Skip to main content
Erschienen in: Discover Oncology 2/2020

01.02.2020 | Original Paper

Cytoplasmic ERα and NFκB Promote Cell Survival in Mouse Mammary Cancer Cell Lines

verfasst von: Emily Smart, Luis H. Alejo, Jonna Frasor

Erschienen in: Discover Oncology | Ausgabe 2/2020

Einloggen, um Zugang zu erhalten

Abstract

There is a desperate need in the field for mouse mammary tumors and cell lines that faithfully mimic estrogen receptor (ER) expression and activity found in human breast cancers. We found that several mouse mammary cancer cell lines express ER but fail to demonstrate classical estrogen-driven proliferation or transcriptional activity. We investigated whether these cell lines may be used to model tamoxifen resistance by using small molecule inhibitors to signaling pathways known to contribute to resistance. We found that the combination of NFκB inhibition and ER antagonists significantly reduced cell proliferation in vitro, as well as growth of syngeneic tumors. Surprisingly, we found that ER was localized to the cytoplasm, regardless of any type of treatment. Based on this, we probed extra-nuclear functions of ER and found that co-inhibition of ER and NFκB led to an increase in oxidative stress and apoptosis. Together, these findings suggest that cytoplasmic ER and NFκB may play redundant roles in protecting mammary cancer cells from oxidative stress and cell death. Although this study has not identified a mouse model with classical ER activity, cytoplasmic ER has been described in a small subset of human breast tumors, suggesting that these findings may be relevant for some breast cancer patients.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Fisher B, Redmond C, Fisher ER, Caplan R (1988) Relative worth of estrogen or progesterone receptor and pathologic characteristics of differentiation as indicators of prognosis in node negative breast cancer patients: findings from National Surgical Adjuvant Breast and bowel project protocol B-06. J Clin Oncol 6(7):1076–1087PubMedCrossRef Fisher B, Redmond C, Fisher ER, Caplan R (1988) Relative worth of estrogen or progesterone receptor and pathologic characteristics of differentiation as indicators of prognosis in node negative breast cancer patients: findings from National Surgical Adjuvant Breast and bowel project protocol B-06. J Clin Oncol 6(7):1076–1087PubMedCrossRef
2.
Zurück zum Zitat Pan H, Gray R, Braybrooke J, Davies C, Taylor C, McGale P, Peto R, Pritchard KI, Bergh J, Dowsett M, Hayes DF, EBCTCG (2017) 20-year risks of breast-cancer recurrence after stopping endocrine therapy at 5 years. N Engl J Med 377(19):1836–1846PubMedPubMedCentralCrossRef Pan H, Gray R, Braybrooke J, Davies C, Taylor C, McGale P, Peto R, Pritchard KI, Bergh J, Dowsett M, Hayes DF, EBCTCG (2017) 20-year risks of breast-cancer recurrence after stopping endocrine therapy at 5 years. N Engl J Med 377(19):1836–1846PubMedPubMedCentralCrossRef
3.
Zurück zum Zitat Sflomos G, Dormoy V, Metsalu T, Jeitziner R, Battista L, Scabia V, Raffoul W, Delaloye JF, Treboux A, Fiche M, Vilo J, Ayyanan A, Brisken C (2016) A preclinical model for ERalpha-positive breast cancer points to the epithelial microenvironment as determinant of luminal phenotype and hormone response. Cancer Cell 29(3):407–422PubMedCrossRef Sflomos G, Dormoy V, Metsalu T, Jeitziner R, Battista L, Scabia V, Raffoul W, Delaloye JF, Treboux A, Fiche M, Vilo J, Ayyanan A, Brisken C (2016) A preclinical model for ERalpha-positive breast cancer points to the epithelial microenvironment as determinant of luminal phenotype and hormone response. Cancer Cell 29(3):407–422PubMedCrossRef
4.
Zurück zum Zitat Pompili L, Porru M, Caruso C, Biroccio A, Leonetti C (2016) Patient-derived xenografts: a relevant preclinical model for drug development. J Exp Clin Cancer Res 35(1):189PubMedPubMedCentralCrossRef Pompili L, Porru M, Caruso C, Biroccio A, Leonetti C (2016) Patient-derived xenografts: a relevant preclinical model for drug development. J Exp Clin Cancer Res 35(1):189PubMedPubMedCentralCrossRef
5.
Zurück zum Zitat Dobrolecki LE, Airhart SD, Alferez DG, Aparicio S, Behbod F, Bentires-Alj M, Brisken C, Bult CJ, Cai S, Clarke RB, Dowst H, Ellis MJ, Gonzalez-Suarez E, Iggo RD, Kabos P, Li S, Lindeman GJ, Marangoni E, McCoy A, Meric-Bernstam F, Piwnica-Worms H, Poupon MF, Reis-Filho J, Sartorius CA, Scabia V, Sflomos G, Tu Y, Vaillant F, Visvader JE, Welm A, Wicha MS, Lewis MT (2016) Patient-derived xenograft (PDX) models in basic and translational breast cancer research. Cancer Metastasis Rev 35(4):547–573PubMedPubMedCentralCrossRef Dobrolecki LE, Airhart SD, Alferez DG, Aparicio S, Behbod F, Bentires-Alj M, Brisken C, Bult CJ, Cai S, Clarke RB, Dowst H, Ellis MJ, Gonzalez-Suarez E, Iggo RD, Kabos P, Li S, Lindeman GJ, Marangoni E, McCoy A, Meric-Bernstam F, Piwnica-Worms H, Poupon MF, Reis-Filho J, Sartorius CA, Scabia V, Sflomos G, Tu Y, Vaillant F, Visvader JE, Welm A, Wicha MS, Lewis MT (2016) Patient-derived xenograft (PDX) models in basic and translational breast cancer research. Cancer Metastasis Rev 35(4):547–573PubMedPubMedCentralCrossRef
6.
Zurück zum Zitat Sachs N, de Ligt J, Kopper O, Gogola E, Bounova G, Weeber F et al (2018) A living biobank of breast cancer organoids captures disease heterogeneity. Cell 172(1–2):373–86.e10PubMedCrossRef Sachs N, de Ligt J, Kopper O, Gogola E, Bounova G, Weeber F et al (2018) A living biobank of breast cancer organoids captures disease heterogeneity. Cell 172(1–2):373–86.e10PubMedCrossRef
7.
Zurück zum Zitat Tilli MT, Frech MS, Steed ME, Hruska KS, Johnson MD, Flaws JA, Furth PA (2003) Introduction of estrogen receptor-alpha into the tTA/TAg conditional mouse model precipitates the development of estrogen-responsive mammary adenocarcinoma. Am J Pathol 163(5):1713–1719PubMedPubMedCentralCrossRef Tilli MT, Frech MS, Steed ME, Hruska KS, Johnson MD, Flaws JA, Furth PA (2003) Introduction of estrogen receptor-alpha into the tTA/TAg conditional mouse model precipitates the development of estrogen-responsive mammary adenocarcinoma. Am J Pathol 163(5):1713–1719PubMedPubMedCentralCrossRef
8.
Zurück zum Zitat Miermont AM, Cabrera MC, Frech SM, Nakles RE, Diaz-Cruz ES, Shiffert MT et al (2012) Association of over-expressed estrogen receptor alpha with development of tamoxifen resistant hyperplasia and adenocarcinomas in genetically engineered mice. Anat Physiol (Suppl 12) Miermont AM, Cabrera MC, Frech SM, Nakles RE, Diaz-Cruz ES, Shiffert MT et al (2012) Association of over-expressed estrogen receptor alpha with development of tamoxifen resistant hyperplasia and adenocarcinomas in genetically engineered mice. Anat Physiol (Suppl 12)
9.
Zurück zum Zitat Lin DI, Lessie MD, Gladden AB, Bassing CH, Wagner KU, Diehl JA (2008) Disruption of cyclin D1 nuclear export and proteolysis accelerates mammary carcinogenesis. Oncogene. 27(9):1231–1242PubMedCrossRef Lin DI, Lessie MD, Gladden AB, Bassing CH, Wagner KU, Diehl JA (2008) Disruption of cyclin D1 nuclear export and proteolysis accelerates mammary carcinogenesis. Oncogene. 27(9):1231–1242PubMedCrossRef
10.
Zurück zum Zitat Zhang X, Podsypanina K, Huang S, Mohsin SK, Chamness GC, Hatsell S et al (2005) Estrogen receptor positivity in mammary tumors of Wnt-1 transgenic mice is influenced by collaborating oncogenic mutations. Oncogene. 24(26):4220–4231PubMedCrossRef Zhang X, Podsypanina K, Huang S, Mohsin SK, Chamness GC, Hatsell S et al (2005) Estrogen receptor positivity in mammary tumors of Wnt-1 transgenic mice is influenced by collaborating oncogenic mutations. Oncogene. 24(26):4220–4231PubMedCrossRef
11.
Zurück zum Zitat Medina D, Kittrell FS, Shepard A, Stephens LC, Jiang C, Lu J, Allred DC, McCarthy M, Ullrich RL (2002) Biological and genetic properties of the p53 null preneoplastic mammary epithelium. FASEB J 16(8):881–883PubMedCrossRef Medina D, Kittrell FS, Shepard A, Stephens LC, Jiang C, Lu J, Allred DC, McCarthy M, Ullrich RL (2002) Biological and genetic properties of the p53 null preneoplastic mammary epithelium. FASEB J 16(8):881–883PubMedCrossRef
12.
Zurück zum Zitat Chan SR, Vermi W, Luo J, Lucini L, Rickert C, Fowler AM, Lonardi S, Arthur C, Young LJ, Levy DE, Welch MJ, Cardiff RD, Schreiber RD (2012) STAT1-deficient mice spontaneously develop estrogen receptor alpha-positive luminal mammary carcinomas. Breast Cancer Res 14(1):R16PubMedPubMedCentralCrossRef Chan SR, Vermi W, Luo J, Lucini L, Rickert C, Fowler AM, Lonardi S, Arthur C, Young LJ, Levy DE, Welch MJ, Cardiff RD, Schreiber RD (2012) STAT1-deficient mice spontaneously develop estrogen receptor alpha-positive luminal mammary carcinomas. Breast Cancer Res 14(1):R16PubMedPubMedCentralCrossRef
13.
Zurück zum Zitat Rose-Hellekant TA, Schroeder MD, Brockman JL, Zhdankin O, Bolstad R, Chen KS, Gould MN, Schuler LA, Sandgren EP (2007) Estrogen receptor-positive mammary tumorigenesis in TGFalpha transgenic mice progresses with progesterone receptor loss. Oncogene. 26(36):5238–5246PubMedPubMedCentralCrossRef Rose-Hellekant TA, Schroeder MD, Brockman JL, Zhdankin O, Bolstad R, Chen KS, Gould MN, Schuler LA, Sandgren EP (2007) Estrogen receptor-positive mammary tumorigenesis in TGFalpha transgenic mice progresses with progesterone receptor loss. Oncogene. 26(36):5238–5246PubMedPubMedCentralCrossRef
14.
Zurück zum Zitat Torres-Arzayus MI (2004) Font de Mora J, Yuan J, Vazquez F, Bronson R, rue M, et al. high tumor incidence and activation of the PI3K/AKT pathway in transgenic mice define AIB1 as an oncogene. Cancer Cell 6(3):263–274PubMedCrossRef Torres-Arzayus MI (2004) Font de Mora J, Yuan J, Vazquez F, Bronson R, rue M, et al. high tumor incidence and activation of the PI3K/AKT pathway in transgenic mice define AIB1 as an oncogene. Cancer Cell 6(3):263–274PubMedCrossRef
15.
Zurück zum Zitat Torres-Arzayus MI, Yuan J, DellaGatta JL, Lane H, Kung AL, Brown M (2006) Targeting the AIB1 oncogene through mammalian target of rapamycin inhibition in the mammary gland. Cancer Res 66(23):11381–11388PubMedCrossRef Torres-Arzayus MI, Yuan J, DellaGatta JL, Lane H, Kung AL, Brown M (2006) Targeting the AIB1 oncogene through mammalian target of rapamycin inhibition in the mammary gland. Cancer Res 66(23):11381–11388PubMedCrossRef
16.
Zurück zum Zitat Mukherjee M, Ge G, Zhang N, Edwards DG, Sumazin P, Sharan SK, Rao PH, Medina D, Pati D (2014) MMTV-Espl1 transgenic mice develop aneuploid, estrogen receptor alpha (ERalpha)-positive mammary adenocarcinomas. Oncogene. 33(48):5511–5522PubMedCrossRef Mukherjee M, Ge G, Zhang N, Edwards DG, Sumazin P, Sharan SK, Rao PH, Medina D, Pati D (2014) MMTV-Espl1 transgenic mice develop aneuploid, estrogen receptor alpha (ERalpha)-positive mammary adenocarcinomas. Oncogene. 33(48):5511–5522PubMedCrossRef
17.
Zurück zum Zitat Adams JR, Xu K, Liu JC, Agamez NM, Loch AJ, Wong RG, Wang W, Wright KL, Lane TF, Zacksenhaus E, Egan SE (2011) Cooperation between Pik3ca and p53 mutations in mouse mammary tumor formation. Cancer Res 71(7):2706–2717PubMedCrossRef Adams JR, Xu K, Liu JC, Agamez NM, Loch AJ, Wong RG, Wang W, Wright KL, Lane TF, Zacksenhaus E, Egan SE (2011) Cooperation between Pik3ca and p53 mutations in mouse mammary tumor formation. Cancer Res 71(7):2706–2717PubMedCrossRef
18.
Zurück zum Zitat Lin EY, Jones JG, Li P, Zhu L, Whitney KD, Muller WJ et al (2003) Progression to malignancy in the polyoma middle T oncoprotein mouse breast cancer model provides a reliable model for human diseases. Am J Pathol 163(5):2113–2126PubMedPubMedCentralCrossRef Lin EY, Jones JG, Li P, Zhu L, Whitney KD, Muller WJ et al (2003) Progression to malignancy in the polyoma middle T oncoprotein mouse breast cancer model provides a reliable model for human diseases. Am J Pathol 163(5):2113–2126PubMedPubMedCentralCrossRef
19.
Zurück zum Zitat Waldmeier L, Meyer-Schaller N, Diepenbruck M, Christofori G (2012) Py2T murine breast cancer cells, a versatile model of TGFbeta-induced EMT in vitro and in vivo. PLoS One 7(11):e48651PubMedPubMedCentralCrossRef Waldmeier L, Meyer-Schaller N, Diepenbruck M, Christofori G (2012) Py2T murine breast cancer cells, a versatile model of TGFbeta-induced EMT in vitro and in vivo. PLoS One 7(11):e48651PubMedPubMedCentralCrossRef
20.
Zurück zum Zitat Gattelli A, Nalvarte I, Boulay A, Roloff TC, Schreiber M, Carragher N, Macleod KK, Schlederer M, Lienhard S, Kenner L, Torres-Arzayus MI, Hynes NE (2013) Ret inhibition decreases growth and metastatic potential of estrogen receptor positive breast cancer cells. EMBO Mol Med 5(9):1335–1350PubMedPubMedCentralCrossRef Gattelli A, Nalvarte I, Boulay A, Roloff TC, Schreiber M, Carragher N, Macleod KK, Schlederer M, Lienhard S, Kenner L, Torres-Arzayus MI, Hynes NE (2013) Ret inhibition decreases growth and metastatic potential of estrogen receptor positive breast cancer cells. EMBO Mol Med 5(9):1335–1350PubMedPubMedCentralCrossRef
21.
Zurück zum Zitat Torres-Arzayus MI, Zhao J, Bronson R, Brown M (2010) Estrogen-dependent and estrogen-independent mechanisms contribute to AIB1-mediated tumor formation. Cancer Res 70(10):4102–4111PubMedPubMedCentralCrossRef Torres-Arzayus MI, Zhao J, Bronson R, Brown M (2010) Estrogen-dependent and estrogen-independent mechanisms contribute to AIB1-mediated tumor formation. Cancer Res 70(10):4102–4111PubMedPubMedCentralCrossRef
22.
Zurück zum Zitat Sugiura K, Stock CC (1952) Studies in a tumor spectrum. I. Comparison of the action of methylbis (2-chloroethyl)amine and 3-bis(2-chloroethyl)aminomethyl-4-methoxymethyl −5-hydroxy-6-methylpyridine on the growth of a variety of mouse and rat tumors. Cancer. 5(2):382–402PubMedCrossRef Sugiura K, Stock CC (1952) Studies in a tumor spectrum. I. Comparison of the action of methylbis (2-chloroethyl)amine and 3-bis(2-chloroethyl)aminomethyl-4-methoxymethyl −5-hydroxy-6-methylpyridine on the growth of a variety of mouse and rat tumors. Cancer. 5(2):382–402PubMedCrossRef
23.
Zurück zum Zitat Johnstone CN, Smith YE, Cao Y, Burrows AD, Cross RS, Ling X, Redvers RP, Doherty JP, Eckhardt BL, Natoli AL, Restall CM, Lucas E, Pearson HB, Deb S, Britt KL, Rizzitelli A, Li J, Harmey JH, Pouliot N, Anderson RL (2015) Functional and molecular characterisation of EO771.LMB tumours, a new C57BL/6-mouse-derived model of spontaneously metastatic mammary cancer. Dis Model Mech 8(3):237–251PubMedPubMedCentral Johnstone CN, Smith YE, Cao Y, Burrows AD, Cross RS, Ling X, Redvers RP, Doherty JP, Eckhardt BL, Natoli AL, Restall CM, Lucas E, Pearson HB, Deb S, Britt KL, Rizzitelli A, Li J, Harmey JH, Pouliot N, Anderson RL (2015) Functional and molecular characterisation of EO771.LMB tumours, a new C57BL/6-mouse-derived model of spontaneously metastatic mammary cancer. Dis Model Mech 8(3):237–251PubMedPubMedCentral
24.
Zurück zum Zitat Ewens A, Mihich E, Ehrke MJ (2005) Distant metastasis from subcutaneously grown E0771 medullary breast adenocarcinoma. Anticancer Res 25(6b):3905–3915PubMed Ewens A, Mihich E, Ehrke MJ (2005) Distant metastasis from subcutaneously grown E0771 medullary breast adenocarcinoma. Anticancer Res 25(6b):3905–3915PubMed
25.
Zurück zum Zitat Yang Y, Yang HH, Hu Y, Watson PH, Liu H, Geiger TR, Anver MR, Haines DC, Martin P, Green JE, Lee MP, Hunter KW, Wakefield LM (2017) Immunocompetent mouse allograft models for development of therapies to target breast cancer metastasis. Oncotarget. 8(19):30621–30643PubMedPubMedCentralCrossRef Yang Y, Yang HH, Hu Y, Watson PH, Liu H, Geiger TR, Anver MR, Haines DC, Martin P, Green JE, Lee MP, Hunter KW, Wakefield LM (2017) Immunocompetent mouse allograft models for development of therapies to target breast cancer metastasis. Oncotarget. 8(19):30621–30643PubMedPubMedCentralCrossRef
26.
Zurück zum Zitat Miller FR, Miller BE, Heppner GH (1983) Characterization of metastatic heterogeneity among subpopulations of a single mouse mammary tumor: heterogeneity in phenotypic stability. Invasion Metastasis 3(1):22–31PubMed Miller FR, Miller BE, Heppner GH (1983) Characterization of metastatic heterogeneity among subpopulations of a single mouse mammary tumor: heterogeneity in phenotypic stability. Invasion Metastasis 3(1):22–31PubMed
27.
Zurück zum Zitat Das N, Datta N, Chatterjee U, Ghosh MK (2016) Estrogen receptor alpha transcriptionally activates casein kinase 2 alpha: a pivotal regulator of promyelocytic leukaemia protein (PML) and AKT in oncogenesis. Cell Signal 28(6):675–687PubMedCrossRef Das N, Datta N, Chatterjee U, Ghosh MK (2016) Estrogen receptor alpha transcriptionally activates casein kinase 2 alpha: a pivotal regulator of promyelocytic leukaemia protein (PML) and AKT in oncogenesis. Cell Signal 28(6):675–687PubMedCrossRef
28.
Zurück zum Zitat Guy CT, Cardiff RD, Muller WJ (1992) Induction of mammary tumors by expression of polyomavirus middle T oncogene: a transgenic mouse model for metastatic disease. Mol Cell Biol 12(3):954–961PubMedPubMedCentral Guy CT, Cardiff RD, Muller WJ (1992) Induction of mammary tumors by expression of polyomavirus middle T oncogene: a transgenic mouse model for metastatic disease. Mol Cell Biol 12(3):954–961PubMedPubMedCentral
29.
Zurück zum Zitat Christenson JL, Butterfield KT, Spoelstra NS, Norris JD, Josan JS, Pollock JA, McDonnell D, Katzenellenbogen BS, Katzenellenbogen JA, Richer JK (2017) MMTV-PyMT and derived Met-1 mouse mammary tumor cells as models for studying the role of the androgen receptor in triple-negative breast cancer progression. Horm Cancer 8(2):69–77PubMedPubMedCentralCrossRef Christenson JL, Butterfield KT, Spoelstra NS, Norris JD, Josan JS, Pollock JA, McDonnell D, Katzenellenbogen BS, Katzenellenbogen JA, Richer JK (2017) MMTV-PyMT and derived Met-1 mouse mammary tumor cells as models for studying the role of the androgen receptor in triple-negative breast cancer progression. Horm Cancer 8(2):69–77PubMedPubMedCentralCrossRef
30.
Zurück zum Zitat Yang NC, Ho WM, Chen YH, Hu ML (2002) A convenient one-step extraction of cellular ATP using boiling water for the luciferin-luciferase assay of ATP. Anal Biochem 306(2):323–327PubMedCrossRef Yang NC, Ho WM, Chen YH, Hu ML (2002) A convenient one-step extraction of cellular ATP using boiling water for the luciferin-luciferase assay of ATP. Anal Biochem 306(2):323–327PubMedCrossRef
31.
Zurück zum Zitat Nautiyal J, Steel JH, Mane MR, Oduwole O, Poliandri A, Alexi X, Wood N, Poutanen M, Zwart W, Stingl J, Parker MG (2013) The transcriptional co-factor RIP140 regulates mammary gland development by promoting the generation of key mitogenic signals. Development. 140(5):1079–1089PubMedPubMedCentralCrossRef Nautiyal J, Steel JH, Mane MR, Oduwole O, Poliandri A, Alexi X, Wood N, Poutanen M, Zwart W, Stingl J, Parker MG (2013) The transcriptional co-factor RIP140 regulates mammary gland development by promoting the generation of key mitogenic signals. Development. 140(5):1079–1089PubMedPubMedCentralCrossRef
32.
Zurück zum Zitat Ciarloni L, Mallepell S, Brisken C (2007) Amphiregulin is an essential mediator of estrogen receptor alpha function in mammary gland development. Proc Natl Acad Sci U S A 104(13):5455–5460PubMedPubMedCentralCrossRef Ciarloni L, Mallepell S, Brisken C (2007) Amphiregulin is an essential mediator of estrogen receptor alpha function in mammary gland development. Proc Natl Acad Sci U S A 104(13):5455–5460PubMedPubMedCentralCrossRef
33.
Zurück zum Zitat Hutcheson IR, Knowlden JM, Madden TA, Barrow D, Gee JM, Wakeling AE, Nicholson RI (2003) Oestrogen receptor-mediated modulation of the EGFR/MAPK pathway in tamoxifen-resistant MCF-7 cells. Breast Cancer Res Treat 81(1):81–93PubMedCrossRef Hutcheson IR, Knowlden JM, Madden TA, Barrow D, Gee JM, Wakeling AE, Nicholson RI (2003) Oestrogen receptor-mediated modulation of the EGFR/MAPK pathway in tamoxifen-resistant MCF-7 cells. Breast Cancer Res Treat 81(1):81–93PubMedCrossRef
34.
Zurück zum Zitat Massarweh S, Osborne CK, Creighton CJ, Qin L, Tsimelzon A, Huang S, Weiss H, Rimawi M, Schiff R (2008) Tamoxifen resistance in breast tumors is driven by growth factor receptor signaling with repression of classic estrogen receptor genomic function. Cancer Res 68(3):826–833PubMedCrossRef Massarweh S, Osborne CK, Creighton CJ, Qin L, Tsimelzon A, Huang S, Weiss H, Rimawi M, Schiff R (2008) Tamoxifen resistance in breast tumors is driven by growth factor receptor signaling with repression of classic estrogen receptor genomic function. Cancer Res 68(3):826–833PubMedCrossRef
35.
Zurück zum Zitat Jordan NJ, Gee JM, Barrow D, Wakeling AE, Nicholson RI (2004) Increased constitutive activity of PKB/Akt in tamoxifen resistant breast cancer MCF-7 cells. Breast Cancer Res Treat 87(2):167–180PubMedCrossRef Jordan NJ, Gee JM, Barrow D, Wakeling AE, Nicholson RI (2004) Increased constitutive activity of PKB/Akt in tamoxifen resistant breast cancer MCF-7 cells. Breast Cancer Res Treat 87(2):167–180PubMedCrossRef
36.
Zurück zum Zitat Adli M, Merkhofer E, Cogswell P, Baldwin AS (2010) IKKalpha and IKKbeta each function to regulate NF-kappaB activation in the TNF-induced/canonical pathway. PLoS One 5(2):e9428PubMedPubMedCentralCrossRef Adli M, Merkhofer E, Cogswell P, Baldwin AS (2010) IKKalpha and IKKbeta each function to regulate NF-kappaB activation in the TNF-induced/canonical pathway. PLoS One 5(2):e9428PubMedPubMedCentralCrossRef
38.
Zurück zum Zitat Kastrati I, Siklos MI, Calderon-Gierszal EL, El-Shennawy L, Georgieva G, Thayer EN et al (2016) Dimethyl fumarate inhibits the nuclear factor kappaB pathway in breast cancer cells by covalent modification of p65 protein. J Biol Chem 291(7):3639–3647PubMedCrossRef Kastrati I, Siklos MI, Calderon-Gierszal EL, El-Shennawy L, Georgieva G, Thayer EN et al (2016) Dimethyl fumarate inhibits the nuclear factor kappaB pathway in breast cancer cells by covalent modification of p65 protein. J Biol Chem 291(7):3639–3647PubMedCrossRef
39.
Zurück zum Zitat Nakshatri H, Bhat-Nakshatri P, Martin DA, Goulet RJ Jr, Sledge GW Jr (1997) Constitutive activation of NF-kappaB during progression of breast cancer to hormone-independent growth. Mol Cell Biol 17(7):3629–3639PubMedPubMedCentralCrossRef Nakshatri H, Bhat-Nakshatri P, Martin DA, Goulet RJ Jr, Sledge GW Jr (1997) Constitutive activation of NF-kappaB during progression of breast cancer to hormone-independent growth. Mol Cell Biol 17(7):3629–3639PubMedPubMedCentralCrossRef
40.
Zurück zum Zitat Sas L, Lardon F, Vermeulen PB, Hauspy J, Van Dam P, Pauwels P et al (2012) The interaction between ER and NFκB in resistance to endocrine therapy. Breast Cancer Res 14(4):212PubMedPubMedCentralCrossRef Sas L, Lardon F, Vermeulen PB, Hauspy J, Van Dam P, Pauwels P et al (2012) The interaction between ER and NFκB in resistance to endocrine therapy. Breast Cancer Res 14(4):212PubMedPubMedCentralCrossRef
41.
Zurück zum Zitat Frasor J, El-Shennawy L, Stender JD, Kastrati I (2015) NFkappaB affects estrogen receptor expression and activity in breast cancer through multiple mechanisms. Mol Cell Endocrinol 418(Pt 3):235–239PubMedCrossRef Frasor J, El-Shennawy L, Stender JD, Kastrati I (2015) NFkappaB affects estrogen receptor expression and activity in breast cancer through multiple mechanisms. Mol Cell Endocrinol 418(Pt 3):235–239PubMedCrossRef
42.
Zurück zum Zitat deGraffenried LA, Chandrasekar B, Friedrichs WE, Donzis E, Silva J, Hidalgo M, Freeman JW, Weiss GR (2004) NF-kappa B inhibition markedly enhances sensitivity of resistant breast cancer tumor cells to tamoxifen. Ann Oncol 15(6):885–890PubMedCrossRef deGraffenried LA, Chandrasekar B, Friedrichs WE, Donzis E, Silva J, Hidalgo M, Freeman JW, Weiss GR (2004) NF-kappa B inhibition markedly enhances sensitivity of resistant breast cancer tumor cells to tamoxifen. Ann Oncol 15(6):885–890PubMedCrossRef
43.
Zurück zum Zitat Zhou Y, Yau C, Gray JW, Chew K, Dairkee SH, Moore DH et al (2007) Enhanced NF kappa B and AP-1 transcriptional activity associated with antiestrogen resistant breast cancer. BMC Cancer 7:59PubMedPubMedCentralCrossRef Zhou Y, Yau C, Gray JW, Chew K, Dairkee SH, Moore DH et al (2007) Enhanced NF kappa B and AP-1 transcriptional activity associated with antiestrogen resistant breast cancer. BMC Cancer 7:59PubMedPubMedCentralCrossRef
44.
Zurück zum Zitat Frasor J, Weaver AE, Pradhan M, Mehta K (2008) Synergistic up-regulation of prostaglandin E synthase expression in breast cancer cells by 17beta-estradiol and proinflammatory cytokines. Endocrinology. 149(12):6272–6279PubMedPubMedCentralCrossRef Frasor J, Weaver AE, Pradhan M, Mehta K (2008) Synergistic up-regulation of prostaglandin E synthase expression in breast cancer cells by 17beta-estradiol and proinflammatory cytokines. Endocrinology. 149(12):6272–6279PubMedPubMedCentralCrossRef
45.
Zurück zum Zitat O'Mahony F, Razandi M, Pedram A, Harvey BJ, Levin ER (2012) Estrogen modulates metabolic pathway adaptation to available glucose in breast cancer cells. Mol Endocrinol 26(12):2058–2070PubMedPubMedCentralCrossRef O'Mahony F, Razandi M, Pedram A, Harvey BJ, Levin ER (2012) Estrogen modulates metabolic pathway adaptation to available glucose in breast cancer cells. Mol Endocrinol 26(12):2058–2070PubMedPubMedCentralCrossRef
46.
Zurück zum Zitat Arias-Loza PA, Muehlfelder M, Pelzer T (2013) Estrogen and estrogen receptors in cardiovascular oxidative stress. Pflugers Arch 465(5):739–746PubMedCrossRef Arias-Loza PA, Muehlfelder M, Pelzer T (2013) Estrogen and estrogen receptors in cardiovascular oxidative stress. Pflugers Arch 465(5):739–746PubMedCrossRef
48.
Zurück zum Zitat Morgan MJ, Liu ZG (2011) Crosstalk of reactive oxygen species and NF-kappaB signaling. Cell Res 21(1):103–115PubMedCrossRef Morgan MJ, Liu ZG (2011) Crosstalk of reactive oxygen species and NF-kappaB signaling. Cell Res 21(1):103–115PubMedCrossRef
49.
Zurück zum Zitat Tiwari BS, Belenghi B, Levine A (2002) Oxidative stress increased respiration and generation of reactive oxygen species, resulting in ATP depletion, opening of mitochondrial permeability transition, and programmed cell death. Plant Physiol 128(4):1271–1281PubMedPubMedCentralCrossRef Tiwari BS, Belenghi B, Levine A (2002) Oxidative stress increased respiration and generation of reactive oxygen species, resulting in ATP depletion, opening of mitochondrial permeability transition, and programmed cell death. Plant Physiol 128(4):1271–1281PubMedPubMedCentralCrossRef
50.
51.
Zurück zum Zitat Pedram A, Razandi M, Wallace DC, Levin ER (2006) Functional estrogen receptors in the mitochondria of breast cancer cells. Mol Biol Cell 17(5):2125–2137PubMedPubMedCentralCrossRef Pedram A, Razandi M, Wallace DC, Levin ER (2006) Functional estrogen receptors in the mitochondria of breast cancer cells. Mol Biol Cell 17(5):2125–2137PubMedPubMedCentralCrossRef
52.
Zurück zum Zitat Nazarewicz RR, Zenebe WJ, Parihar A, Larson SK, Alidema E, Choi J, Ghafourifar P (2007) Tamoxifen induces oxidative stress and mitochondrial apoptosis via stimulating mitochondrial nitric oxide synthase. Cancer Res 67(3):1282–1290PubMedCrossRef Nazarewicz RR, Zenebe WJ, Parihar A, Larson SK, Alidema E, Choi J, Ghafourifar P (2007) Tamoxifen induces oxidative stress and mitochondrial apoptosis via stimulating mitochondrial nitric oxide synthase. Cancer Res 67(3):1282–1290PubMedCrossRef
53.
Zurück zum Zitat Razmara A, Sunday L, Stirone C, Wang XB, Krause DN, Duckles SP, Procaccio V (2008) Mitochondrial effects of estrogen are mediated by estrogen receptor alpha in brain endothelial cells. J Pharmacol Exp Ther 325(3):782–790PubMedCrossRef Razmara A, Sunday L, Stirone C, Wang XB, Krause DN, Duckles SP, Procaccio V (2008) Mitochondrial effects of estrogen are mediated by estrogen receptor alpha in brain endothelial cells. J Pharmacol Exp Ther 325(3):782–790PubMedCrossRef
54.
Zurück zum Zitat Toneff MJ, Du Z, Dong J, Huang J, Sinai P, Forman J et al (2010) Somatic expression of PyMT or activated ErbB2 induces estrogen-independent mammary tumorigenesis. Neoplasia. 12(9):718–726PubMedPubMedCentralCrossRef Toneff MJ, Du Z, Dong J, Huang J, Sinai P, Forman J et al (2010) Somatic expression of PyMT or activated ErbB2 induces estrogen-independent mammary tumorigenesis. Neoplasia. 12(9):718–726PubMedPubMedCentralCrossRef
55.
Zurück zum Zitat Waldmeier L, Meyer-Schaller N, Diepenbruck M, Christofori G (2012) Py2T murine breast cancer cells, a versatile model of TGFβ-induced EMT in vitro and in vivo. PloS One 7(11):e48651-eCrossRef Waldmeier L, Meyer-Schaller N, Diepenbruck M, Christofori G (2012) Py2T murine breast cancer cells, a versatile model of TGFβ-induced EMT in vitro and in vivo. PloS One 7(11):e48651-eCrossRef
56.
Zurück zum Zitat Guest SK, Ribas R, Pancholi S, Nikitorowicz-Buniak J, Simigdala N, Dowsett M, Johnston SR, Martin LA (2016) Src is a potential therapeutic target in endocrine-resistant breast cancer exhibiting low estrogen receptor-mediated transactivation. PLoS One 11(6):e0157397PubMedPubMedCentralCrossRef Guest SK, Ribas R, Pancholi S, Nikitorowicz-Buniak J, Simigdala N, Dowsett M, Johnston SR, Martin LA (2016) Src is a potential therapeutic target in endocrine-resistant breast cancer exhibiting low estrogen receptor-mediated transactivation. PLoS One 11(6):e0157397PubMedPubMedCentralCrossRef
57.
Zurück zum Zitat Barletta F, Wong CW, McNally C, Komm BS, Katzenellenbogen B, Cheskis BJ (2004) Characterization of the interactions of estrogen receptor and MNAR in the activation of cSrc. Mol Endocrinol 18(5):1096–1108PubMedCrossRef Barletta F, Wong CW, McNally C, Komm BS, Katzenellenbogen B, Cheskis BJ (2004) Characterization of the interactions of estrogen receptor and MNAR in the activation of cSrc. Mol Endocrinol 18(5):1096–1108PubMedCrossRef
58.
Zurück zum Zitat Chakravarty D, Nair SS, Santhamma B, Nair BC, Wang L, Bandyopadhyay A, Agyin JK, Brann D, Sun LZ, Yeh IT, Lee FY, Tekmal RR, Kumar R, Vadlamudi RK (2010) Extranuclear functions of ER impact invasive migration and metastasis by breast cancer cells. Cancer Res 70(10):4092–4101PubMedPubMedCentralCrossRef Chakravarty D, Nair SS, Santhamma B, Nair BC, Wang L, Bandyopadhyay A, Agyin JK, Brann D, Sun LZ, Yeh IT, Lee FY, Tekmal RR, Kumar R, Vadlamudi RK (2010) Extranuclear functions of ER impact invasive migration and metastasis by breast cancer cells. Cancer Res 70(10):4092–4101PubMedPubMedCentralCrossRef
59.
Zurück zum Zitat Vallabhaneni S, Nair BC, Cortez V, Challa R, Chakravarty D, Tekmal RR, Vadlamudi RK (2011) Significance of ER-Src axis in hormonal therapy resistance. Breast Cancer Res Treat 130(2):377–385PubMedCrossRef Vallabhaneni S, Nair BC, Cortez V, Challa R, Chakravarty D, Tekmal RR, Vadlamudi RK (2011) Significance of ER-Src axis in hormonal therapy resistance. Breast Cancer Res Treat 130(2):377–385PubMedCrossRef
60.
Zurück zum Zitat Frei A, MacDonald G, Lund I, Gustafsson J-Å, Hynes NE, Nalvarte I (2016) Memo interacts with c-Src to control estrogen receptor alpha sub-cellular localization. Oncotarget. 7(35):56170–56182PubMedPubMedCentralCrossRef Frei A, MacDonald G, Lund I, Gustafsson J-Å, Hynes NE, Nalvarte I (2016) Memo interacts with c-Src to control estrogen receptor alpha sub-cellular localization. Oncotarget. 7(35):56170–56182PubMedPubMedCentralCrossRef
61.
Zurück zum Zitat Kumar R, Wang RA, Mazumdar A, Talukder AH, Mandal M, Yang Z, Bagheri-Yarmand R, Sahin A, Hortobagyi G, Adam L, Barnes CJ, Vadlamudi RK (2002) A naturally occurring MTA1 variant sequesters oestrogen receptor-alpha in the cytoplasm. Nature. 418(6898):654–657PubMedCrossRef Kumar R, Wang RA, Mazumdar A, Talukder AH, Mandal M, Yang Z, Bagheri-Yarmand R, Sahin A, Hortobagyi G, Adam L, Barnes CJ, Vadlamudi RK (2002) A naturally occurring MTA1 variant sequesters oestrogen receptor-alpha in the cytoplasm. Nature. 418(6898):654–657PubMedCrossRef
62.
Zurück zum Zitat Teyssier C, Le Romancer M, Sentis S, Jalaguier S, Corbo L, Cavailles V (2010) Protein arginine methylation in estrogen signaling and estrogen-related cancers. Trends Endocrinol Metab 21(3):181–189PubMedCrossRef Teyssier C, Le Romancer M, Sentis S, Jalaguier S, Corbo L, Cavailles V (2010) Protein arginine methylation in estrogen signaling and estrogen-related cancers. Trends Endocrinol Metab 21(3):181–189PubMedCrossRef
63.
Zurück zum Zitat Gompel A, Somai S, Chaouat M, Kazem A, Kloosterboer HJ, Beusman I et al (2000) Hormonal regulation of apoptosis in breast cells and tissues. Steroids. 65(10–11):593–598PubMedCrossRef Gompel A, Somai S, Chaouat M, Kazem A, Kloosterboer HJ, Beusman I et al (2000) Hormonal regulation of apoptosis in breast cells and tissues. Steroids. 65(10–11):593–598PubMedCrossRef
64.
Zurück zum Zitat Wong WP, Tiano JP, Liu S, Hewitt SC, Le May C, Dalle S et al (2010) Extranuclear estrogen receptor-alpha stimulates NeuroD1 binding to the insulin promoter and favors insulin synthesis. Proc Natl Acad Sci U S A 107(29):13057–13062PubMedPubMedCentralCrossRef Wong WP, Tiano JP, Liu S, Hewitt SC, Le May C, Dalle S et al (2010) Extranuclear estrogen receptor-alpha stimulates NeuroD1 binding to the insulin promoter and favors insulin synthesis. Proc Natl Acad Sci U S A 107(29):13057–13062PubMedPubMedCentralCrossRef
65.
Zurück zum Zitat Cheskis BJ, Greger J, Cooch N, McNally C, McLarney S, Lam HS et al (2008) MNAR plays an important role in ERa activation of Src/MAPK and PI3K/Akt signaling pathways. Steroids. 73(9–10):901–905PubMedCrossRef Cheskis BJ, Greger J, Cooch N, McNally C, McLarney S, Lam HS et al (2008) MNAR plays an important role in ERa activation of Src/MAPK and PI3K/Akt signaling pathways. Steroids. 73(9–10):901–905PubMedCrossRef
66.
Zurück zum Zitat Zhang QG, Raz L, Wang R, Han D, De Sevilla L, Yang F et al (2009) Estrogen attenuates ischemic oxidative damage via an estrogen receptor alpha-mediated inhibition of NADPH oxidase activation. J Neurosci 29(44):13823–13836PubMedPubMedCentralCrossRef Zhang QG, Raz L, Wang R, Han D, De Sevilla L, Yang F et al (2009) Estrogen attenuates ischemic oxidative damage via an estrogen receptor alpha-mediated inhibition of NADPH oxidase activation. J Neurosci 29(44):13823–13836PubMedPubMedCentralCrossRef
67.
Zurück zum Zitat Menazza S, Sun J, Appachi S, Chambliss KL, Kim SH, Aponte A, Khan S, Katzenellenbogen JA, Katzenellenbogen BS, Shaul PW, Murphy E (2017) Non-nuclear estrogen receptor alpha activation in endothelium reduces cardiac ischemia-reperfusion injury in mice. J Mol Cell Cardiol 107:41–51PubMedPubMedCentralCrossRef Menazza S, Sun J, Appachi S, Chambliss KL, Kim SH, Aponte A, Khan S, Katzenellenbogen JA, Katzenellenbogen BS, Shaul PW, Murphy E (2017) Non-nuclear estrogen receptor alpha activation in endothelium reduces cardiac ischemia-reperfusion injury in mice. J Mol Cell Cardiol 107:41–51PubMedPubMedCentralCrossRef
68.
Zurück zum Zitat Liu S, Le May C, Wong WP, Ward RD, Clegg DJ, Marcelli M et al (2009) Importance of extranuclear estrogen receptor-alpha and membrane G protein-coupled estrogen receptor in pancreatic islet survival. Diabetes. 58(10):2292–2302PubMedPubMedCentralCrossRef Liu S, Le May C, Wong WP, Ward RD, Clegg DJ, Marcelli M et al (2009) Importance of extranuclear estrogen receptor-alpha and membrane G protein-coupled estrogen receptor in pancreatic islet survival. Diabetes. 58(10):2292–2302PubMedPubMedCentralCrossRef
69.
Zurück zum Zitat Hartman JL, Garvik B, Hartwell L (2001) Principles for the buffering of genetic variation. Science. 291(5506):1001–1004PubMedCrossRef Hartman JL, Garvik B, Hartwell L (2001) Principles for the buffering of genetic variation. Science. 291(5506):1001–1004PubMedCrossRef
71.
73.
Zurück zum Zitat Ghisletti S, Meda C, Maggi A, Vegeto E (2005) 17beta-estradiol inhibits inflammatory gene expression by controlling NF-kappaB intracellular localization. Mol Cell Biol 25(8):2957–2968PubMedPubMedCentralCrossRef Ghisletti S, Meda C, Maggi A, Vegeto E (2005) 17beta-estradiol inhibits inflammatory gene expression by controlling NF-kappaB intracellular localization. Mol Cell Biol 25(8):2957–2968PubMedPubMedCentralCrossRef
74.
Zurück zum Zitat Nakshatri H, Goulet RJ Jr (2002) NF-kappaB and breast cancer. Curr Probl Cancer 26(5):282–309PubMedCrossRef Nakshatri H, Goulet RJ Jr (2002) NF-kappaB and breast cancer. Curr Probl Cancer 26(5):282–309PubMedCrossRef
75.
Zurück zum Zitat Zhou Y, Eppenberger-Castori S, Marx C, Yau C, Scott GK, Eppenberger U, Benz CC (2005) Activation of nuclear factor-kappaB (NFkappaB) identifies a high-risk subset of hormone-dependent breast cancers. Int J Biochem Cell Biol 37(5):1130–1144PubMedCrossRef Zhou Y, Eppenberger-Castori S, Marx C, Yau C, Scott GK, Eppenberger U, Benz CC (2005) Activation of nuclear factor-kappaB (NFkappaB) identifies a high-risk subset of hormone-dependent breast cancers. Int J Biochem Cell Biol 37(5):1130–1144PubMedCrossRef
76.
Zurück zum Zitat Welsh AW, Lannin DR, Young GS, Sherman ME, Figueroa JD, Henry NL, Ryden L, Kim C, Love RR, Schiff R, Rimm DL (2012) Cytoplasmic estrogen receptor in breast cancer. Clin Cancer Res 18(1):118–126PubMedCrossRef Welsh AW, Lannin DR, Young GS, Sherman ME, Figueroa JD, Henry NL, Ryden L, Kim C, Love RR, Schiff R, Rimm DL (2012) Cytoplasmic estrogen receptor in breast cancer. Clin Cancer Res 18(1):118–126PubMedCrossRef
Metadaten
Titel
Cytoplasmic ERα and NFκB Promote Cell Survival in Mouse Mammary Cancer Cell Lines
verfasst von
Emily Smart
Luis H. Alejo
Jonna Frasor
Publikationsdatum
01.02.2020
Verlag
Springer US
Erschienen in
Discover Oncology / Ausgabe 2/2020
Print ISSN: 1868-8497
Elektronische ISSN: 2730-6011
DOI
https://doi.org/10.1007/s12672-020-00378-2

Weitere Artikel der Ausgabe 2/2020

Discover Oncology 2/2020 Zur Ausgabe

Erhöhte Mortalität bei postpartalem Brustkrebs

07.05.2024 Mammakarzinom Nachrichten

Auch für Trägerinnen von BRCA-Varianten gilt: Erkranken sie fünf bis zehn Jahre nach der letzten Schwangerschaft an Brustkrebs, ist das Sterberisiko besonders hoch.

Hypertherme Chemotherapie bietet Chance auf Blasenerhalt

07.05.2024 Harnblasenkarzinom Nachrichten

Eine hypertherme intravesikale Chemotherapie mit Mitomycin kann für Patienten mit hochriskantem nicht muskelinvasivem Blasenkrebs eine Alternative zur radikalen Zystektomie darstellen. Kölner Urologen berichten über ihre Erfahrungen.

Ein Drittel der jungen Ärztinnen und Ärzte erwägt abzuwandern

07.05.2024 Medizinstudium Nachrichten

Extreme Arbeitsverdichtung und kaum Supervision: Dr. Andrea Martini, Sprecherin des Bündnisses Junge Ärztinnen und Ärzte (BJÄ) über den Frust des ärztlichen Nachwuchses und die Vorteile des Rucksack-Modells.

Bessere Prognose mit links- statt rechtsseitigem Kolon-Ca.

06.05.2024 Kolonkarzinom Nachrichten

Menschen mit linksseitigem Kolonkarzinom leben im Mittel zweieinhalb Jahre länger als solche mit rechtsseitigem Tumor. Auch aktuell ist das Sterberisiko bei linksseitigen Tumoren US-Daten zufolge etwa um 11% geringer als bei rechtsseitigen.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.