Skip to main content
Erschienen in: Diabetologia 7/2015

01.07.2015 | Article

Deletion of the gene for adiponectin accelerates diabetic nephropathy in the Ins2 +/C96Y mouse

verfasst von: Fei Fang, Eun-Hui Bae, Amanda Hu, George C. Liu, Xiaohua Zhou, Vanessa Williams, Nicholas Maksimowski, Catherine Lu, Ana Konvalinka, Rohan John, James W. Scholey

Erschienen in: Diabetologia | Ausgabe 7/2015

Einloggen, um Zugang zu erhalten

Abstract

Aims/hypothesis

Diabetic nephropathy is one of the most common forms of chronic kidney disease. The role of adiponectin in the development of diabetic nephropathy has not been elucidated, and the aim of the present study was to investigate the hypothesis that deletion of the gene for adiponectin would accelerate diabetic nephropathy in the Akita mouse.

Methods

We followed four groups of mice from 4 weeks to 16 weeks of age (n ≥ 10 in each group): wild-type (WT) (Ins2 +/+ Adipoq +/+) mice; APN−/− (Ins2 +/+ Adipoq −/−) mice; Akita (Ins2 +/C96Y Adipoq +/+) mice and Akita/APN−/− (Ins2 +/C96Y Adipoq −/−) mice. The mice were then killed and diabetic kidney injury was assessed. In vitro experiments were performed in primary mesangial cells.

Results

Mice from both diabetic groups exhibited increased glomerular adiponectin receptor 1 (adipoR1) expression, kidney hypertrophy, glomerular enlargement, increased albuminuria and tissue oxidative stress compared with the WT control. Deletion of the adiponectin gene had no effect on glycaemia. However, Akita/APN−/− mice exhibited a greater extent of renal hypertrophy. In vitro, adiponectin attenuated high-glucose-induced phosphorylation of mammalian target of rapamycin (mTOR) and ribosomal protein S6 kinase (S6K). A higher level of fibrosis was observed in the tubulointerstitial and glomerular compartments of the Akita/APN−/− mice and adiponectin was found to inhibit TGFβ-induced Smad2 and Smad3 phosphorylation in vitro. There was an exaggerated inflammatory response in the Akita/APN−/− mice. Adiponectin also inhibited high-glucose-induced activation of nuclear factor κB (NFκB) in mesangial cells.

Conclusions/interpretation

Our data suggest that adiponectin is an important determinant of the kidney response to high glucose in vivo and in vitro.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Tang SC (2010) Diabetic nephropathy: a global and growing threat. Hong Kong Med J 16:244–245PubMed Tang SC (2010) Diabetic nephropathy: a global and growing threat. Hong Kong Med J 16:244–245PubMed
2.
Zurück zum Zitat Packham DK, Alves TP, Dwyer JP et al (2012) Relative incidence of ESRD versus cardiovascular mortality in proteinuric type 2 diabetes and nephropathy: results from the DIAMETRIC (Diabetes Mellitus Treatment for Renal Insufficiency Consortium) database. Am J Kidney Dis 59:75–83PubMedCrossRef Packham DK, Alves TP, Dwyer JP et al (2012) Relative incidence of ESRD versus cardiovascular mortality in proteinuric type 2 diabetes and nephropathy: results from the DIAMETRIC (Diabetes Mellitus Treatment for Renal Insufficiency Consortium) database. Am J Kidney Dis 59:75–83PubMedCrossRef
3.
Zurück zum Zitat Eckardt KU, Coresh J, Devuyst O et al (2013) Evolving importance of kidney disease: from subspecialty to global health burden. Lancet 382:158–169PubMedCrossRef Eckardt KU, Coresh J, Devuyst O et al (2013) Evolving importance of kidney disease: from subspecialty to global health burden. Lancet 382:158–169PubMedCrossRef
4.
Zurück zum Zitat Brownlee M (2001) Biochemistry and molecular cell biology of diabetic complications. Nature 414:813–820PubMedCrossRef Brownlee M (2001) Biochemistry and molecular cell biology of diabetic complications. Nature 414:813–820PubMedCrossRef
5.
Zurück zum Zitat Sun YM, Su Y, Li J, Wang LF (2013) Recent advances in understanding the biochemical and molecular mechanism of diabetic nephropathy. Biochem Biophys Res Commun 433:359–361PubMedCrossRef Sun YM, Su Y, Li J, Wang LF (2013) Recent advances in understanding the biochemical and molecular mechanism of diabetic nephropathy. Biochem Biophys Res Commun 433:359–361PubMedCrossRef
6.
Zurück zum Zitat Wiecek A, Adamczak M, Chudek J (2007) Adiponectin—an adipokine with unique metabolic properties. Nephrol Dial Transplant 22:981–988PubMedCrossRef Wiecek A, Adamczak M, Chudek J (2007) Adiponectin—an adipokine with unique metabolic properties. Nephrol Dial Transplant 22:981–988PubMedCrossRef
7.
Zurück zum Zitat Shetty S, Kusminski C, Scherer P (2009) Adiponectin in health and disease: evaluation of adiponectin-targeted drug development strategies. Trends Pharmacol Sci 30:234–239PubMedCrossRef Shetty S, Kusminski C, Scherer P (2009) Adiponectin in health and disease: evaluation of adiponectin-targeted drug development strategies. Trends Pharmacol Sci 30:234–239PubMedCrossRef
8.
Zurück zum Zitat Yamauchi T, Kamon J, Minokoshi Y et al (2002) Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat Med 8:1288–1295PubMedCrossRef Yamauchi T, Kamon J, Minokoshi Y et al (2002) Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat Med 8:1288–1295PubMedCrossRef
9.
Zurück zum Zitat Akingbemi BT (2013) Adiponectin receptors in energy homeostasis and obesity pathogenesis. Prog Mol Biol Transl Sci 114:317–342PubMed Akingbemi BT (2013) Adiponectin receptors in energy homeostasis and obesity pathogenesis. Prog Mol Biol Transl Sci 114:317–342PubMed
10.
Zurück zum Zitat Chou IP, Lin YY, Ding ST, Chen CY (2014) Adiponectin receptor 1 enhances fatty acid metabolism and cell survival in palmitate-treated HepG2 cells through the PI3 K/AKT pathway. Eur J Nutr 53:907–917PubMedCrossRef Chou IP, Lin YY, Ding ST, Chen CY (2014) Adiponectin receptor 1 enhances fatty acid metabolism and cell survival in palmitate-treated HepG2 cells through the PI3 K/AKT pathway. Eur J Nutr 53:907–917PubMedCrossRef
11.
Zurück zum Zitat Kim JE, Song SE, Kim YW et al (2010) Adiponectin inhibits palmitate-induced apoptosis through suppression of reactive oxygen species in endothelial cells: involvement of cAMP/protein kinase A and AMP-activated protein kinase. J Endocrinol 207:35–44PubMedCrossRef Kim JE, Song SE, Kim YW et al (2010) Adiponectin inhibits palmitate-induced apoptosis through suppression of reactive oxygen species in endothelial cells: involvement of cAMP/protein kinase A and AMP-activated protein kinase. J Endocrinol 207:35–44PubMedCrossRef
12.
Zurück zum Zitat Yamauchi T, Nio Y, Maki T et al (2007) Targeted disruption of AdipoR1 and AdipoR2 causes abrogation of adiponectin binding and metabolic actions. Nat Med 13:332–339PubMedCrossRef Yamauchi T, Nio Y, Maki T et al (2007) Targeted disruption of AdipoR1 and AdipoR2 causes abrogation of adiponectin binding and metabolic actions. Nat Med 13:332–339PubMedCrossRef
13.
Zurück zum Zitat Denzel MS, Scimia MC, Zumstein PM, Walsh K, Ruiz-Lozano P, Ranscht B (2010) T-cadherin is critical for adiponectin-mediated cardioprotection in mice. J Clin Invest 120:4342–4352PubMedCentralPubMedCrossRef Denzel MS, Scimia MC, Zumstein PM, Walsh K, Ruiz-Lozano P, Ranscht B (2010) T-cadherin is critical for adiponectin-mediated cardioprotection in mice. J Clin Invest 120:4342–4352PubMedCentralPubMedCrossRef
14.
Zurück zum Zitat Yamauchi T, Kamon J, Waki H et al (2001) The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat Med 7:941–946PubMedCrossRef Yamauchi T, Kamon J, Waki H et al (2001) The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat Med 7:941–946PubMedCrossRef
15.
Zurück zum Zitat Ouchi N, Kihara S, Arita Y et al (2000) Adiponectin, an adipocyte-derived plasma protein, inhibits endothelial NF-κB signaling through a cAMP-dependent pathway. Circulation 102:1296–1301PubMedCrossRef Ouchi N, Kihara S, Arita Y et al (2000) Adiponectin, an adipocyte-derived plasma protein, inhibits endothelial NF-κB signaling through a cAMP-dependent pathway. Circulation 102:1296–1301PubMedCrossRef
16.
Zurück zum Zitat Ouchi N, Ohishi M, Kihara S et al (2003) Association of hypoadiponectinemia with impaired vasoreactivity. Hypertension 42:231–234PubMedCrossRef Ouchi N, Ohishi M, Kihara S et al (2003) Association of hypoadiponectinemia with impaired vasoreactivity. Hypertension 42:231–234PubMedCrossRef
17.
Zurück zum Zitat Sharma K, Ramachandrarao S, Qiu G et al (2008) Adiponectin regulates albuminuria and podocyte function in mice. J Clin Invest 118:1645–1656PubMedCentralPubMed Sharma K, Ramachandrarao S, Qiu G et al (2008) Adiponectin regulates albuminuria and podocyte function in mice. J Clin Invest 118:1645–1656PubMedCentralPubMed
18.
Zurück zum Zitat Decleves AE, Mathew AV, Cunard R, Sharma K (2011) AMPK mediates the initiation of kidney disease induced by a high-fat diet. J Am Soc Nephrol 22:1846–1855PubMedCentralPubMedCrossRef Decleves AE, Mathew AV, Cunard R, Sharma K (2011) AMPK mediates the initiation of kidney disease induced by a high-fat diet. J Am Soc Nephrol 22:1846–1855PubMedCentralPubMedCrossRef
19.
Zurück zum Zitat Liu GC, Oudit GY, Fang F, Zhou J, Scholey JW (2012) Angiotensin-(1-7)-induced activation of ERK1/2 is cAMP/protein kinase A-dependent in glomerular mesangial cells. Am J Physiol Ren Physiol 302:F784–F790CrossRef Liu GC, Oudit GY, Fang F, Zhou J, Scholey JW (2012) Angiotensin-(1-7)-induced activation of ERK1/2 is cAMP/protein kinase A-dependent in glomerular mesangial cells. Am J Physiol Ren Physiol 302:F784–F790CrossRef
20.
Zurück zum Zitat Fang F, Liu GC, Kim C, Yassa R, Zhou J, Scholey JW (2013) Adiponectin attenuates angiotensin II-induced oxidative stress in renal tubular cells through AMPK and cAMP-Epac signal transduction pathways. Am J Physiol Ren Physiol 304:F1366–F1374CrossRef Fang F, Liu GC, Kim C, Yassa R, Zhou J, Scholey JW (2013) Adiponectin attenuates angiotensin II-induced oxidative stress in renal tubular cells through AMPK and cAMP-Epac signal transduction pathways. Am J Physiol Ren Physiol 304:F1366–F1374CrossRef
21.
Zurück zum Zitat Holland WL, Miller RA, Wang ZV et al (2011) Receptor-mediated activation of ceramidase activity initiates the pleiotropic actions of adiponectin. Nat Med 17:55–63PubMedCentralPubMedCrossRef Holland WL, Miller RA, Wang ZV et al (2011) Receptor-mediated activation of ceramidase activity initiates the pleiotropic actions of adiponectin. Nat Med 17:55–63PubMedCentralPubMedCrossRef
22.
Zurück zum Zitat Rakatzi I, Mueller H, Ritzeler O, Tennagels N, Eckel J (2004) Adiponectin counteracts cytokine- and fatty acid-induced apoptosis in the pancreatic beta-cell line INS-1. Diabetologia 47:249–258PubMedCrossRef Rakatzi I, Mueller H, Ritzeler O, Tennagels N, Eckel J (2004) Adiponectin counteracts cytokine- and fatty acid-induced apoptosis in the pancreatic beta-cell line INS-1. Diabetologia 47:249–258PubMedCrossRef
23.
Zurück zum Zitat Okamoto Y, Kihara S, Ouchi N et al (2002) Adiponectin reduces atherosclerosis in apolipoprotein E-deficient mice. Circulation 106:2767–2770PubMedCrossRef Okamoto Y, Kihara S, Ouchi N et al (2002) Adiponectin reduces atherosclerosis in apolipoprotein E-deficient mice. Circulation 106:2767–2770PubMedCrossRef
24.
Zurück zum Zitat Shibata R, Sato K, Pimentel DR et al (2005) Adiponectin protects against myocardial ischemia-reperfusion injury through AMPK- and COX-2-dependent mechanisms. Nat Med 11:1096–1103PubMedCentralPubMedCrossRef Shibata R, Sato K, Pimentel DR et al (2005) Adiponectin protects against myocardial ischemia-reperfusion injury through AMPK- and COX-2-dependent mechanisms. Nat Med 11:1096–1103PubMedCentralPubMedCrossRef
25.
Zurück zum Zitat Cheng CF, Lian WS, Chen SH et al (2012) Protective effects of adiponectin against renal ischemia-reperfusion injury via prostacyclin-PPARα-heme oxygenase-1 signaling pathway. J Cell Physiol 227:239–249PubMedCrossRef Cheng CF, Lian WS, Chen SH et al (2012) Protective effects of adiponectin against renal ischemia-reperfusion injury via prostacyclin-PPARα-heme oxygenase-1 signaling pathway. J Cell Physiol 227:239–249PubMedCrossRef
26.
27.
Zurück zum Zitat Guo Z, Zhao Z (2007) Effect of N-acetylcysteine on plasma adiponectin and renal adiponectin receptors in streptozotocin-induced diabetic rats. Eur J Pharmacol 558:208–213PubMedCrossRef Guo Z, Zhao Z (2007) Effect of N-acetylcysteine on plasma adiponectin and renal adiponectin receptors in streptozotocin-induced diabetic rats. Eur J Pharmacol 558:208–213PubMedCrossRef
28.
Zurück zum Zitat Tamura Y, Murayama T, Minami M, Matsubara T, Yokode M, Arai H (2012) Ezetimibe ameliorates early diabetic nephropathy in db/db mice. J Atheroscler Thromb 19:608–618PubMedCrossRef Tamura Y, Murayama T, Minami M, Matsubara T, Yokode M, Arai H (2012) Ezetimibe ameliorates early diabetic nephropathy in db/db mice. J Atheroscler Thromb 19:608–618PubMedCrossRef
29.
Zurück zum Zitat Qian Y, Feldman E, Pennathur S, Kretzler M, Brosius FC 3rd (2008) From fibrosis to sclerosis: mechanisms of glomerulosclerosis in diabetic nephropathy. Diabetes 57:1439–1445PubMedCentralPubMedCrossRef Qian Y, Feldman E, Pennathur S, Kretzler M, Brosius FC 3rd (2008) From fibrosis to sclerosis: mechanisms of glomerulosclerosis in diabetic nephropathy. Diabetes 57:1439–1445PubMedCentralPubMedCrossRef
30.
Zurück zum Zitat Lieberthal W, Levine JS (2009) The role of the mammalian target of rapamycin (mTOR) in renal disease. J Am Soc Nephrol 20:2493–2502PubMedCrossRef Lieberthal W, Levine JS (2009) The role of the mammalian target of rapamycin (mTOR) in renal disease. J Am Soc Nephrol 20:2493–2502PubMedCrossRef
31.
Zurück zum Zitat Zhan JK, Wang YJ, Wang Y et al (2014) Adiponectin attenuates the osteoblastic differentiation of vascular smooth muscle cells through the AMPK/mTOR pathway. Exp Cell Res 323:352–358PubMedCrossRef Zhan JK, Wang YJ, Wang Y et al (2014) Adiponectin attenuates the osteoblastic differentiation of vascular smooth muscle cells through the AMPK/mTOR pathway. Exp Cell Res 323:352–358PubMedCrossRef
32.
Zurück zum Zitat Su YX, Deng HC, Zhang MX, Long J, Peng ZG (2012) Adiponectin inhibits PDGF-induced mesangial cell proliferation: regulation of mammalian target of rapamycin-mediated survival pathway by adenosine 5-monophosphate-activated protein kinase. Horm Metab Res 44:21–27PubMedCrossRef Su YX, Deng HC, Zhang MX, Long J, Peng ZG (2012) Adiponectin inhibits PDGF-induced mesangial cell proliferation: regulation of mammalian target of rapamycin-mediated survival pathway by adenosine 5-monophosphate-activated protein kinase. Horm Metab Res 44:21–27PubMedCrossRef
33.
Zurück zum Zitat Liu X, Hubchak SC, Browne JA, Schnaper HW (2014) Epidermal growth factor inhibits transforming growth factor-β-induced fibrogenic differentiation marker expression through ERK activation. Cell Signal 26:2276–2283PubMedCrossRef Liu X, Hubchak SC, Browne JA, Schnaper HW (2014) Epidermal growth factor inhibits transforming growth factor-β-induced fibrogenic differentiation marker expression through ERK activation. Cell Signal 26:2276–2283PubMedCrossRef
34.
Zurück zum Zitat Sharma K, Ziyadeh FN (1994) The emerging role of transforming growth factor-beta in kidney diseases. Am J Physiol 266:F829–F842PubMed Sharma K, Ziyadeh FN (1994) The emerging role of transforming growth factor-beta in kidney diseases. Am J Physiol 266:F829–F842PubMed
35.
Zurück zum Zitat Nakamaki S, Satoh H, Kudoh A, Hayashi Y, Hirai H, Watanabe T (2011) Adiponectin reduces proteinuria in streptozotocin-induced diabetic Wistar rats. Exp Biol Med (Maywood) 236:614–620CrossRef Nakamaki S, Satoh H, Kudoh A, Hayashi Y, Hirai H, Watanabe T (2011) Adiponectin reduces proteinuria in streptozotocin-induced diabetic Wistar rats. Exp Biol Med (Maywood) 236:614–620CrossRef
36.
Zurück zum Zitat Ohashi K, Iwatani H, Kihara S et al (2007) Exacerbation of albuminuria and renal fibrosis in subtotal renal ablation model of adiponectin-knockout mice. Arterioscler Thromb Vasc Biol 27:1910–1917PubMedCrossRef Ohashi K, Iwatani H, Kihara S et al (2007) Exacerbation of albuminuria and renal fibrosis in subtotal renal ablation model of adiponectin-knockout mice. Arterioscler Thromb Vasc Biol 27:1910–1917PubMedCrossRef
37.
39.
Zurück zum Zitat Kobashi C, Urakaze M, Kishida M et al (2005) Adiponectin inhibits endothelial synthesis of interleukin-8. Circ Res 97:1245–1252PubMedCrossRef Kobashi C, Urakaze M, Kishida M et al (2005) Adiponectin inhibits endothelial synthesis of interleukin-8. Circ Res 97:1245–1252PubMedCrossRef
40.
Zurück zum Zitat Krakoff J, Funahashi T, Stehouwer CD et al (2003) Inflammatory markers, adiponectin, and risk of type 2 diabetes in the Pima Indian. Diabetes Care 26:1745–1751PubMedCrossRef Krakoff J, Funahashi T, Stehouwer CD et al (2003) Inflammatory markers, adiponectin, and risk of type 2 diabetes in the Pima Indian. Diabetes Care 26:1745–1751PubMedCrossRef
42.
Zurück zum Zitat Essick EE, Ouchi N, Wilson RM et al (2011) Adiponectin mediates cardioprotection in oxidative stress-induced cardiac myocyte remodeling. Am J Physiol Heart Circ Physiol 301:H984–H993PubMedCentralPubMedCrossRef Essick EE, Ouchi N, Wilson RM et al (2011) Adiponectin mediates cardioprotection in oxidative stress-induced cardiac myocyte remodeling. Am J Physiol Heart Circ Physiol 301:H984–H993PubMedCentralPubMedCrossRef
44.
Zurück zum Zitat Liu GC, Fang F, Zhou J et al (2012) Deletion of p47phox attenuates the progression of diabetic nephropathy and reduces the severity of diabetes in the Akita mouse. Diabetologia 55:2522–2532PubMedCrossRef Liu GC, Fang F, Zhou J et al (2012) Deletion of p47phox attenuates the progression of diabetic nephropathy and reduces the severity of diabetes in the Akita mouse. Diabetologia 55:2522–2532PubMedCrossRef
45.
Zurück zum Zitat Lo CS, Liu F, Shi Y et al (2012) Dual RAS blockade normalizes angiotensin-converting enzyme-2 expression and prevents hypertension and tubular apoptosis in Akita angiotensinogen-transgenic mice. Am J Physiol Ren Physiol 302:F840–F852CrossRef Lo CS, Liu F, Shi Y et al (2012) Dual RAS blockade normalizes angiotensin-converting enzyme-2 expression and prevents hypertension and tubular apoptosis in Akita angiotensinogen-transgenic mice. Am J Physiol Ren Physiol 302:F840–F852CrossRef
46.
Zurück zum Zitat Schiffer M, Mundel P, Shaw AS, Bottinger EP (2004) A novel role for the adaptor molecule CD2-associated protein in transforming growth factor-beta-induced apoptosis. J Biol Chem 279:37004–37012PubMedCrossRef Schiffer M, Mundel P, Shaw AS, Bottinger EP (2004) A novel role for the adaptor molecule CD2-associated protein in transforming growth factor-beta-induced apoptosis. J Biol Chem 279:37004–37012PubMedCrossRef
47.
Zurück zum Zitat Chodavarapu H, Grobe N, Somineni HK, Salem ES, Madhu M, Elased KM (2013) Rosiglitazone treatment of type 2 diabetic db/db mice attenuates urinary albumin and angiotensin converting enzyme 2 excretion. PLoS One 8:e62833 Chodavarapu H, Grobe N, Somineni HK, Salem ES, Madhu M, Elased KM (2013) Rosiglitazone treatment of type 2 diabetic db/db mice attenuates urinary albumin and angiotensin converting enzyme 2 excretion. PLoS One 8:e62833
48.
Zurück zum Zitat Alter ML, Kretschmer A, von Websky K et al (2012) Early urinary and plasma biomarkers for experimental diabetic nephropathy. Clin Lab 58:659–671PubMed Alter ML, Kretschmer A, von Websky K et al (2012) Early urinary and plasma biomarkers for experimental diabetic nephropathy. Clin Lab 58:659–671PubMed
Metadaten
Titel
Deletion of the gene for adiponectin accelerates diabetic nephropathy in the Ins2 +/C96Y mouse
verfasst von
Fei Fang
Eun-Hui Bae
Amanda Hu
George C. Liu
Xiaohua Zhou
Vanessa Williams
Nicholas Maksimowski
Catherine Lu
Ana Konvalinka
Rohan John
James W. Scholey
Publikationsdatum
01.07.2015
Verlag
Springer Berlin Heidelberg
Erschienen in
Diabetologia / Ausgabe 7/2015
Print ISSN: 0012-186X
Elektronische ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-015-3605-9

Weitere Artikel der Ausgabe 7/2015

Diabetologia 7/2015 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Notfall-TEP der Hüfte ist auch bei 90-Jährigen machbar

26.04.2024 Hüft-TEP Nachrichten

Ob bei einer Notfalloperation nach Schenkelhalsfraktur eine Hemiarthroplastik oder eine totale Endoprothese (TEP) eingebaut wird, sollte nicht allein vom Alter der Patientinnen und Patienten abhängen. Auch über 90-Jährige können von der TEP profitieren.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Bei schweren Reaktionen auf Insektenstiche empfiehlt sich eine spezifische Immuntherapie

Insektenstiche sind bei Erwachsenen die häufigsten Auslöser einer Anaphylaxie. Einen wirksamen Schutz vor schweren anaphylaktischen Reaktionen bietet die allergenspezifische Immuntherapie. Jedoch kommt sie noch viel zu selten zum Einsatz.

Therapiestart mit Blutdrucksenkern erhöht Frakturrisiko

25.04.2024 Hypertonie Nachrichten

Beginnen ältere Männer im Pflegeheim eine Antihypertensiva-Therapie, dann ist die Frakturrate in den folgenden 30 Tagen mehr als verdoppelt. Besonders häufig stürzen Demenzkranke und Männer, die erstmals Blutdrucksenker nehmen. Dafür spricht eine Analyse unter US-Veteranen.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.