomek M, Akiyama T, Dass CR. Role of Bcl-2 in tumour cell survival and implications for pharmacotherapy. J Pharm Pharmacol. 2012;64(12):1695–702.PubMedCrossRef
52.
Zurück zum Zitat Liu B, Xu N, Man Y, Shen H, Avital I, Stojadinovic A, et al. Apoptosis in living animals is assisted by scavenger cells and thus may not mainly go through the cytochrome C-caspase pathway. J Cancer. 2013;4(9):716–23.PubMedPubMedCentralCrossRef Liu B, Xu N, Man Y, Shen H, Avital I, Stojadinovic A, et al. Apoptosis in living animals is assisted by scavenger cells and thus may not mainly go through the cytochrome C-caspase pathway. J Cancer. 2013;4(9):716–23.PubMedPubMedCentralCrossRef
53.
Zurück zum Zitat Méndez J, Morales Cruz M, Delgado Y, Figueroa CM, Orellano EA, Morales M, et al. Delivery of chemically glycosylated cytochrome c immobilized in mesoporous silica nanoparticles induces apoptosis in HeLa cancer cells. Mol Pharm. 2013;11(1):102–11.PubMedPubMedCentralCrossRef Méndez J, Morales Cruz M, Delgado Y, Figueroa CM, Orellano EA, Morales M, et al. Delivery of chemically glycosylated cytochrome c immobilized in mesoporous silica nanoparticles induces apoptosis in HeLa cancer cells. Mol Pharm. 2013;11(1):102–11.PubMedPubMedCentralCrossRef
54.
Zurück zum Zitat Sharoar MG, Islam MI, Shahnawaz M, Shin SY, Park I-S. Amyloid β binds procaspase-9 to inhibit assembly of Apaf-1 apoptosome and intrinsic apoptosis pathway. Biochim Biophys Acta (BBA) Mol Cell Res. 2014;1843(4):685–93.CrossRef Sharoar MG, Islam MI, Shahnawaz M, Shin SY, Park I-S. Amyloid β binds procaspase-9 to inhibit assembly of Apaf-1 apoptosome and intrinsic apoptosis pathway. Biochim Biophys Acta (BBA) Mol Cell Res. 2014;1843(4):685–93.CrossRef
55.
Zurück zum Zitat Tyagi M, Bhattacharyya R, Bauri AK, Patro BS, Chattopadhyay S. DNA damage dependent activation of checkpoint kinase-1 and mitogen-activated protein kinase-p38 are required in malabaricone C-induced mitochondrial cell death. Biochim Biophys Acta Gen Subj. 2014;1840(3):1014–27.CrossRef Tyagi M, Bhattacharyya R, Bauri AK, Patro BS, Chattopadhyay S. DNA damage dependent activation of checkpoint kinase-1 and mitogen-activated protein kinase-p38 are required in malabaricone C-induced mitochondrial cell death. Biochim Biophys Acta Gen Subj. 2014;1840(3):1014–27.CrossRef
56.
Zurück zum Zitat Ma J-Q, Ding J, Zhang L, Liu C-M. Hepatoprotective properties of sesamin against CCl 4 induced oxidative stress-mediated apoptosis in mice via JNK pathway. Food Chem Toxicol. 2014;64:41–8.PubMedCrossRef Ma J-Q, Ding J, Zhang L, Liu C-M. Hepatoprotective properties of sesamin against CCl 4 induced oxidative stress-mediated apoptosis in mice via JNK pathway. Food Chem Toxicol. 2014;64:41–8.PubMedCrossRef
57.
Zurück zum Zitat Gajek A, Denel M, Bukowska B, Rogalska A, Marczak A. Pro-apoptotic activity of new analog of anthracyclines–WP 631 in advanced ovarian cancer cell line. Toxicol in Vitro. 2014;28(2):273–81.PubMedCrossRef Gajek A, Denel M, Bukowska B, Rogalska A, Marczak A. Pro-apoptotic activity of new analog of anthracyclines–WP 631 in advanced ovarian cancer cell line. Toxicol in Vitro. 2014;28(2):273–81.PubMedCrossRef
58.
Zurück zum Zitat Xue X, Yu J-L, Sun D-Q, Kong F, Qu X, Zou W, et al. Curcumin induces apoptosis in SGC-7901 gastric adenocarcinoma cells via regulation of mitochondrial signaling pathways. Asian Pac J Cancer Prev. 2013;15(9):3987–92.CrossRef Xue X, Yu J-L, Sun D-Q, Kong F, Qu X, Zou W, et al. Curcumin induces apoptosis in SGC-7901 gastric adenocarcinoma cells via regulation of mitochondrial signaling pathways. Asian Pac J Cancer Prev. 2013;15(9):3987–92.CrossRef
59.
Zurück zum Zitat Zhang C, Yuan X-r, Li H-y, Zhao Z-j, Liao Y-w, Wang X-y, et al. Downregualtion of dynamin-related protein 1 attenuates glutamate-induced excitotoxicity via regulating mitochondrial function in a calcium dependent manner in HT22 cells. Biochem Biophys Res Commun. 2014;443(1):138–43.PubMedCrossRef Zhang C, Yuan X-r, Li H-y, Zhao Z-j, Liao Y-w, Wang X-y, et al. Downregualtion of dynamin-related protein 1 attenuates glutamate-induced excitotoxicity via regulating mitochondrial function in a calcium dependent manner in HT22 cells. Biochem Biophys Res Commun. 2014;443(1):138–43.PubMedCrossRef
60.
Zurück zum Zitat Aporta A, Catalán E, Galán-Malo P, Ramírez-Labrada A, Pérez M, Azaceta G, et al. Granulysin induces apoptotic cell death and cleavage of the autophagy regulator Atg5 in human hematological tumors. Biochem Pharmacol. 2014;87(3):410–23.PubMedCrossRef Aporta A, Catalán E, Galán-Malo P, Ramírez-Labrada A, Pérez M, Azaceta G, et al. Granulysin induces apoptotic cell death and cleavage of the autophagy regulator Atg5 in human hematological tumors. Biochem Pharmacol. 2014;87(3):410–23.PubMedCrossRef
61.
Zurück zum Zitat Chan SL, Yu VC. Proteins of the BCL-2 family in apoptosis signalling: from mechanistic insights to therapeutic opportunities. Clin Exp Pharmacol Physiol. 2004;31(3):119–28.PubMedCrossRef Chan SL, Yu VC. Proteins of the BCL-2 family in apoptosis signalling: from mechanistic insights to therapeutic opportunities. Clin Exp Pharmacol Physiol. 2004;31(3):119–28.PubMedCrossRef
62.
Zurück zum Zitat Liu Z, Lu H, Jiang Z, Pastuszyn A, Chien-an AH. Apolipoprotein L6, a novel proapoptotic Bcl-2 homology 3–only protein, induces mitochondria-mediated apoptosis in cancer cells 1 1 Howard Hughes Medical Institute research aids to University of New Mexico Cancer Research and Treatment Center, American Cancer Society ACS-IRG-192 grant 412488–00095, and University of New Mexico Research Allocation Committee grant C-2222-RAC (CA. A. Hu). Mol Cancer Res. 2005;3(1):21–31.PubMed Liu Z, Lu H, Jiang Z, Pastuszyn A, Chien-an AH. Apolipoprotein L6, a novel proapoptotic Bcl-2 homology 3–only protein, induces mitochondria-mediated apoptosis in cancer cells 1 1 Howard Hughes Medical Institute research aids to University of New Mexico Cancer Research and Treatment Center, American Cancer Society ACS-IRG-192 grant 412488–00095, and University of New Mexico Research Allocation Committee grant C-2222-RAC (CA. A. Hu). Mol Cancer Res. 2005;3(1):21–31.PubMed
63.
Zurück zum Zitat Ko J-K, Choi K-H, Peng J, He F, Zhang Z, Weisleder N, et al. Amphipathic tail-anchoring peptide and Bcl-2 homology domain-3 (BH3) peptides from Bcl-2 family proteins induce apoptosis through different mechanisms. J Biol Chem. 2011;286(11):9038–48.PubMedCrossRef Ko J-K, Choi K-H, Peng J, He F, Zhang Z, Weisleder N, et al. Amphipathic tail-anchoring peptide and Bcl-2 homology domain-3 (BH3) peptides from Bcl-2 family proteins induce apoptosis through different mechanisms. J Biol Chem. 2011;286(11):9038–48.PubMedCrossRef
64.
Zurück zum Zitat Lucena FRS, de Araújo LC, Rodrigues MD, da Silva TG, Pereira VR, Militão GC, et al. Induction of cancer cell death by apoptosis and slow release of 5-fluoracil from metal-organic frameworks Cu-BTC. Biomed Pharmacother. 2013;67(8):707–13.PubMedCrossRef Lucena FRS, de Araújo LC, Rodrigues MD, da Silva TG, Pereira VR, Militão GC, et al. Induction of cancer cell death by apoptosis and slow release of 5-fluoracil from metal-organic frameworks Cu-BTC. Biomed Pharmacother. 2013;67(8):707–13.PubMedCrossRef
65.
Zurück zum Zitat Luo C, Du Z, Wei X, Chen G, Fu Z. Bisdemethoxycurcumin attenuates gastric adenocarcinoma growth by inducing mitochondrial dysfunction. Oncol Lett. 2015;9(1):270–4.PubMedCrossRef Luo C, Du Z, Wei X, Chen G, Fu Z. Bisdemethoxycurcumin attenuates gastric adenocarcinoma growth by inducing mitochondrial dysfunction. Oncol Lett. 2015;9(1):270–4.PubMedCrossRef
66.
Zurück zum Zitat Hu H, Zhang Z, Zhao J, Wang T, Xu Y. Effect of opening of mitochondrial ATP-sensitive K+ channel on the distribution of cytochrome C and on proliferation of human pulmonary arterial smooth muscle cells in hypoxia. Sheng li xue bao. 2006;58(3):262–8.PubMed Hu H, Zhang Z, Zhao J, Wang T, Xu Y. Effect of opening of mitochondrial ATP-sensitive K+ channel on the distribution of cytochrome C and on proliferation of human pulmonary arterial smooth muscle cells in hypoxia. Sheng li xue bao. 2006;58(3):262–8.PubMed
67.
Zurück zum Zitat Bodenstine TM, Vaidya KS, Ismail A, Beck BH, Diers AR, Edmonds MD, et al. Subsets of ATP-sensitive potassium channel (K ATP) inhibitors increase gap junctional intercellular communication in metastatic cancer cell lines independent of SUR expression. FEBS Lett. 2012;586(1):27–31.PubMedCrossRef Bodenstine TM, Vaidya KS, Ismail A, Beck BH, Diers AR, Edmonds MD, et al. Subsets of ATP-sensitive potassium channel (K ATP) inhibitors increase gap junctional intercellular communication in metastatic cancer cell lines independent of SUR expression. FEBS Lett. 2012;586(1):27–31.PubMedCrossRef
68.
Zurück zum Zitat Zhang S, Zhou F, Ding JH, Zhou XQ, Sun XL, Hu G. ATP-sensitive potassium channel opener iptakalim protects against MPP+-induced astrocytic apoptosis via mitochondria and mitogen-activated protein kinase signal pathways. J Neurochem. 2007;103(2):569–79.PubMedCrossRef Zhang S, Zhou F, Ding JH, Zhou XQ, Sun XL, Hu G. ATP-sensitive potassium channel opener iptakalim protects against MPP+-induced astrocytic apoptosis via mitochondria and mitogen-activated protein kinase signal pathways. J Neurochem. 2007;103(2):569–79.PubMedCrossRef
69.
Zurück zum Zitat Garg V, Hu K. Protein kinase C isoform-dependent modulation of ATP-sensitive K+ channels in mitochondrial inner membrane. Am J Phys Heart Circ Phys. 2007;293(1):H322–H32. Garg V, Hu K. Protein kinase C isoform-dependent modulation of ATP-sensitive K+ channels in mitochondrial inner membrane. Am J Phys Heart Circ Phys. 2007;293(1):H322–H32.
70.
Zurück zum Zitat Ru Q, Tian X, Wu Y-X, Wu R-H, Pi M-S, Li C-Y. Voltage-gated and ATP-sensitive K+ channels are associated with cell proliferation and tumorigenesis of human glioma. Oncol Rep. 2014;31(2):842–8.PubMedCrossRef Ru Q, Tian X, Wu Y-X, Wu R-H, Pi M-S, Li C-Y. Voltage-gated and ATP-sensitive K+ channels are associated with cell proliferation and tumorigenesis of human glioma. Oncol Rep. 2014;31(2):842–8.PubMedCrossRef
71.
Zurück zum Zitat Liu X, Sun K, Song A, Zhang X, Zhang X, He X. Curcumin inhibits proliferation of gastric cancer cells by impairing ATP-sensitive potassium channel opening. World J Surg Oncol. 2014;12(1):389.PubMedPubMedCentralCrossRef Liu X, Sun K, Song A, Zhang X, Zhang X, He X. Curcumin inhibits proliferation of gastric cancer cells by impairing ATP-sensitive potassium channel opening. World J Surg Oncol. 2014;12(1):389.PubMedPubMedCentralCrossRef
72.
Zurück zum Zitat Tang X-q, Bi H, Feng J-q, Cao J-g. Effect of curcumin on multidrug resistance in resistant human gastric carcinoma cell line SGC7901/VCR. Acta Pharmacol Sin. 2005;26(8):1009–16.PubMedCrossRef Tang X-q, Bi H, Feng J-q, Cao J-g. Effect of curcumin on multidrug resistance in resistant human gastric carcinoma cell line SGC7901/VCR. Acta Pharmacol Sin. 2005;26(8):1009–16.PubMedCrossRef
73.
Zurück zum Zitat Lehne G. P-glycoprotein as a drug target in the treatment of multidrug resistant cancer. Curr Drug Targets. 2000;1(1):85–99.PubMedCrossRef Lehne G. P-glycoprotein as a drug target in the treatment of multidrug resistant cancer. Curr Drug Targets. 2000;1(1):85–99.PubMedCrossRef
74.
Zurück zum Zitat Hamilton KO, Topp E, Makagiansar I, Siahaan T, Yazdanian M, Audus KL. Multidrug resistance-associated protein-1 functional activity in Calu-3 cells. J Pharmacol Exp Ther. 2001;298(3):1199–205.PubMed Hamilton KO, Topp E, Makagiansar I, Siahaan T, Yazdanian M, Audus KL. Multidrug resistance-associated protein-1 functional activity in Calu-3 cells. J Pharmacol Exp Ther. 2001;298(3):1199–205.PubMed
75.
Zurück zum Zitat Arceci RJ. Tumor cell survival and resistance to therapy. Curr Opin Hematol. 1996;3(4):279–87.PubMedCrossRef Arceci RJ. Tumor cell survival and resistance to therapy. Curr Opin Hematol. 1996;3(4):279–87.PubMedCrossRef
76.
Zurück zum Zitat Huang R, Yu H, Hu F, Tian S. Strategy to enhance efficacy of doxorubicin by curcumin as a potent Pgp inhibitor in gastric cancer. Biomedical Research. 2017;28(3):1231-6. Huang R, Yu H, Hu F, Tian S. Strategy to enhance efficacy of doxorubicin by curcumin as a potent Pgp inhibitor in gastric cancer. Biomedical Research. 2017;28(3):1231-6.
77.
Zurück zum Zitat Johnstone RW, Cretney E, Smyth MJ. P-glycoprotein protects leukemia cells against caspase-dependent, but not caspase-independent, cell death. Blood. 1999;93(3):1075–85.PubMed Johnstone RW, Cretney E, Smyth MJ. P-glycoprotein protects leukemia cells against caspase-dependent, but not caspase-independent, cell death. Blood. 1999;93(3):1075–85.PubMed
78.
Zurück zum Zitat Smyth MJ, Krasovskis E, Sutton VR, Johnstone RW. The drug efflux protein, P-glycoprotein, additionally protects drug-resistant tumor cells from multiple forms of caspase-dependent apoptosis. Proc Natl Acad Sci. 1998;95(12):7024–9.PubMedCrossRefPubMedCentral Smyth MJ, Krasovskis E, Sutton VR, Johnstone RW. The drug efflux protein, P-glycoprotein, additionally protects drug-resistant tumor cells from multiple forms of caspase-dependent apoptosis. Proc Natl Acad Sci. 1998;95(12):7024–9.PubMedCrossRefPubMedCentral
79.
Zurück zum Zitat Bielak-Żmijewska A, Piwocka K, Magalska A, Sikora E. P-glycoprotein expression does not change the apoptotic pathway induced by curcumin in HL-60 cells. Cancer Chemother Pharmacol. 2004;53(2):179–85.CrossRef Bielak-Żmijewska A, Piwocka K, Magalska A, Sikora E. P-glycoprotein expression does not change the apoptotic pathway induced by curcumin in HL-60 cells. Cancer Chemother Pharmacol. 2004;53(2):179–85.CrossRef
80.
Zurück zum Zitat Samanta AK, Huang HJ, Le XF, Mao W, Lu KH, Bast RC, et al. MEKK3 expression correlates with nuclear factor κ B activity and with expression of antiapoptotic genes in serous ovarian carcinoma. Cancer. 2009;115(17):3897–908.PubMedCrossRef Samanta AK, Huang HJ, Le XF, Mao W, Lu KH, Bast RC, et al. MEKK3 expression correlates with nuclear factor κ B activity and with expression of antiapoptotic genes in serous ovarian carcinoma. Cancer. 2009;115(17):3897–908.PubMedCrossRef
81.
Zurück zum Zitat Gangadharan C, Thoh M, Manna SK. Inhibition of constitutive activity of nuclear transcription factor kappaB sensitizes doxorubicin-resistant cells to apoptosis (vol 107, pg 203, 2009). J Cell Biochem. 2012;113(10):3299.CrossRef Gangadharan C, Thoh M, Manna SK. Inhibition of constitutive activity of nuclear transcription factor kappaB sensitizes doxorubicin-resistant cells to apoptosis (vol 107, pg 203, 2009). J Cell Biochem. 2012;113(10):3299.CrossRef
82.
Zurück zum Zitat Ammann JU, Haag C, Kasperczyk H, Debatin KM, Fulda S. Sensitization of neuroblastoma cells for TRAIL-induced apoptosis by NF-κB inhibition. Int J Cancer. 2009;124(6):1301–11.PubMedCrossRef Ammann JU, Haag C, Kasperczyk H, Debatin KM, Fulda S. Sensitization of neuroblastoma cells for TRAIL-induced apoptosis by NF-κB inhibition. Int J Cancer. 2009;124(6):1301–11.PubMedCrossRef
83.
Zurück zum Zitat Hussain AR, Ahmed M, Al-Jomah NA, Khan AS, Manogaran P, Sultana M, et al. Curcumin suppresses constitutive activation of nuclear factor-κB and requires functional Bax to induce apoptosis in Burkitt’s lymphoma cell lines. Mol Cancer Ther. 2008;7(10):3318–29.PubMedCrossRef Hussain AR, Ahmed M, Al-Jomah NA, Khan AS, Manogaran P, Sultana M, et al. Curcumin suppresses constitutive activation of nuclear factor-κB and requires functional Bax to induce apoptosis in Burkitt’s lymphoma cell lines. Mol Cancer Ther. 2008;7(10):3318–29.PubMedCrossRef
84.
Zurück zum Zitat Yu L-L, Dai N, Yu H-G, Sun L-M, Si J-M. Akt associates with nuclear factor κB and plays an important role in chemoresistance of gastric cancer cells. Oncol Rep. 2010;24(1):113–9.PubMedCrossRef Yu L-L, Dai N, Yu H-G, Sun L-M, Si J-M. Akt associates with nuclear factor κB and plays an important role in chemoresistance of gastric cancer cells. Oncol Rep. 2010;24(1):113–9.PubMedCrossRef
85.
Zurück zum Zitat Karin M. Nuclear factor-κB in cancer development and progression. Nature. 2006;441(7092):431–6.PubMedCrossRef Karin M. Nuclear factor-κB in cancer development and progression. Nature. 2006;441(7092):431–6.PubMedCrossRef
86.
Zurück zum Zitat Bordoloi D, Kunnumakkara AB. The Potential of Curcumin: A Multitargeting Agent in Cancer Cell Chemosensitization. InRole of Nutraceuticals in Cancer Chemosensitization. 2018;31–60. Bordoloi D, Kunnumakkara AB. The Potential of Curcumin: A Multitargeting Agent in Cancer Cell Chemosensitization. InRole of Nutraceuticals in Cancer Chemosensitization. 2018;31–60.
Metadaten
Titel
Curcumin and Gastric Cancer: a Review on Mechanisms of Action
verfasst von
Tohid Hassanalilou
Saeid Ghavamzadeh
Leila Khalili
Publikationsdatum
06.02.2019
Verlag
Springer US
Erschienen in
Journal of Gastrointestinal Cancer / Ausgabe 2/2019
Print ISSN: 1941-6628
Elektronische ISSN: 1941-6636
DOI
https://doi.org/10.1007/s12029-018-00186-6

Weitere Artikel der Ausgabe 2/2019

Journal of Gastrointestinal Cancer 2/2019 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.