Skip to main content
Erschienen in: Molecular Cancer 1/2010

Open Access 01.12.2010 | Research

Cyclin K and cyclin D1b are oncogenic in myeloma cells

verfasst von: Véronique Marsaud, Guergana Tchakarska, Geoffroy Andrieux, Jian-Miao Liu, Doulaye Dembele, Bernard Jost, Joanna Wdzieczak-Bakala, Jack-Michel Renoir, Brigitte Sola

Erschienen in: Molecular Cancer | Ausgabe 1/2010

Abstract

Background

Aberrant expression of cyclin D1 is a common feature in multiple myeloma (MM) and always associated with mantle cell lymphoma (MCL). CCND1 gene is alternatively spliced to produce two cyclin D1 mRNA isoforms which are translated in two proteins: cyclin D1a and cyclin D1b. Both isoforms are present in MM cell lines and primary cells but their relative role in the tumorigenic process is still elusive.

Results

To test the tumorigenic potential of cyclin D1b in vivo, we generated cell clones derived from the non-CCND1 expressing MM LP-1 cell line, synthesizing either cyclin D1b or cyclin K, a structural homolog and viral oncogenic form of cyclin D1a. Immunocompromised mice injected s.c. with LP-1K or LP-1D1b cells develop tumors at the site of injection. Genome-wide analysis of LP-1-derived cells indicated that several cellular processes were altered by cyclin D1b and/or cyclin K expression such as cell metabolism, signal transduction, regulation of transcription and translation. Importantly, cyclin K and cyclin D1b have no major action on cell cycle or apoptosis regulatory genes. Moreover, they impact differently cell functions. Cyclin K-expressing cells have lost their migration properties and display enhanced clonogenic capacities. Cyclin D1b promotes tumorigenesis through the stimulation of angiogenesis.

Conclusions

Our study indicates that cyclin D1b participates into MM pathogenesis via previously unrevealed actions.
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​1476-4598-9-103) contains supplementary material, which is available to authorized users.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

VM and J-MR performed in vivo experiments; VM performed Q-PCR and IHC assays, GT performed western blots, confocal microscopy and flow cytometry; J-ML and JW-B performed CAM assays; DD and BJ performed microarray analyses and validated statistically the results; GA made computational analyses; VM, J-MR, JW-B, DD and BJ critically revised the manuscript; BS designed experiments, analyzed and interpreted the data, drafted the manuscript. All authors approved the final version of the manuscript and its submission for publication.

Background

Cyclin D1 is a key actor for the development and progression of various cancers including hematological malignancies. The human CCND1 gene generates two mRNA species by alternative splicing [1]. The two corresponding proteins cyclin D1a and D1b differ only in the last 55 amino acids of the carboxy-terminus. Both isoforms possess the N-terminal domain, necessary for retinoblastoma protein (pRb) binding, the cyclin box, required for cyclin-dependent kinase (CDK) binding and activation and the central region, implicated in transcriptional regulation. The PEST sequence which controls protein turn-over and the threonine 286 (Thr286), the site of phosphorylation by glycogen synthase kinase-3β which promotes the nuclear export of cyclin D1 and its degradation through the proteasome pathway [2, 3], are present only in cyclin D1a. The oncogenic potential of cyclin D1 seems restricted to the isoform b as shown in vitro [46]. In transgenic mouse models, inhibition of cyclin D1 proteolysis is the causative factor for mammary carcinomas and B-cell lymphomas [7, 8]. The mechanisms of cyclin D1b-mediated tumorigenesis are not fully understood and could depend on the cellular context and in particular on the concomitant expression of cyclin D1a.
Cyclin K is encoded by Kaposi sarcoma-associated herpes virus (KSHV), a human tumor virus associated with the development of Kaposi sarcoma and lymphoid malignancies in immunocompromised individuals, reviewed in [9]. Cyclin K and cyclin D1 share sequence colinearity and identity. The tumorigenic properties of cyclin K have been demonstrated in transgenic animals in which the lymphocyte compartment has been targeted [10]. In a similar transgenic model, cyclin D1a alone fails to induce leukemogenesis [11, 12].
Mantle cell lymphoma (MCL) and multiple myeloma (MM) are two hematological malignancies for which cyclin D1 expression has been recognized as an oncogenic event [13, 14]. Although cyclin D1a and D1b mRNAs are present in all MCL and MM samples tested, cyclin D1a protein is expressed predominantly [15, 16]. However, a role of cyclin D1b in the leukemogenic process cannot be ruled out. In order to study the oncogenic potential of cyclins D1b and K in the context of mature B cells, we generated several cell clones derived from LP-1 MM cell line, expressing either cyclin D1b, Myc or cyclin K oncogenes. LP-1 cell line was chosen because this MM cell line does not express any cyclin D1 isoform. We report here that cyclin D1b- and cyclin K-expressing LP-1 cells are tumorigenic in vivo in xenograft models. Genome-wide analysis allowed us to describe several mechanisms for cyclin D1b- and K-mediated oncogenesis.

Methods

Generation of LP-1-derived clones

LP-1 MM cell line which does not express cyclin D1 was chosen for the generation of stable transfected clones. GRANTA-519 MCL cell line has the t(11;14)(q13;q32) and expresses high level of cyclin D1a. LP-1 and GRANTA-519 cells were maintained in RPMI 1640 containing 10% fetal calf serum (FCS), L-glutamine and antibiotics (Lonza Verviers SPRL, Verviers, Belgium). pcDNA3-flagged cyclin K [17] (a generous gift of O. Coqueret), pcDNA3-c-Myc (a generous gift of D. Cappellen) and pcDNA3-cyclin D1b [18] encode for the full-length proteins, respectively. LP-1 cells were transfected by electroporation, selected with 500 μg/ml G418, cloned by limiting dilution in 96-well plates. Single clones were individually tested for exogenous protein expression. After three months in culture without loss of transgene expression, G418 was first reduced and finally removed.

Cell cycle analysis by flow cytometry

Exponentially growing LP-1-derived cells were plated at a density of 5 × 105 cells/ml, harvested 24 h later, fixed in ice-cold EtOH 80% in PBS. Cells were treated with 100 μg/ml RNase A and 20 μg/ml propidium iodide (PI) for 30 min at 37°C. Cells were analyzed with an Epics XL flow cytometer and data with the Expo™ 32 software (Beckman Coulter, Villepinte, France).

Matrigel invasion assay

LP-1-derived cells were suspended in FCS-free RPMI 1640 medium and 2 × 104 cells were placed in the upper chamber of transwell inserts coated with Matrigel (BD BioCoat Matrigel Invasion Chamber, BD Biosciences, Le Pont de Claix, France). In the lower compartment, we added RPMI 1640 medium plus 1% FCS. Plates were incubated for 4 h at 37°C to allow migration of cells. After incubation, inserts were carefully removed, washed, fixed and colored to allow cell counting. Results are expressed as the number of cells that invaded the Matrigel. Statistical analysis between two groups was done with the Student's t test.

Clonogenicity assay

The ability of individual cell to grow in semi-solid support was assayed using MethoCult® (StemCell Technologies, Grenoble, France) according to the manufacturer' instructions. Cells were prepared at a density of 3 × 103 cells/ml in Iscove's MDM plus 2% FCS; then added to the same volume (3 ml) of methyl cellulose containing phytohemagglutin-leucocyte conditioned medium (PHA-LCM) as source of growth factor. Cells were dispensed in triplicate in Petri dishes, incubated in humidified atmosphere at 37°C for 10 days. Colonies containing more than 50 cells were counted using inverted microscope and gridded scoring dish.

Immunoblotting

Methods for protein extraction, SDS-PAGE and immunoblotting were described previously [18].

In vivo engraftment experiments

Female, six week-old nude mice (NMRI, Janvier, Le Genest Saint-Isle, France), were inoculated s.c. with 2.5 × 106 (1st set) or 4 × 106 (2nd set) cells of the various clones in Matrigel (BD Biosciences, v/v). Mice were regularly monitored for the development of palpable tumors. Tumor volumes based on caliper measurements were calculated by the ellipsoidal formula [1/2 (length2 × width)]. The first set of animals (five mice per clone) was sacrificed at eight weeks (see Figure 1b). The second series of animals (ten animals per clone) was sacrificed depending on the tumor sizes (see Figure 2a). Tumors were then either fixed in Finefix (Microm Microtech., Francheville, France) or frozen for further analyses. In a third series of experiment, the LP-1D1b clone (5 × 106 cells) was inoculated in Matrigel into the lower flank of nude mice. The day after, 10 μM of either scrambled siRNA (5'-aat tct ccg aac gtg cac gt-3') or siRNA targeting VEGF (5'-aag gag acc ctg atg aga tc-3') were mixed with AteloGene™ (Koken, Cosmo Bio Co., Tokyo, Japan) according to manufacturer's instructions. The mixture (150 μl) was s.c. injected wrapping up the cells at the injection site. Chemical tyrosine kinase (TK) inhibitors targeting VEGFR2/3 (SAR 131675.13, (SAR)) and all FGFR (SSR 128129E.13, (SSR)), a gift of F. Bono, were dissolved in 5% glucose in physiological serum. SAR and SSR were i.v. injected biweekly at 40 mg/kg each, starting at day 1 following inoculation of cells. Each group contained 5 mice. At day 11, volume of tumors was measured as before and the growth of tumors monitored thereafter. The tumor evolution was calculated as the ratio between the volume of tumors at each time point and the volume of the tumors of non treated mice at day 11. Statistical analysis for tumor evolution in each group was done with the Student's t test. During the experiments, mice had free access to food and water and all the experiments were performed at the Common Service of Animal Experimentation (UFR de Pharmacie, Châtenay-Malabry), in accordance to the declaration of Helsinki on animal welfare and with the approval of the ethics committee of the University of Paris 11/CNRS (responsible person V. Dommergue-Dupont).

Immunohistochemistry of tumor sections

Finefix-fixed paraffin embedded 4 μm-sections were deparaffinized in toluene twice for 5 min and rehydrated by using graded EtOH concentrations. After antigen retrieval in citrate buffer pH 6.2 (5 min, 85°C), immunohistochemical labeling with anti-CD138 or anti-CD34 antibodies (Abs) was performed with the Vector Vectastain Elite kit (Vector Laboratories, Burlingame, CA, USA) and 3',3' Diaminobenzidine (DAB) as chromogen. Sections were counterstained with hemalun.

Microarray hybridization, gene expression data and statistical analyses

For each cell line (LP-1cl1, LP-1K and LP-1D1b), total RNA was extracted from four independent cultures with Trizol reagent (Invitrogen, Cergy Pontoise, France) according to the manufacturer' instructions and used for expression analysis on a 25K human oligonucleotide microarray covering most of the known human transcripts. The 50 mers 5'-amino modified oligonucleotides from the RNG/MRC oligonucleotide collection [19] (information available at http://​www.​microarray.​fr:​8080/​merge/​index) were diluted to a final concentration of 50 mM in 50% dimethyl sulfoxide, 100 mM potassium phosphate (pH 8.0) and printed onto hydrogel-coated slides (Nexterion H slides, Schott, Jena, Germany) using a microGrid II arrayer (Genomic Solutions, Cambridge, UK). Total RNAs (200 ng) were amplified by linear PCR and labelled with Cy3 using Bioprime Array CGH Genomic Labelling System Kit (Invitrogen). Total RNA from one culture of LP-1cl1 cells was similarly amplified, labelled with Cy5 and used as a reference probe for hybridization. Each Cy3-labelled probe was co-hybridized with the Cy5 reference probe on microarrays in a G2545A oven (Agilent, Massy, France) at 60°C for 18 h. Microarrays were washed (10 min in 6× SSC, 0.005% Triton-X100; 5 min in 0.1× SSC, 0.0025% Triton-X100) and scanned with a G2565B scanner (Agilent). Raw data were extracted from scanned microarray images (.tif) using Feature Extraction Software v9.5 (Agilent) and normalized using the Quantile method adapted to bicolour microarrays. All the protocols used can be obtained by contacting the microarray and sequencing platform of the IGBMC (web site: http://​www-microarrays.​u-strasbg.​fr/​). In order to select genes that are differentially expressed among the three biological groups (LP-1cl1, LP-1K and LP-1D1b), we performed an analysis of variance using Cy5/Cy3 log2 ratios. To limit the error due to multiple tests, we used permutation of samples for controlling the false discovery rate [20]. Genes with a p-value less than 0.01 were considered to be significant. Moreover, we filtered out genes with a fold change (FC). The FC between LP-1K and LP-1cl1 was calculated as the median value of the 4 replicates ratios in the LP-1K samples over the median value of the 4 replicates ratios in the LP-1cl1 samples. Three FC were calculated: LP-1K vs. LP-1cl1, LP-1D1b vs. LP-1cl1 and LP-1K vs. LP-1D1b and a threshold equal to 2 was used for selecting three lists of significant genes. To design Venn diagram, we used the VENNY software http://​bioinfogp.​cnb.​csic.​es/​tools/​venny/​ and individual gene expression profiles were generated with the TigrMev 4_03 software http://​www.​tm4.​org/​mev.​html. To determine functional relationships between genes, we used DAVID Bioinformatics Resources http://​david.​niaid.​nih.​gov.

Real-time quantitative RT-PCR

To validate the microarray data, we used RNAs previously used for microarray hybridization. Primers for 36B4, CSN2, FGFR3, FHIT, HSP90B1, TUBB2B, TFRC, CD48, LTB, FN1, BCL2, CDK6, GAPDH and UCHL1 genes were designed with the LightCycler® Probe Design software (Roche Diagnostics, Meylan, France). Their sequences are reported in the Additional File 1, Table S1. Q-PCR was carried out in a LightCycler® system (Roche Diagnostics) using the LightCycler® FastStart DNA master SYBR Green I kit (Roche Diagnostics) according to the manufacturer's instructions. Cycles were as follows: a 10 min initial cycle at 95°C, followed by 45 cycles of 10 sec of denaturation at 95°C, 5 sec of annealing at 58°C, and 10 sec of extension at 72°C. The specificity of the fluorescence was verified by the melting curve analysis after each reaction. The relative abundance of each target was normalized to 36B4 expression and the quantification of each mRNA compared to 36B4 was done using the comparative threshold method (Ct).

Tumor engraftment onto chick chorio-allantoic membrane

Fertilized chicken eggs (EARL Morizeau, Dangers, France) were handled as described previously [21]. On embryonic day 10, a plastic ring was placed on chick chorio-allantoic membrane (CAM) and 107 LP-1K or LP-1D1b cells in 30 μl Matrigel (BD Biosciences) were deposited after gentle laceration of the surface. Digital pictures were taken under a stereomicroscope (Nikon SMZ1500) at day 2, 4, 6 of tumor development. Twenty eggs were used for each condition.

Results

Cyclin D1b, cyclin K and c-Myc expressing LP-1-derived clones display tumorigenic properties

Stable LP-1 clones were generated by transfection of cyclin D1b-, cyclin K- or c-Myc-expressing pcDNA3 plasmids or empty pcDNA3 as control. As shown Figure 1a, in the two clones LP-1 D1b (1 and 2), the short isoform b of cyclin D1 was expressed (clone 1) or overexpressed (clone 2) at a level comparable to the one in GRANTA-519 MCL cell line which possesses the t(11;14)(q13;q32) and synthesizes high level of cyclin D1a. Endogenous c-Myc was present in the control LP-1 pcDNA3 clone 1, and exogenous c-Myc was overexpressed (×5) in the two LP-1 c-Myc-expressing clones. In the LP-1 CK clone, cyclin K was detected with the anti-Flag M2 Ab. A representative clone from each series (star in Figure 1a), thereafter referred as LP-1cl1 (control), LP-1K, LP-1 Myc or LP-1D1b was injected s.c. into a first set of five nude mice. Eight weeks after injection, tumors were present at the site of inoculation in 4/5 mice for LP-1K, 5/5 mice for LP-1 Myc and 3/5 mice for LP-1D1b (Figure 1b) but not in mice inoculated with the control clone LP-1cl1. Only one mouse developed a palpable lump (pseudo-tumor, which regresses spontaneously). Macroscopically, tumors were distinguishable from one clone to the other, cyclin D1b-induced tumors being bigger and highly vascularized. After hematoxilin-eosin-safran (HES) staining of fixed tumor sections, histology revealed the presence of typical malignant plasma cells (Figure 1b). In a second series of in vivo experiments, 10 animals per cell line were inoculated. Four weeks after injection, tumors were detected at the site of inoculation in 10/10 mice for LP-1K and 6/10 mice for LP-1D1b (Figure 2a). Five mice from each series were sacrificed and the others monitored for four more weeks. At that time, four more mice in the LP-1D1b series bore tumors. The most striking differences between the two series were the size of the tumors (Figure 2a) and again the rich vascularization of LP-1D1b tumors (data not shown). Immunohistological examination of tumor sections indicated that engrafted tumors contained bona fide myeloma cells expressing CD138 (Figure 2b). Our data show unambiguously that such as c-Myc, cyclin D1b and cyclin K are capable to confer a malignant phenotype to LP-1 MM cells and are oncogenic in vivo.

Cyclin D1b and cyclin K are not mitogenic in LP-1 cells

We used flow cytometry sorting of PI-stained exponentially growing cells to assess the cell proliferation capacities of LP-1-derived clones. As presented in Figure 2c, the overexpression of cyclin D1b, cyclin K or c-Myc did not enhance the percentage of cells within the S phase of the cell cycle. By contrast, both LP-1D1b and LP-1K exhibited spontaneous apoptosis. In LP-1K cells, we observed a concomitant decrease of DNA synthesizing cells. We concluded from these data that the oncogenic properties acquired by LP-1 cells do not rely on an exacerbated proliferation potential.

Cyclin D1b and cyclin K expression alter LP-1 cells transcriptome

We used transcriptome analysis to evaluate cyclin D1b- and cyclin K-induced changes in LP-1 cells. Microarray data and annotations have been deposed in the NIH gene expression Omnibus under accession number GSE15497. A Venn diagram was used to visualize the overlap between three data sets: LP-1K vs. LP-1cl1, LP-1D1b vs. LP-1cl1, LP-1K vs. LP-1D1b (FC>2, Figure 3a). This diagram shows that the expression of cyclin K had major effects on LP-1 transcriptome (593+444+90+1628 sequences were modified); less sequences were altered by both cyclin D1b and cyclin K (444+90) or cyclin D1b alone (156+153). We then filtered sequences to select genes coding for proteins having known biological functions and FC>3 to limit the number of genes to study. The number of genes up- or down-regulated in LP-1K or/and LP-1D1b cells is indicated in Figure 3b. Individual gene expression profiles were generated with the TigrMev 4_03 software (Additional File 2 Figure S1, Additional File 3 Figure S2 and Additional File 4 Figure S3). We then hierarchically clustered genes on the basis of their biological processes (Figure 3c). Numerous genes implicated in metabolism, signal transduction, transport, transcriptional and translational regulations were modified by cyclin K and/or cyclin D1b. Unexpectedly, genes regulating cell cycle, apoptosis, cell proliferation were less numerous. Genes involved in cell structure and cell motion were specifically modified by cyclin K, whereas genes regulating hematopoiesis were modified by cyclin D1b. Our data indicate that the transformation process elicited by cyclin D1b and cyclin K involved a broad range of cellular processes.

Cyclin D1b and cyclin K alter cell cycle and survival genes expression

Real-time RT-PCR was performed for validation of microarray results (Table 1). We found a good correlation between microarray and RT-PCR data for the altered expression of 7 genes in LP-1D1b and 6 genes in LP-1K. Western blots, flow cytometry (data not shown) and immunocytochemical assays further confirmed transcriptional data (Figure 4a, b). Among the genes encoding cell cycle-associated proteins altered in LP-1 derivatives (Table 2 and data not shown), we confirmed the downregulation of cyclin D2 in LP-1D1b cells (FC: -2.05), the downregulation of CDK2 in LP-1K cells (FC: -2.10), the complete disappearance of p18INK4C in LP-1K cells, a clear decrease of p53 level in LP-1K cells (Figure 4a). Although the level of transcription of the TP53 gene itself was not modified in LP-1K vs. LP-1cl1 cells, the transcription of two genes coding for two proteins involved in p53 stabilization were downregulated. These two proteins are the tumor protein p53 inducible protein 3 (TP53I3, FC: -3.57) and binding protein 2 (TP53BP2, FC: -2.12). CDKN2B mRNA was decreased both in LP-1K and LP-1D1b cells. However, at the protein level, no major differences were seen between LP-1cl1 and LP-1D1b whereas p15INK4B disappeared totally in LP-1K cells (Figure 4a). Differences of post-transcriptional mechanisms in each cell line could explain this variation between microarray and western blot data.
Table 1
Real-time quantitative RT-PCR for validation of microarray data
Gene
Microarray data
ΔCt (Ct LP-1D1b-Ct LP-1cl1)
Fold change
FC (microarray)
36B4
nm*
-0.78/-0.52/-0.42**
1
-
CSN2
+7.33
-2.16/-2.70
+7.67/+6.34
+7.33
FGFR3
+5.07
-2.78/-1.62
+11.79/+4.25
+5.09
FHIT
+4.67
-1.41/-1.10
+3.68/+3.68
+4.67
HSP90B1
+2.25
-1.21
+3.20
+2.26
TUBB2B
-2.32
1.01
-1.45
-2.32
TFRC
-6.48
3.77/3.14
-9.51/-6.36
-6.48
CD48
-12.27
4.05/4.18
-9.64/-13.08
-12.27
Gene
Microarray data
ΔCt (Ct LP-1K- Ct LP-1cl1)
Fold change
FC (microarray)
36B4
nm*
-0.25/-0.40/-0.20/-0.36
1
-
LTB
+40.66
-5.7
+43.71
+40.67
FN1
+13.54
-3.55
+8.87
+13.54
BCL2
+3.17
-2.36
+3.89
+3.17
CDK6
-4.14
1.83/1.95
-4.08/-4.43
-4.14
GAPDH
-5.15
1.09
-2.44
-6.15
UCHL1
-63.82
11.11/11.25
-2538/-2797
-63.82
* nm, not modified. **When several numbers are indicated, they refer to the results obtained with different runs of PCR. For each sample, the average Ct value for the internal standard 36B4 was subtracted from the average Ct value for each gene to yield ΔCt. The relative amount of each mRNA compared to the calibrator (36B4) in each run was calculated by the formula N = 2-ΔΔCt to give the fold change. For each gene, the Fc calculated from microarray data (in bold) is reported in the right column.
Table 2
Genes coding for cell cycle regulatory molecules displaying altered expression in LP-1 derivatives (|FC|>3)
Gene
Protein
LP-1D1b vs. cl1
LP-1K vs. cl1
SESN2
Sestrin 2
+3.36*
nm**
DDIT3
DNA-damage-inducible transcript 3
+3.35
nm
CCNB1IP1
Cyclin B1 interacting protein 1
nm
+10.36
RASSF5
Ras association (RalGDS/AP-6) domain family member 5
nm
+4.79
CDNK1A
Cyclin-dependent kinase inhibitor 1A
nm
+4.30
CABLES1
CDK5 and ABL enzyme substract 1
nm
+3.30
MAD2L1
MAD2 mitotic arrest deficient-like 1
nm
-3.13
CCNB2
Cyclin B2
nm
-3.14
GAS2
Growth-arrest specific 2
nm
-3.22
MK167
Antigen identified by monoclonal antibody Ki67
nm
-3.37
PINX1
PIN2-interacting protein 1
nm
-3.57
CCNF
Cyclin F
nm
-3.65
CKS2
CDC28 protein kinase regulatory subunit 2
nm
-3.68
CHMP1A
Chromatin modifying protein 1A
nm
-3.87
CDK6
Cyclin-dependent kinase 6
nm
-4.14
CCNB1
Cyclin B1
nm
-5.23
CDKN3
Cyclin-dependent kinase inhibitor 3
nm
-6.53
CDKN2C
Cyclin-dependent kinase inhibitor 2C (p18)
nm
-8.18
CDKN2B
Cyclin-dependent kinase inhibitor 2B (p15)
-3.75
-2.83
* Numbers are the fold change of the sample compared to LP-1cl1; ** nm, not modified.
Then, we analyzed the status of signalization pathways in LP-1 cells. Indeed, microarray data indicated that either signalization from transmembrane receptors (epithelial growth factor receptor (EGFR), tumor necrosis factor receptor (TNFR), hepatocyte growth factor receptor (HGFR), interleukin-21 receptor (IL-21R) etc.) or signalization molecules belonging to the phosphoinositol-3 kinase (PI3K)/AKT, Janus kinase (JAK)/signal transducer and activator of transcription 3 (STAT3), mitogen-activated protein kinase (MAPK), nuclear factor (NF)-κB could be altered in LP-1 derived cells (Table 3). This was verified by immunoblotting (Figure 4b). The STAT3 pathway is constitutively activated in LP-1 cells. In LP-1K cells, this pathway is overactivated as shown by the hyperphosphorylation of STAT3 both in the cytoplasmic and nuclear compartments. The MAPK pathway is activated in LP-1K cells whereas the p70S6K pathway is activated in LP-1D1b cells. The AKT protein is downregulated in LP-1K cells. These data underline that, although structurally related, cyclin D1b and cyclin K are able to activate/inhibit different signaling pathways controlling survival and/or proliferation.
Table 3
Genes coding for signalization molecules displaying altered expression in LP-1 derivatives (|FC|>3)
Gene
Protein
LP-1D1b vs. cl1
LP-1K vs. cl1
FGFR3
Fibroblast growth factor receptor 3
+5.08*
nm**
AKT3
v-akt oncogene homolog 3
nm
-5.16
MET
HGFR, Met proto-oncogene
nm
-4.33
ITPKA
Inositol 1,4,5-triphosphate 3-kinase A
nm
-3.94
CD81
CD81 molecule
nm
+3.03
PIK3CG
Phosphoinositide 3-kinase gamma
nm
+3.20
DOK6
Docking protein 6
nm
+3.21
MAPK13
MAP kinase 13
nm
+3.25
ECOP
EGFR-overexpressed protein
nm
+3.39
PRKD2
Protein kinase D2
nm
+3.94
DUSP6
Dual specificity phosphatase 6
nm
+8.37
SKAP1
Src kinase associated phosphoprotein
nm
+9.28
SYK
Spleen tyrosine kinase
nm
+9.87
MAPK12
MAP kinase 12
nm
+10.10
BLK
B lymphoid tyrosine kinase
+2.39
+12.25
*, ** see legend of Table 2.
The large number of genes and pathways altered by cyclin D1b and/or cyclin K expression precludes a thorough analysis in this manuscript. We focused on two discrete functions of cyclins D-type identified by the microarray analysis and well-known as support for tumorigenic process: cell migration and angiogenesis.

Cyclin K inhibits migration of LP-1-derived clones and enhances its clonogenic capacities

When observed with an inverted optical microscope, LP-1-derived clones exhibited different morphologies (Figure 5a). Compared to LP-1cl1 cells, LP-1D1b formed clusters of cells whereas LP-1K cells grew individually. At the transcriptional level, LP-1K but not LP-1D1b cells displayed major alterations of genes coding for attachment proteins such as integrins, lamin B, ADAMs, ICAMs, CD47 (Table 4). Explaining new morphological properties of the cells, we found that the gene ITGB7 coding for integrin β7, recognized as a major promoter of MM cell proliferation trough interactions with stroma cells [22] was downregulated in LP-1D1b cells and upregulated in LP-1K cells. LP-1K cells showed enhanced clonogenic capacities when plated in semi-solid medium compared to LP-1cl1 and LP-1D1b which showed similar capacities (Figure 5b). Cyclin D1 regulates cell proliferation and cell migration of mammary epithelial cells through the stabilization of p27Kip1 and its phosphorylation of a Ser10 residue [23]. We analyzed the level and the phosphorylated status of p27Kip1 in LP-1-derived cell clones (Figure 5c). Both the levels of p27Kip1 protein and its phosphorylated form were lower in LP-1D1b cells than in LP-1cl1 and p27Kip1 was no longer expressed in LP-1K cells both in the nuclear and cytoplasmic compartments. These results argue that cyclins D1b and K fail to stabilize p27Kip1. We next studied the migration properties of LP-1-derived clones by the Matrigel invasion assay. Compared to LP-1cl1 cells, LP-1D1b had a similar capacity to migrate whereas LP-1K cells had completely lost this migratory property (Figure 5d).
Table 4
Genes coding for molecules controlling adhesion and movement displaying altered expression in LP-1 derivatives (|FC|>3).
Gene
Protein
LP-1D1b vs. cl1
LP-1K vs. cl1
CX3CR1
Chemokine (C-X-C motif) receptor 1
nm*
+63.24**
CD99
CD99 molecule
nm
+52.47
FXYD5
FXY domain containing ion transport regulator 5
nm
+43.74
CD9
CD9 molecule
nm
+35.80
SPON1
Spondin 1
nm
+21.37
CD4
CD4 molecule
nm
+18.57
CXCL12
Chemokine (C-X-C motif) ligand 12
nm
+17.26
ARGDIB
RhoGDP dissociation inhibitor (GDI) beta
nm
+13.55
FN1
Fibronectin 1
nm
+13.54
SUT3
SUT homolog 3
nm
+13.44
ICAM3
Intracellular adhesion molecule 3
nm
+13.34
LAMB3
Laminin beta 3
nm
+12.74
PCDH1
Protocadherin 1
nm
+12.05
CNTNAP2
Contactin associated protein-like 2
nm
+11.79
MCAM
Melanoma cell adhesion molecule
nm
+10.70
CCL2
Chemokine (C-C motif) ligand 2
nm
+10.09
SYK
Spleen tyrosine kinase
nm
+9.87
ANXA9
Annexin A9
nm
+9.33
LAMA3
Laminin alpha 3
nm
+8.46
LPXN
Leupaxin
nm
+7.86
CD93
CD93 molecule
nm
+7.60
ERBB2IP
Erbb2 interacting protein
nm
+6.12
NRCAM
Neuronal cell adhesion molecule
nm
+6.09
ITGB2
Integrin beta 2
nm
+6.08
PCDH1
Protocadherin 1
nm
+5.77
CD97
CD97 molecule
nm
+5.38
ADAM23
ADAM metallopeptidase domain 23
nm
+4.90
CTGF
Connective tissue growth factor
nm
+4.60
CD36
CD36 molecule
nm
+4.53
NLGN1
Neuroligin
nm
+4.50
CD44
CD 44 molecule
nm
+4.21
CNTNAP2
Contactin associated protein-like 2
nm
+4.03
CD33
CD33 molecule
nm
+4.02
HNT
Neurtrimin
nm
+3.97
SELPLG
Selectin P ligand
nm
+3.92
PKD2
Polycystic kidney disease
nm
+3.80
SIGLEC7
Sialic acid binding Ig-like lectin 7
nm
+3.56
L1CAM
L1 cell adhesion molecule
nm
+3.21
COL18A1
Collagen type XVIII alpha 1
nm
+3.20
ADAM15
ADAM metallopeptidase domain 15
nm
+3.18
CDSN
Corneodesmosin
nm
+3.17
SIGLEC9
Sialic acid binding Ig-like lectin 9
nm
+3.11
NEO1
Neogenin homolog 1
nm
-3.22
TROAP
Trophilin-associated protein
nm
-3.60
ITGA6
Integrin alpha 6
nm
-3.86
ITGAE
Integrin alpha E
nm
-3.96
DST
Distonin
nm
-4.00
COL24A1
Collagen type XXIV alpha 1
nm
-4.07
JAM3
Junctional adhesion molecule 3
nm
-4.26
PKP2
Plakophilin 2
nm
-5.11
SPN
Sialophorin (CD43)
nm
-5.55
JAM2
Junctional adhesion molecule 2
nm
-12.09
ITGB7
Integrin beta7
-4.26
+4.65
*, ** see legend of Table 2.

Cyclin D1b allows neo-angiogenesis of engrafted tumors

LP-1 cells such as myeloma cell lines synthesize angiogenic factors such as vascular endothelial growth factor (VEGF) (data not shown). Cyclin D1b and/or cyclin K expression in LP-1 cells impacted on proangiogenic and antiangiogenic gene expression (Table 5). Compared with LP-1K-, LP-1D1b-derived tumors were highly vascularized (Figure 1b). This was confirmed by IHC after labeling the CD34 antigen present on vessel endothelial cells. As observed in Figure 6a, CD34 staining is detected mainly in LP-1D1b-derived tumors. The CAM assay was performed to evaluate the direct effect of cyclins D1b and K on tumor engraftment and tumor-mediated angiogenesis. Both cyclin D1b- and cyclin K-expressing LP-1 cells were able to generate tumors in the CAM model within few days. As shown in Figure 6b, LP-1D1b cells gave rise to evolutive tumors characterized by higher volume and significantly greater vascularization than LP-1K cells. Tortuous capillaries are visible at the surface of LP-1D1b tumors while LP-1K tumors, characterized by lack of size progress, were not perfused. Thus, cyclin D1b promotes neoangiogenesis and consequently, tumor growth in vivo. To confirm the involvement of neoangiogenesis in tumorigenesis of LP-1D1b cells in xenografts, we injected either once VEGF siRNA (or the control scrambled siRNA) at the vicinity of the injection site or biweekly, chemical FGFR or VEGFR inhibitors, SSR and SAR respectively. As shown Figure 6c, as expected, scrambled siRNA had no effects on tumor evolution. Administration of VEGF siRNA markedly diminished the volume of LP-1D1b-derived tumors for a 15 day-period. After 15 days, no more effects of VEGF siRNA were observed likely due to siRNA degradation and the tumor grew with a rate similar to the one of control. This is in agreement with the reported stability of siRNA in the delivery gel [24]. Importantly, SSR and SAR inhibitors completely abolished the growth of tumors indicating a role of FGFR and VEGFR in the tumor evolution. The capacity of VEGF siRNA as well as TK inhibitors to inhibit tumor growth strongly supports microarray and CAM data and the conclusion that cyclin D1b favors tumorigenesis through activation of a neoangiogenic process.
Table 5
Genes coding for proangiogenic or antiangiogenic molecules displaying altered expression in LP-1 derivatives (|FC|>3).
Gene
Protein
LP-1D1b vs. cl1
LP-1K vs. cl1
FGFR3
Fibroblast growth factor receptor 3
+5.08*
nm**
TNFRSF10B
Tumor necrosis factor receptor superfamily member 10 B
+3.52
nm
GATA4
GATA binding protein 4
+2.15
nm
WARS
Tryptophanyl-tRNA synthase
+4.01
nm
IGFBP3
Insulin-like growth factor binding protein 3
nm
+26.42
EPAS1
Endothelial PAS domain protein 1
nm
+17.39
CXCL12
CXC chemokine ligand 12
nm
+17.26
SLIT3
SLIT homolog 3
nm
+13.44
CCL2
Chemokine ligand 2
nm
+10.09
CXCL16
CXC chemokine ligand 16
nm
+6.67
F11R
F11 receptor
nm
+5.56
RUNX1
Runt-related transcription factor 1
nm
+5.13
EGFL7
EGF-like domain multiple 7
nm
+4.68
CTGF
Connective tissue growth factor
nm
+4.60
TNFSF13
Tumor necrosis factor superfamily member 13
nm
+4.57
SERPINB6
Serpin peptidase inhibitor clade B member 6
nm
+4.53
PDGFB
Platelet-derived growth factor beta
nm
+3.99
CXCL3
CXC chemokine ligand 3
nm
+3.76
SERPINE2
Serpin peptidase inhibitor clade E member 2
nm
+3.40
SERPINB1
Serpin peptidase inhibitor clade B member 1
nm
+3.36
IL8
Interleukin 8
nm
+3.30
MMP13
Matrix metallopeptidase 13
nm
+3.12
IFNGR1
Interferon gamma receptor 1
nm
+3.06
HAND2
Heart and neural crest derivatives
nm
-3.04
NRP2
Neuropilin
nm
-3.25
PTPRF
Protein tyrosine phosphatase receptor type F
nm
-4.20
RUNX1T1
Runt-related transcription factor 1 translocated to 1
nm
-4.79
ADM
Adrenomedullin
nm
-6.66
ID1
Inhibitor of DNA binding 1
nm
-8.32
LAMA3
Laminin alpha 3
nm
+8.45
IFI16
Interferon gamma-inducible protein 16
nm
+4.96
JAG2
Jagged 2
nm
+4.77
ZFP36
Zinc finger protein 36
nm
+3.60
ZFP36L2
Zinc finger protein 36 C3H type-like 2
nm
+3.60
BMPR1A
Bone morphogenetic protein receptor type 1A
nm
-3.65
PTPRM
Protein tyrosine phosphatase receprot type M
+2.11
+10.38
JDB2
Jun dimerization protein 2
+3.70
+3.74
IGF2BP1
Insulin-like growth factor 2 binding protein 1
-2.52
-5.70
COL9A1
Collagen type IX alpha 1
-3.41
-4.87
COL24A1
Collagen type XXIV alpha 1
-2.42
-4.07
DAPK1
Death-associated protein kinase 1
+2.48
-3.06
*, ** see legend of Table 2. Proangiogenic and antiangiogenic (in bold) genes are indicated.

Discussion

Cyclin D1 is overexpressed in a broad range of solid malignancies, expressed in lymphoid tumors such as MM and MCL and not in their normal counterparts. However, in vivo studies failed to reveal a strong oncogenic potential of the conventional cyclin D1, referred to cyclin D1a [11, 12]. By contrast, the cyclin D1 isoform b and the mutant cyclin D1 T286A are capable to transform cells in vitro [46] and to induce tumors in vivo [7, 8]. These two forms of cyclin D1 share a strict nuclear localization suggesting that nuclear functions of cyclin D1 are necessary and/or sufficient for tumor formation. Mutations of the CCND1 gene disrupting the phosphorylation at Thr286 and thereby leading to nuclear accumulation of cyclin D1 have been described in endometrial and esophageal carcinomas further reinforcing this notion [25, 26]. However, the molecular mechanisms of cyclin D1b-driven tumorigenesis are not fully elucidated. In cultured cells, cyclin D1b is not capable to activate its catalytic partner CDK4 and in turn, does not regulate positively the cell cycle [5, 18], retains a strong transcriptional co-repressor activity, displays reduced binding to p27Kip1 and does not control cell migration [23]. Here we show that, in the context of MM cells, cyclin D1b confers a full malignant phenotype and allows cells engraftment in immune-compromised mice. The genome-wide analysis of LP-1D1b cells extends our understanding of the biological properties of cyclin D1b. Moreover, we have identified genes regulated by cyclin K, a viral oncogenic homolog of cyclin D1a and confirm the fundamental differences between the two cyclin D1 isoforms.

Cyclin D1b and cyclin K alter LP-1 cells metabolism

The tumorigenic properties of cyclins D1b and K are not conferred by an exacerbated proliferation. LP-1D1b and LP-1K cells display the same proliferation properties and cyclin D1b or cyclin K expressions have no major impact on cell cycle regulation. Conversely, genes involved in metabolism, signal transduction, transport, transcriptional and translational regulations are profoundly altered by cyclin D1b and/or cyclin K. In vivo, cyclin D1 inhibits oxidative glycolysis, lipogenesis, and mitochondrial gene activity in the mammary epithelium [27, 28]. In both LP-1K and LP-1D1b cells, the gene transcription of LDHA (lactate dehydrogenase, FC: -4.37 and -10.78, respectively), GAPDH (glyceraldehyde-3-phosphate dehydrogenase, FC: -4.94 and -3.17, respectively) and ALDOA (aldolase A, FC: -2.69 and -3.73, respectively) is decreased. These enzymes catalyze important energy-yielding steps in carbohydrate metabolism. The expression of genes coding for key enzymes involved in oxidative glycolysis such as pyruvate kinase (PKM2, FC: -3.57), phosphoglycerate kinase 1 (PGK1, FC: -2.10), enolase 1 (ENO1, FC: -2.32) in LP-1D1b cells; enolase 2 (ENO2, FC: -2.82) in LP-1K cells are down-regulated. This suggests a reduction of glycolysis in tumor cells and, therefore, such as in mammary tumor cells, a paradoxical role of cyclin D1 [27]. Indeed, most of tumor cells show an enhanced glycolytic flux [29]. However, only fast growing tumor cells display markedly modified energy metabolism and multiple myeloma cells are considered as accumulating cells rather than proliferating cells.

Cyclin D1b and cyclin K modulate gene transcription and translation within LP-1 cells

The roles of cyclin D1 in regulating signal transduction, transcription and translation and their relevance in the cellular transformation process are documented [30]. Among the candidate effectors of cyclin D1 in cancer cells is the transcription factor C/EBPβ [31]. It has been shown, in breast cancer cells, that C/EBPβ is a constitutive repressor of cyclin D1 target genes and that cyclin D1 acts by antagonizing this repressor function. The disruption of signaling through C/EBPβ contributes to breast cell transformation. Interestingly, in LP-1D1b cells, we noticed the up-regulation of CEBPG (FC: +3.08), coding for a close related transcription factor C/EBPγ whose function in myeloma cells remains to be established. But it is tempting to speculate some functional redundancy between the two factors. Among the transcription factors altered by cyclin K and/or cyclin D1b expressions, besides MYC, MAF, ETS family members, well-known as major oncogenic actors in plasma cells [13], several others have been implicated in myeloma pathology such as ATF3/4, IRF4/8, NOTCH2, RUNX1/2, XBP1 through the modulation of genes controlling growth, survival and migration. All of them are altered in LP-1K and/or LP-1D1b cells (Table 6). In good correlation, survival and proliferation properties of LP-1K and LP-1D1b cells are modified compared with LP-1cl1 cells.
Table 6
Genes coding for transcription factors displaying altered expression in LP-1 derivatives.
Gene
Protein
LP-1D1b vs. cl1
LP-1K vs. cl1
DDIT3
DNA-damage-inducible transcript 3
+3.34*
nm**
ATF3
Activating transcription factor 3
+2.27
nm
XBP1
X-box binding protein 1
+2.24
nm
IRF8
Interferon regulatory factor 8
+2.21
nm
RUNX1
Runt-related transcription factor 1
nm
+5.13
TCF4
Transcription factor 4
nm
+4.40
MITF
Microphtalmia-associated transcription factor
nm
+3.50
NOTCH2
Notch homolog 2
nm
+3.36
STAT5A
Signal transduction and transcription factor 5A
nm
+2.49
ETV6
Ets variant 6
nm
+2.32
MAF
v-maf musculoaponeurotic fibrosarcomaa oncogene homolog
nm
+2.25
MYC
v-myc myelocytomatosis viral oncogene homolog
nm
+2.08
ETS2
v-ets erythroblastosis virus E26 oncogene homolog
nm
+2.06
IRF4
Interferon regulated factor 4
nm
-2.25
RBPJ
Recombination signal binding protein for Ig kappa region
nm
-2.38
REL
v-rel reticuloendotheliosis viral onvogene homolog
nm
-3.63
RUNX2
Runt-related transcription factor related 2
nm
-4.80
MYBL2
v-myb myeloblastosis viral oncogene homolog-like 2
nm
-5.18
ATF4
Activating transcription factor 4
+2.75
+2.64
*, ** see legend of table 2. Since minor alterations in the level of transcription factors could have dramatic effects on gene expression, we sorted genes with a |FC|>2. Only genes coding for transcription factors recognized in the literature as relevant for myeloma pathogenesis are indicated.
Eukaryotic initiation factors (eIFs) control translation at the limiting step of initiation and several of them have been recognized as major actors in transformation processes [32]. In LP-1D1b cells, several genes coding for eIFs are upregulated (EIF4EBP1, FC: +3.35; EIF3EIP, FC: +2.79; EIF4A2, FC: +2.50; EIF3F, FC: +2.05; EIF1, FC: +2.02). By contrast, in LP-1K, EIF3A and EIF5 are downregulated (FC: -2.28 and -2.92, respectively). A more active translation likely explains the faster growth of LP-1D1b-derived tumors compared to LP-1K tumors.

Cyclin D1b and cyclin K have opposite action on LP-1 cells migration

Clinical observations indicate that cyclin D1 overexpression in human cancers correlate with metastasis. In cyclin D1-/- mouse embryonic fibroblasts, cyclins D1a and b have unique properties with regard to cell migration [33]. Cyclin D1a stabilizes p27Kip1 and inhibits RhoA-induced ROCK kinase activity promoting cell migration while cyclin D1b fails to stabilize p27Kip1 and has no effect on cell migration. Our results confirm that cyclin D1b does not affect LP-1 cells migration. Although cyclin K resembles cyclin D1a in agreement with its known biological functions: binding to CDK4/6, phosphorylation of pRb; one prominent feature of its structure is the impairment of p27Kip1 binding [34]. Accordingly, cyclin K expression in LP-1 is associated with the absence of p27Kip1, the lack of migration capacity and an enhanced clonogenic potential in vitro. Experiments assessing the metastatic potential of LP-1-derived cells in vivo are ongoing.

Cyclin D1b stimulates neoangiogenesis

Cyclin K/D1b-expressing cells, grafted onto the CAM of chicken embryo, generate within a few days tumors whose vascularization is significantly different. Tumors obtained in nude mice after s.c. injection of LP-1-derived cells show the same different vascularization. Indeed, LP-1 MM cells overexpressing cyclin D1b markedly promote tumor angiogenesis. Cyclin D1 regulates vascular endothelial growth factor (VEGF) production and thereby, growth of vascular endothelial cells and tumor [35]. The inhibition of tumor growth after local injection of VEGF siRNA confirmed a major role of VEGF in tumor expesnion. This result was further reinforced by the use of VEGFR inhibitors which could target either the MM tumoral cells or their immediate environment. Cyclins D1b and K induce transcriptional activation/inhibition of proangiogenic/antiangiogenic factors. One striking difference between the two cell lines is the overexpression of FGFR3 in LP-1D1b cells. Activation of the fibroblast growth factor 3 (FGFR3) expressed by myeloma cells and its ligand FGF present in the mouse could sustain in vivo angiogenesis such as in the bone marrow milieu [36]. The expression of 402 angiogenesis-associated genes has been studied in a large series of patients with a MM or a MGUS (monoclonal gammopathy of undetermined significance), considered as the premalignant state of MM, MM cell lines and their normal counterparts [37]. This study concluded that aberrant expression of proangiogenic and downregulation of antiangiogenic genes occur in all MM patients. Interestingly for our purpose, we noted that three genes were silent in MGUS and expressed in MM, namely IL6, FGF9 and FGFR3. It is tempting to speculate that the expression of FGFR3 triggers premalignant cells to enter a malignant state as observed in our model.

Cyclin D1b and cyclin K activate major actors of MM tumorigenesis

Besides CCND1, several genes have been recognized as major actors of MM tumorigenesis: CCND2, MAF, FGFR3, ITGB7 and CXCR3 [13]. All of them are altered in either LP-1D1b or LP-1K cells. This observation validates the use of LP-1-derived cells as a paradigm of tumorigenesis in MM. Moreover, based on previous microarray analyses, genes implicated specifically in the tumorigenic process of MM have been characterized [3842]. Several of them are also detected in our microarray analysis. They code for proteins involved in metabolism, signal transduction, transcription factors and cell cycle regulators (Figure 7). Among them only a few number of genes are recognized as tumorigenic in several MM models: BCL2, BNIP3, FGFR3, MCL1, RAN and XBP1. BCL2 protein is the archetype of apoptosis regulatory molecules; it is an integral outer mitochondrial membrane protein that blocks the apoptotic death. BCL2 is often overexpressed in transformed cells of the B lymphoid lineage, in malignant compared to normal plasma cells [39]. By contrast BNIP3 (BCL2/adenovirus E1B 19 kDa interacting protein 3) protein has pro-apoptotic function and BNIP3 gene is repressed in MM cells through the methylation of its promoter [42]. MCL1 encodes two proteins belonging to the BCL2 family with either pro- or antiapoptotic functions; its overexpression has been detected in blood sample from a myeloma patient but not in his twin [41]. The role of the transcription factor XPB1 and the nuclear protein RAN, a member of RAS family, in the myeloma pathogenesis remains to be defined. The t(4;14)(p16.3;q32) occurs in 15-20% of myeloma patients and leads to the overexpression of FGFR3 gene and, in turn, the constitutive activation of several signaling pathways in 80% of t(4;14)+ MM patients. Five genes (ATF3, BCKDHA, FGFR3, RRM2 and SDC1) are altered by cyclin D1b alone and six (BNIP3, CBS, CST3, HCLS1, RAN, SQSTM1) by both cyclins D1b and K. Those findings question the relevance of cyclin D1b expression in MM pathogenesis.

Is cyclin D1b involved in MM pathogenesis?

We have previously shown that both isoforms of cyclin D1a and b mRNAs are present in MM cells and their relative levels similar. However, cyclin D1a isoform is predominant both in MM cell lines and primary cells [16]. It has been thought that CCND1 alternative splicing was regulated by a G/A polymorphism at the exon 4/intron 4 boundary [1]. It is now demonstrated that factors associated with chromatin remodelling and translation elongation largely contribute to cyclin D1b accumulation [43, 44]. This indicates that the regulation of cyclin D1b level is complex and only the direct analysis of the cyclin D1b protein could define its impact on disease. In a recent large multiethnic case-control study, Knudsen and his group showed that cyclin D1b is clearly elevated in a significant fraction of primary breast tumors but with a heterogeneous level within specimens and underexpressed in asynchronously proliferating cell lines [45, 46]. They also show unambiguously that cyclin D1b levels are associated with adverse prognostic outcome. Such an analysis of cyclin D1b protein level in MGUS, the primary step of MM and primary MM cells should be conducted in order to definitely conclude on its role in MM pathogenesis.

Acknowledgements

We thank Anne Barbaras for excellent help with cell culture, Dr J. Cahu for careful reading of the manuscript, Dr D. Cappellen (Friedrich Miescher Institute, Basel, Switzerland) for the gift of c-Myc construct, Dr O. Coqueret, (INSERM U564, CLCC Paul Papin, Angers, France) for the gift of cyclin K construct, Dr F. Bono (Sanofi Aventis, Toulouse, France) for the gift of chemical inhibitors. This work was supported by grants from the Ligue contre le Cancer - Comité du Calvados and Comité de la Manche (to BS). GT received a scholarship form Ligue contre le Cancer - Comité du Calvados and from the Société Française d'Hématologie.
Open Access This article is published under license to BioMed Central Ltd. This is an Open Access article is distributed under the terms of the Creative Commons Attribution License ( https://​creativecommons.​org/​licenses/​by/​2.​0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

VM and J-MR performed in vivo experiments; VM performed Q-PCR and IHC assays, GT performed western blots, confocal microscopy and flow cytometry; J-ML and JW-B performed CAM assays; DD and BJ performed microarray analyses and validated statistically the results; GA made computational analyses; VM, J-MR, JW-B, DD and BJ critically revised the manuscript; BS designed experiments, analyzed and interpreted the data, drafted the manuscript. All authors approved the final version of the manuscript and its submission for publication.
Literatur
1.
Zurück zum Zitat Betticher DC, Thatcher N, Altermatt HJ, Hoban P, Ryder WD, Heighway J: Alternate splicing produces a novel cyclin D1 transcript. Oncogene. 1995, 11: 1005-1011.PubMed Betticher DC, Thatcher N, Altermatt HJ, Hoban P, Ryder WD, Heighway J: Alternate splicing produces a novel cyclin D1 transcript. Oncogene. 1995, 11: 1005-1011.PubMed
2.
Zurück zum Zitat Diehl JA, Cheng M, Roussel MF, Sherr CJ: Glycogen synthase kinase-3beta regulates cyclin D1 proteolysis and subcellular localization. Genes Dev. 1998, 12: 3499-3511. 10.1101/gad.12.22.3499PubMedCentralCrossRefPubMed Diehl JA, Cheng M, Roussel MF, Sherr CJ: Glycogen synthase kinase-3beta regulates cyclin D1 proteolysis and subcellular localization. Genes Dev. 1998, 12: 3499-3511. 10.1101/gad.12.22.3499PubMedCentralCrossRefPubMed
3.
Zurück zum Zitat Alt JR, Cleveland JL, Hannink M, Diehl JA: Phosphorylation-dependent regulation of cyclin D1 nuclear export and cyclin D1-dependent cellular transformation. Genes Dev. 2000, 15: 3102-3114. 10.1101/gad.854900.CrossRef Alt JR, Cleveland JL, Hannink M, Diehl JA: Phosphorylation-dependent regulation of cyclin D1 nuclear export and cyclin D1-dependent cellular transformation. Genes Dev. 2000, 15: 3102-3114. 10.1101/gad.854900.CrossRef
4.
Zurück zum Zitat Lu F, Gladden AB, Diehl JA: An alternative spliced cyclin D1 isoform, cyclin D1b, is a nuclear oncogene. Cancer Res. 2003, 63: 7056-7061.PubMed Lu F, Gladden AB, Diehl JA: An alternative spliced cyclin D1 isoform, cyclin D1b, is a nuclear oncogene. Cancer Res. 2003, 63: 7056-7061.PubMed
5.
Zurück zum Zitat Solomon DA, Wang Y, Fox SR, Lambeck TC, Giesting S, Lan Z, Senderowicz AM, Conti CJ, Knudsen ES: Cyclin D1 splice variants. J Biol Chem. 2003, 278: 30339-30447. 10.1074/jbc.M303969200CrossRefPubMed Solomon DA, Wang Y, Fox SR, Lambeck TC, Giesting S, Lan Z, Senderowicz AM, Conti CJ, Knudsen ES: Cyclin D1 splice variants. J Biol Chem. 2003, 278: 30339-30447. 10.1074/jbc.M303969200CrossRefPubMed
6.
Zurück zum Zitat Holley SL, Heighway J, Hoban PR: Induced expression of human CCND1 alternative transcripts in mouse Cyl-1 knockout fibroblasts highlights functional differences. Int J Cancer. 2005, 114: 364-370. 10.1002/ijc.20750CrossRefPubMed Holley SL, Heighway J, Hoban PR: Induced expression of human CCND1 alternative transcripts in mouse Cyl-1 knockout fibroblasts highlights functional differences. Int J Cancer. 2005, 114: 364-370. 10.1002/ijc.20750CrossRefPubMed
7.
Zurück zum Zitat Lin DI, Lessie MD, Gladden AB, Bassing CH, Wagner KU, Diehl JA: Disruption of cyclin D1 nuclear export and proteolysis accelerates mammary carcinogenesis. Oncogene. 2008, 27: 1231-1242. 10.1038/sj.onc.1210738PubMedCentralCrossRefPubMed Lin DI, Lessie MD, Gladden AB, Bassing CH, Wagner KU, Diehl JA: Disruption of cyclin D1 nuclear export and proteolysis accelerates mammary carcinogenesis. Oncogene. 2008, 27: 1231-1242. 10.1038/sj.onc.1210738PubMedCentralCrossRefPubMed
8.
Zurück zum Zitat Gladden AB, Woolery R, Aggarwal P, Wasik MA, Diehl JA: Expression of constitutively nuclear cyclin D1 in murine lymphocytes induces B-cell lymphoma. Oncogene. 2006, 25: 998-1007. 10.1038/sj.onc.1209147PubMedCentralCrossRefPubMed Gladden AB, Woolery R, Aggarwal P, Wasik MA, Diehl JA: Expression of constitutively nuclear cyclin D1 in murine lymphocytes induces B-cell lymphoma. Oncogene. 2006, 25: 998-1007. 10.1038/sj.onc.1209147PubMedCentralCrossRefPubMed
9.
Zurück zum Zitat Javiluoma A, Ojala PM: Cell signaling pathways engaged by KSHV. Biochim Biophys Acta. 2006, 1766: 140-158. Javiluoma A, Ojala PM: Cell signaling pathways engaged by KSHV. Biochim Biophys Acta. 2006, 1766: 140-158.
10.
Zurück zum Zitat Verschuren EW, Hodgson JG, Gray JW, Kogan S, Jones N, Evan GI: The role of p53 in suppression of KSHV cyclin-induced lymphomagenesis. Cancer Res. 2004, 64: 581-589. 10.1158/0008-5472.CAN-03-1863CrossRefPubMed Verschuren EW, Hodgson JG, Gray JW, Kogan S, Jones N, Evan GI: The role of p53 in suppression of KSHV cyclin-induced lymphomagenesis. Cancer Res. 2004, 64: 581-589. 10.1158/0008-5472.CAN-03-1863CrossRefPubMed
11.
Zurück zum Zitat Bodrug SE, Warner BJ, Bath ML, Lindeman GJ, Harris AW, Adams JM: Cyclin D1 transgene impedes lymphocyte maturation and collaborates in lymphomagenesis with the myc gene. EMBO J. 1994, 13: 2124-2130.PubMedCentralPubMed Bodrug SE, Warner BJ, Bath ML, Lindeman GJ, Harris AW, Adams JM: Cyclin D1 transgene impedes lymphocyte maturation and collaborates in lymphomagenesis with the myc gene. EMBO J. 1994, 13: 2124-2130.PubMedCentralPubMed
12.
Zurück zum Zitat Lovec H, Grzeschiczek A, Kowalski MB, Möröy T: Cyclin D1/bcl-1 cooperates with myc genes in the generation of B-cell lymphoma in transgenic mice. EMBO J. 1994, 13: 3487-3495.PubMedCentralPubMed Lovec H, Grzeschiczek A, Kowalski MB, Möröy T: Cyclin D1/bcl-1 cooperates with myc genes in the generation of B-cell lymphoma in transgenic mice. EMBO J. 1994, 13: 3487-3495.PubMedCentralPubMed
13.
Zurück zum Zitat Bergsagel PL, Kuehl WM: Molecular pathogenesis and a consequent classification of multiple myeloma. J Clin Oncol. 2005, 23: 6333-6338. 10.1200/JCO.2005.05.021CrossRefPubMed Bergsagel PL, Kuehl WM: Molecular pathogenesis and a consequent classification of multiple myeloma. J Clin Oncol. 2005, 23: 6333-6338. 10.1200/JCO.2005.05.021CrossRefPubMed
14.
Zurück zum Zitat Jares P, Colomer D, Campo E: Genetic and molecular pathogenesis of mantle cell lymphoma: perspectives for new targeted therapeutics. Nat Rev Cancer. 2007, 7: 750-762. 10.1038/nrc2230CrossRefPubMed Jares P, Colomer D, Campo E: Genetic and molecular pathogenesis of mantle cell lymphoma: perspectives for new targeted therapeutics. Nat Rev Cancer. 2007, 7: 750-762. 10.1038/nrc2230CrossRefPubMed
15.
Zurück zum Zitat Marzec M, Kasprzycka M, Lai R, Gladden AB, Wlodarski P, Tomczak E, Nowell P, Deprimo SE, Sadis S, Eck S, Schuster SJ, Diehl JA, Wasick MA: Mantle cell lymphoma cells express predominantly cyclin D1a isoform and are highly sensitive to selective inhibition of CDK4 kinase. Blood. 2006, 108: 1744-1750. 10.1182/blood-2006-04-016634PubMedCentralCrossRefPubMed Marzec M, Kasprzycka M, Lai R, Gladden AB, Wlodarski P, Tomczak E, Nowell P, Deprimo SE, Sadis S, Eck S, Schuster SJ, Diehl JA, Wasick MA: Mantle cell lymphoma cells express predominantly cyclin D1a isoform and are highly sensitive to selective inhibition of CDK4 kinase. Blood. 2006, 108: 1744-1750. 10.1182/blood-2006-04-016634PubMedCentralCrossRefPubMed
16.
Zurück zum Zitat Krieger S, Gauduchon J, Roussel M, Troussard X, Sola B: Relevance of cyclin D1b expression and CCND1 polymorphism in the pathogenesis of multiple myeloma and mantle cell lymphoma. BMC Cancer. 2006, 6: 238- 10.1186/1471-2407-6-238PubMedCentralCrossRefPubMed Krieger S, Gauduchon J, Roussel M, Troussard X, Sola B: Relevance of cyclin D1b expression and CCND1 polymorphism in the pathogenesis of multiple myeloma and mantle cell lymphoma. BMC Cancer. 2006, 6: 238- 10.1186/1471-2407-6-238PubMedCentralCrossRefPubMed
17.
Zurück zum Zitat Lundquist A, Barré B, Bienvenu F, Hermann J, Avril S, Coqueret O: Kaposi sarcoma-associated viral cyclin K overrides cell growth inhibition mediated by oncostatin M through STAT3 inhibition. Blood. 2003, 101: 4070-4077. 10.1182/blood-2002-07-1994CrossRefPubMed Lundquist A, Barré B, Bienvenu F, Hermann J, Avril S, Coqueret O: Kaposi sarcoma-associated viral cyclin K overrides cell growth inhibition mediated by oncostatin M through STAT3 inhibition. Blood. 2003, 101: 4070-4077. 10.1182/blood-2002-07-1994CrossRefPubMed
18.
Zurück zum Zitat Lévêque C, Marsaud V, Renoir JM, Sola B: Alternative cyclin D1 forms a and b have different biological functions in the cell cycle of B lymphocytes. Exp Cell Res. 2007, 313: 2719-2729. 10.1016/j.yexcr.2007.04.018CrossRefPubMed Lévêque C, Marsaud V, Renoir JM, Sola B: Alternative cyclin D1 forms a and b have different biological functions in the cell cycle of B lymphocytes. Exp Cell Res. 2007, 313: 2719-2729. 10.1016/j.yexcr.2007.04.018CrossRefPubMed
19.
Zurück zum Zitat Le Brigand K, Russel R, Moreilhon C, Rouillard J-M, Jost B, Amiot F, Magnone V, Bole-Feysot C, Rostagno P, Virolle V, Defamie V, Dessen P, Williams G, Lyons P, Rios G, Mari B, Gulari E, Kastner P, Gidrol X, Freeman TC, Barbry P: An open-access long oligonucleotide microarray resource for analysis of the human and mouse transcriptomes. Nucleic Acids Research. 2006, 34: e87- 10.1093/nar/gkl485CrossRefPubMed Le Brigand K, Russel R, Moreilhon C, Rouillard J-M, Jost B, Amiot F, Magnone V, Bole-Feysot C, Rostagno P, Virolle V, Defamie V, Dessen P, Williams G, Lyons P, Rios G, Mari B, Gulari E, Kastner P, Gidrol X, Freeman TC, Barbry P: An open-access long oligonucleotide microarray resource for analysis of the human and mouse transcriptomes. Nucleic Acids Research. 2006, 34: e87- 10.1093/nar/gkl485CrossRefPubMed
20.
Zurück zum Zitat Benjamini Y, Hochberg Y: Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B. 1995, 57: 289-300. Benjamini Y, Hochberg Y: Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B. 1995, 57: 289-300.
21.
Zurück zum Zitat Hagedorn M, Zilberberg L, Wilting J, Canron X, Carrabba G, Giussani C, Pluderi M, Bello L, Bikfalvi A: Domain swapping in a COOH-terminal fragment of platelet factor 4 generates potent angiogenesis inhibitors. Cancer Res. 2002, 62: 6884-6890.PubMed Hagedorn M, Zilberberg L, Wilting J, Canron X, Carrabba G, Giussani C, Pluderi M, Bello L, Bikfalvi A: Domain swapping in a COOH-terminal fragment of platelet factor 4 generates potent angiogenesis inhibitors. Cancer Res. 2002, 62: 6884-6890.PubMed
22.
Zurück zum Zitat Hurt EM, Wiestner A, Rosenwald A, Schaffer AL, Campo E, Grogan T, Bergsagel PL, Kuehl WM, Staudt LM: Overexpression of c-maf is a frequent oncogenic event in multiple myeloma that promotes proliferation and pathological interactions with bone marrow. Cancer Cell. 2004, 5: 191-199. 10.1016/S1535-6108(04)00019-4CrossRefPubMed Hurt EM, Wiestner A, Rosenwald A, Schaffer AL, Campo E, Grogan T, Bergsagel PL, Kuehl WM, Staudt LM: Overexpression of c-maf is a frequent oncogenic event in multiple myeloma that promotes proliferation and pathological interactions with bone marrow. Cancer Cell. 2004, 5: 191-199. 10.1016/S1535-6108(04)00019-4CrossRefPubMed
23.
Zurück zum Zitat Li Z, Jiao X, Wang C, Ju X, Lu Y, Yuan L, Lisanti MP, Katiyar S, Pestell RG: Cyclin D1 induction of cellular migration requires p27KIP1. Cancer Res. 2006, 66: 9986-9994. 10.1158/0008-5472.CAN-06-1596CrossRefPubMed Li Z, Jiao X, Wang C, Ju X, Lu Y, Yuan L, Lisanti MP, Katiyar S, Pestell RG: Cyclin D1 induction of cellular migration requires p27KIP1. Cancer Res. 2006, 66: 9986-9994. 10.1158/0008-5472.CAN-06-1596CrossRefPubMed
24.
Zurück zum Zitat Takei Y, Kadomatsu K, Yuzawa Y, Matsuo S, Muramatsu T: A small interfering RNA targeting vascular endothelial growth factor as cancer therapeutics. Cancer Res. 2004, 64: 3365-3370. 10.1158/0008-5472.CAN-03-2682CrossRefPubMed Takei Y, Kadomatsu K, Yuzawa Y, Matsuo S, Muramatsu T: A small interfering RNA targeting vascular endothelial growth factor as cancer therapeutics. Cancer Res. 2004, 64: 3365-3370. 10.1158/0008-5472.CAN-03-2682CrossRefPubMed
25.
Zurück zum Zitat Moreno-Bueno G, Rodríguez-Perales S, Sánchez-Estévez C, Hardisson D, Sarrió D, Prat J, Cigudosa JG, Matias-Guiu X, Palacios J: Cyclin D1 gene (CCND1) mutations in endometrial cancer. Oncogene. 2003, 22: 6115-6118. 10.1038/sj.onc.1206868CrossRefPubMed Moreno-Bueno G, Rodríguez-Perales S, Sánchez-Estévez C, Hardisson D, Sarrió D, Prat J, Cigudosa JG, Matias-Guiu X, Palacios J: Cyclin D1 gene (CCND1) mutations in endometrial cancer. Oncogene. 2003, 22: 6115-6118. 10.1038/sj.onc.1206868CrossRefPubMed
26.
Zurück zum Zitat Benzeno S, Lu F, Guo M, Barbash O, Zhang F, Herman JG, Klein PS, Rustgi A, Diehl JA: Identification of mutations that disrupt phosphorylation-dependent nuclear export of cyclin D1. Oncogene. 2006, 25: 6291-6303. 10.1038/sj.onc.1209644CrossRefPubMed Benzeno S, Lu F, Guo M, Barbash O, Zhang F, Herman JG, Klein PS, Rustgi A, Diehl JA: Identification of mutations that disrupt phosphorylation-dependent nuclear export of cyclin D1. Oncogene. 2006, 25: 6291-6303. 10.1038/sj.onc.1209644CrossRefPubMed
27.
Zurück zum Zitat Sakamaki T, Casimiro MC, Ju X, Quong AA, Katiyar S, Liu M, Jiao X, Li A, Zhang X, Lu Y, Wang C, Byers S, Nicholson R, Link T, Shemluck M, Yang J, Fricke ST, Novikoff PM, Papanikolaou A, Arnold A, Albanese C, Pestell R: Cyclin D1 determines mitochondrial function in vivo. Mol Cell Biol. 2006, 26: 5449-5469. 10.1128/MCB.02074-05PubMedCentralCrossRefPubMed Sakamaki T, Casimiro MC, Ju X, Quong AA, Katiyar S, Liu M, Jiao X, Li A, Zhang X, Lu Y, Wang C, Byers S, Nicholson R, Link T, Shemluck M, Yang J, Fricke ST, Novikoff PM, Papanikolaou A, Arnold A, Albanese C, Pestell R: Cyclin D1 determines mitochondrial function in vivo. Mol Cell Biol. 2006, 26: 5449-5469. 10.1128/MCB.02074-05PubMedCentralCrossRefPubMed
28.
Zurück zum Zitat Wang C, Li Z, Lu Y, Du R, Katiyar S, Yang J, Fu M, Leader JE, Quong A, Novikoff PM, Pestell RG: Cyclin D1 repression of nuclear respiratory factor 1 integrates nuclear DNA synthesis and mitochondrial function. Proc Natl Acad Sci USA. 2006, 31: 11567-11572. 10.1073/pnas.0603363103. 10.1073/pnas.0603363103CrossRef Wang C, Li Z, Lu Y, Du R, Katiyar S, Yang J, Fu M, Leader JE, Quong A, Novikoff PM, Pestell RG: Cyclin D1 repression of nuclear respiratory factor 1 integrates nuclear DNA synthesis and mitochondrial function. Proc Natl Acad Sci USA. 2006, 31: 11567-11572. 10.1073/pnas.0603363103. 10.1073/pnas.0603363103CrossRef
29.
Zurück zum Zitat Gogvadze V, Orreniius S, Zhivotovsky B: Mitochondria in cancer cells: what is so special about them?. Trends Cell Biol. 2008, 18: 165-173. 10.1016/j.tcb.2008.01.006CrossRefPubMed Gogvadze V, Orreniius S, Zhivotovsky B: Mitochondria in cancer cells: what is so special about them?. Trends Cell Biol. 2008, 18: 165-173. 10.1016/j.tcb.2008.01.006CrossRefPubMed
30.
Zurück zum Zitat Fu M, Wang C, Li Z, Sakamaki T, Pestell RG: Cyclin D1: normal and abnormal functions. Endocrinology. 2005, 145: 5439-5447. 10.1210/en.2004-0959.CrossRef Fu M, Wang C, Li Z, Sakamaki T, Pestell RG: Cyclin D1: normal and abnormal functions. Endocrinology. 2005, 145: 5439-5447. 10.1210/en.2004-0959.CrossRef
31.
Zurück zum Zitat Lamb J, Ramaswamy S, Ford HL, Contreras B, Martinez RV, Kittrell FS, Zahnow CA, Patterson N, Golub TR, Ewen ME: A mechanism of cyclin D1 action encoded in the patterns of gene expression in human cancer. Cell. 2003, 114: 323-334. 10.1016/S0092-8674(03)00570-1CrossRefPubMed Lamb J, Ramaswamy S, Ford HL, Contreras B, Martinez RV, Kittrell FS, Zahnow CA, Patterson N, Golub TR, Ewen ME: A mechanism of cyclin D1 action encoded in the patterns of gene expression in human cancer. Cell. 2003, 114: 323-334. 10.1016/S0092-8674(03)00570-1CrossRefPubMed
32.
Zurück zum Zitat Gandin V, Miluzio A, Barbieri AM, Beugnet A, Kiyokawa H, Marchisio PC, Biffo S: Eukaryotic initiation factor is rate-limiting in translation, growth and transformation. Nature. 2008, 455: 684-688. 10.1038/nature07267PubMedCentralCrossRefPubMed Gandin V, Miluzio A, Barbieri AM, Beugnet A, Kiyokawa H, Marchisio PC, Biffo S: Eukaryotic initiation factor is rate-limiting in translation, growth and transformation. Nature. 2008, 455: 684-688. 10.1038/nature07267PubMedCentralCrossRefPubMed
33.
Zurück zum Zitat Li Z, Wang C, Jiao X, Katiyar S, Casimiro MC, Prendergast GC, Powell MJ, Pestell RG: Alternate cyclin D1 mRNA splicing modulates P27KIP1 binding and cell migration. J Biol Chem. 2008, 283: 7007-7015. 10.1074/jbc.M706992200CrossRefPubMed Li Z, Wang C, Jiao X, Katiyar S, Casimiro MC, Prendergast GC, Powell MJ, Pestell RG: Alternate cyclin D1 mRNA splicing modulates P27KIP1 binding and cell migration. J Biol Chem. 2008, 283: 7007-7015. 10.1074/jbc.M706992200CrossRefPubMed
34.
Zurück zum Zitat Baek K, Brown RS, Birrane G, Ladias JA: Crystal structure of human cyclin K, a positive regulator of cyclin-dependent kinase 9. J Mol Biol. 2007, 366: 563-573. 10.1016/j.jmb.2006.11.057PubMedCentralCrossRefPubMed Baek K, Brown RS, Birrane G, Ladias JA: Crystal structure of human cyclin K, a positive regulator of cyclin-dependent kinase 9. J Mol Biol. 2007, 366: 563-573. 10.1016/j.jmb.2006.11.057PubMedCentralCrossRefPubMed
35.
Zurück zum Zitat Yasui M, Yamamoto H, Ngan CY, Damdinsuren B, Sugita Y, Fukunaga H, Gu J, Maeda M, Takemasa I, Ikeda M, Fujio Y, Sekimoto M, Matsuura N, Weinstein IB, Monden M: Antisense to cyclin D1 inhibits vascular endothelial growth factor - stimulated growth of vascular endothelial cells: implication for tumor development. Clin Cancer Res. 2006, 12: 4720-4729. 10.1158/1078-0432.CCR-05-1213CrossRefPubMed Yasui M, Yamamoto H, Ngan CY, Damdinsuren B, Sugita Y, Fukunaga H, Gu J, Maeda M, Takemasa I, Ikeda M, Fujio Y, Sekimoto M, Matsuura N, Weinstein IB, Monden M: Antisense to cyclin D1 inhibits vascular endothelial growth factor - stimulated growth of vascular endothelial cells: implication for tumor development. Clin Cancer Res. 2006, 12: 4720-4729. 10.1158/1078-0432.CCR-05-1213CrossRefPubMed
36.
Zurück zum Zitat Hideshima T, Mitsiades C, Tonon G, Richardson PG, Anderson KC: Understanding multiple myeloma pathogenesis in the bone marrow to identify new therapeutic targets. Nat Rev Cancer. 2007, 7: 585-598. 10.1038/nrc2189CrossRefPubMed Hideshima T, Mitsiades C, Tonon G, Richardson PG, Anderson KC: Understanding multiple myeloma pathogenesis in the bone marrow to identify new therapeutic targets. Nat Rev Cancer. 2007, 7: 585-598. 10.1038/nrc2189CrossRefPubMed
37.
Zurück zum Zitat Hose D, Moreaux J, Meissner T, Seckinger A, Goldschmidt H, Benner A, Mahtouk K, Hillengass J, Rème T, De Vos J, Hundemer M, Condomines M, Bertsch U, Rossi J-F, Jauch A, Klein B, Möhler T: Induction of angiogenesis by normal and malignant plasma cells. Blood. 2009, 114: 128-143. 10.1182/blood-2008-10-184226CrossRefPubMed Hose D, Moreaux J, Meissner T, Seckinger A, Goldschmidt H, Benner A, Mahtouk K, Hillengass J, Rème T, De Vos J, Hundemer M, Condomines M, Bertsch U, Rossi J-F, Jauch A, Klein B, Möhler T: Induction of angiogenesis by normal and malignant plasma cells. Blood. 2009, 114: 128-143. 10.1182/blood-2008-10-184226CrossRefPubMed
38.
Zurück zum Zitat Claudio JO, Masih-Khan E, Tang H, Gonçalves J, Voralia M, Li ZH, Nadeem V, Cukerman E, Francisco-Pabalan O, Liew CC, Woodgett JR, Stewart AK: A molecular compendium of genes expressed in multiple myeloma. Blood. 2002, 100: 2175-2186. 10.1182/blood-2002-01-0008CrossRefPubMed Claudio JO, Masih-Khan E, Tang H, Gonçalves J, Voralia M, Li ZH, Nadeem V, Cukerman E, Francisco-Pabalan O, Liew CC, Woodgett JR, Stewart AK: A molecular compendium of genes expressed in multiple myeloma. Blood. 2002, 100: 2175-2186. 10.1182/blood-2002-01-0008CrossRefPubMed
39.
Zurück zum Zitat De Vos J, Thykjaer T, Tarte K, Ensslen M, Raynaud P, Requirand G, Pellet F, Pantesco V, Rème T, Jourdan M, Rossi JF, Ørntoft T, Klein B: Comparison of gene expression between malignant and normal plasma cells with oligonucleotide array. Oncogene. 2002, 21: 6848-6857. 10.1038/sj.onc.1205868CrossRefPubMed De Vos J, Thykjaer T, Tarte K, Ensslen M, Raynaud P, Requirand G, Pellet F, Pantesco V, Rème T, Jourdan M, Rossi JF, Ørntoft T, Klein B: Comparison of gene expression between malignant and normal plasma cells with oligonucleotide array. Oncogene. 2002, 21: 6848-6857. 10.1038/sj.onc.1205868CrossRefPubMed
40.
Zurück zum Zitat Davies FE, Dring AM, Li C, Rawstron AC, Shammas MA, O'Connor SM, Fenton JA, Hideshima T, Chauhan D, Tai IT, Robinson E, Auclair D, Rees K, Gonzalez D, Ashcroft AJ, Dasgupta R, Mitsiades C, Mitsiades N, Chen LB, Wong WH, Munshi NC, Morgan GJ, Anderson KC: Insights into the multistep transformation of MGUS to myeloma using microarray expression analysis. Blood. 2003, 102: 4505-4511. 10.1182/blood-2003-01-0016.CrossRef Davies FE, Dring AM, Li C, Rawstron AC, Shammas MA, O'Connor SM, Fenton JA, Hideshima T, Chauhan D, Tai IT, Robinson E, Auclair D, Rees K, Gonzalez D, Ashcroft AJ, Dasgupta R, Mitsiades C, Mitsiades N, Chen LB, Wong WH, Munshi NC, Morgan GJ, Anderson KC: Insights into the multistep transformation of MGUS to myeloma using microarray expression analysis. Blood. 2003, 102: 4505-4511. 10.1182/blood-2003-01-0016.CrossRef
41.
Zurück zum Zitat Munshi NC, Hideshima T, Carrasco D, Shammas M, Auclair D, Davies F, Mitsiades N, Mitsiades C, Kim RS, Li C, Rajkumar SV, Fonseca R, Bergsagel L, Chauhan D, Anderson KC: Identification of genes modulated in multiple myeloma using genetically identical twin samples. Blood. 2004, 103: 1799-1806. 10.1182/blood-2003-02-0402CrossRefPubMed Munshi NC, Hideshima T, Carrasco D, Shammas M, Auclair D, Davies F, Mitsiades N, Mitsiades C, Kim RS, Li C, Rajkumar SV, Fonseca R, Bergsagel L, Chauhan D, Anderson KC: Identification of genes modulated in multiple myeloma using genetically identical twin samples. Blood. 2004, 103: 1799-1806. 10.1182/blood-2003-02-0402CrossRefPubMed
42.
Zurück zum Zitat Heller G, Schmidt WM, Ziegler B, Holzer S, Müllauer L, Bilban M, Zielinski CC, Drach J, Zöchbauer-Müller S: Genome-wide transcriptional response to 5-aza-2'-deoxycytidine and trichostatin in multiple myeloma cells. Cancer Res. 2008, 68: 44-54. 10.1158/0008-5472.CAN-07-2531CrossRefPubMed Heller G, Schmidt WM, Ziegler B, Holzer S, Müllauer L, Bilban M, Zielinski CC, Drach J, Zöchbauer-Müller S: Genome-wide transcriptional response to 5-aza-2'-deoxycytidine and trichostatin in multiple myeloma cells. Cancer Res. 2008, 68: 44-54. 10.1158/0008-5472.CAN-07-2531CrossRefPubMed
43.
Zurück zum Zitat Batsche E, Yaniv M, Muchardt C: The human SWI/SNF subunit Brm is a regulator of alternative splicing. Nat Struct Mol Biol. 2006, 13: 22-29. 10.1038/nsmb1030CrossRefPubMed Batsche E, Yaniv M, Muchardt C: The human SWI/SNF subunit Brm is a regulator of alternative splicing. Nat Struct Mol Biol. 2006, 13: 22-29. 10.1038/nsmb1030CrossRefPubMed
44.
Zurück zum Zitat Sanchez G, Bittencourt D, Laud K, Barbier J, Delattre O, Auboeuf D, Dutertre M: Alteration of cyclin D1 transcript elongation by a mutated transcripion factor up-regulates the oncogenic D1b splice isoform in cancer. Proc Natl Acad Sci USA. 2008, 105: 6004-6009. 10.1073/pnas.0710748105PubMedCentralCrossRefPubMed Sanchez G, Bittencourt D, Laud K, Barbier J, Delattre O, Auboeuf D, Dutertre M: Alteration of cyclin D1 transcript elongation by a mutated transcripion factor up-regulates the oncogenic D1b splice isoform in cancer. Proc Natl Acad Sci USA. 2008, 105: 6004-6009. 10.1073/pnas.0710748105PubMedCentralCrossRefPubMed
45.
Zurück zum Zitat Wang Y, Dean JL, Millar EKA, Tran TH, McNeil CM, Burd CJ, Henshall SM, Utama FE, Witkiewicz A, Rui H, Sutherland RL, Knudsen KE, Knudsen ES: Cyclin D1b is aberrantly regulated in response to therapeutic challenge and promotes resistance to estrogen antagonists. Cancer Res. 2008, 68: 5628-5638. 10.1158/0008-5472.CAN-07-3170CrossRefPubMed Wang Y, Dean JL, Millar EKA, Tran TH, McNeil CM, Burd CJ, Henshall SM, Utama FE, Witkiewicz A, Rui H, Sutherland RL, Knudsen KE, Knudsen ES: Cyclin D1b is aberrantly regulated in response to therapeutic challenge and promotes resistance to estrogen antagonists. Cancer Res. 2008, 68: 5628-5638. 10.1158/0008-5472.CAN-07-3170CrossRefPubMed
46.
Zurück zum Zitat Millar EK, Dean JL, McNeil CM, O'Toole SA, Henshall SM, Tran T, Lin J, Quong A, Comstock CE, Witkiewicz A, Musgrove EA, Rui H, Lemarchand L, Setiawan VW, Haiman CA, Knudsen KE, Sutherland RL, Knudsen ES: Cyclin D1b is aberrantly regulated in response to therapeutic challenge and promotes resistance to estrogen antagonists. Oncogene. 2009, 28: 1812-1820. 10.1038/onc.2009.13PubMedCentralCrossRefPubMed Millar EK, Dean JL, McNeil CM, O'Toole SA, Henshall SM, Tran T, Lin J, Quong A, Comstock CE, Witkiewicz A, Musgrove EA, Rui H, Lemarchand L, Setiawan VW, Haiman CA, Knudsen KE, Sutherland RL, Knudsen ES: Cyclin D1b is aberrantly regulated in response to therapeutic challenge and promotes resistance to estrogen antagonists. Oncogene. 2009, 28: 1812-1820. 10.1038/onc.2009.13PubMedCentralCrossRefPubMed
Metadaten
Titel
Cyclin K and cyclin D1b are oncogenic in myeloma cells
verfasst von
Véronique Marsaud
Guergana Tchakarska
Geoffroy Andrieux
Jian-Miao Liu
Doulaye Dembele
Bernard Jost
Joanna Wdzieczak-Bakala
Jack-Michel Renoir
Brigitte Sola
Publikationsdatum
01.12.2010
Verlag
BioMed Central
Erschienen in
Molecular Cancer / Ausgabe 1/2010
Elektronische ISSN: 1476-4598
DOI
https://doi.org/10.1186/1476-4598-9-103

Weitere Artikel der Ausgabe 1/2010

Molecular Cancer 1/2010 Zur Ausgabe

Adjuvante Immuntherapie verlängert Leben bei RCC

25.04.2024 Nierenkarzinom Nachrichten

Nun gibt es auch Resultate zum Gesamtüberleben: Eine adjuvante Pembrolizumab-Therapie konnte in einer Phase-3-Studie das Leben von Menschen mit Nierenzellkarzinom deutlich verlängern. Die Sterberate war im Vergleich zu Placebo um 38% geringer.

Alectinib verbessert krankheitsfreies Überleben bei ALK-positivem NSCLC

25.04.2024 NSCLC Nachrichten

Das Risiko für Rezidiv oder Tod von Patienten und Patientinnen mit reseziertem ALK-positivem NSCLC ist unter einer adjuvanten Therapie mit dem Tyrosinkinase-Inhibitor Alectinib signifikant geringer als unter platinbasierter Chemotherapie.

Bei Senioren mit Prostatakarzinom auf Anämie achten!

24.04.2024 DGIM 2024 Nachrichten

Patienten, die zur Behandlung ihres Prostatakarzinoms eine Androgendeprivationstherapie erhalten, entwickeln nicht selten eine Anämie. Wer ältere Patienten internistisch mitbetreut, sollte auf diese Nebenwirkung achten.

ICI-Therapie in der Schwangerschaft wird gut toleriert

Müssen sich Schwangere einer Krebstherapie unterziehen, rufen Immuncheckpointinhibitoren offenbar nicht mehr unerwünschte Wirkungen hervor als andere Mittel gegen Krebs.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.