Skip to main content
Erschienen in: BMC Oral Health 1/2020

Open Access 01.12.2020 | Research article

Dental implant location via surface scanner: a pilot study

verfasst von: Miao Zhou, Hui Zhou, Shu-yi Li, Yuan-ming Geng

Erschienen in: BMC Oral Health | Ausgabe 1/2020

Abstract

Purpose

Implant location is performed after placement to verify that the safety of neighboring anatomic structure and the realizability of prosthetic plan. Routine postoperative location is based on radiological scanning and raises the concerns on radiation exposure and inconveniency in practice. In the present study a location method based on surface scanning was introduced and the accuracy of this method was assessed in vitro.

Material and methods

A total of 40 implants were placed in 10 resin mandible models. The models were scanned with intraoral scanner (IS group) and extraoral scanner (ES group). The implant position was located with fusing the images of surface scanning and cone beam computerized tomography (CBCT) after implant placement. Deviations were measured between positions located by surface scanner and postoperative CBCT with the parameters: central deviation at apex (cda), central deviation at hex (cdh), horizontal deviation at apex (hda), horizontal deviation at hex (hdh), vertical deviation at apex (vda), vertical deviation at hex (vdh) and angular deviation (ad).

Results

In IS group, the mean value of cda, cdh, hda, hdh, vda, vdh and ad was 0.27 mm, 0.23 mm, 0.12 mm, 0.10 mm, 0.21 mm, 0.19 mm and 0.72°, respectively. In ES group, the mean value of cda, cdh, hda, hdh, vda, vdh and ad was 0.28 mm, 0.25 mm 0.14 mm, 0.11 mm, 0.22 mm, 0.20 mm and 0.68°, respectively. The implant deviations in IS and ES groups were of no significant difference for any of the measurements.

Conclusions

Dental implant can be located via surface scanner with acceptable accuracy for postoperative verification. Further clinical investigation is needed to assess the feasibility of the method.
Hinweise
Miao Zhou and Hui Zhou have contributed equally to this work

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Backgrounds

Although the position of oral implant could be planned quite perfectly before surgery, implant deviation is inevitable regardless of guidance strategy and operator experience [1, 2]. Postoperative examination is required routinely to confirm that the critical anatomical structures are well preserved, and the implant is placed in the planned position that favors the following prosthetic restoration.
For present, the methods to assess the inserted implant are mostly based on radiology, such as intraoral radiography, panoramic radiography and cone beam computed tomography (CBCT). CBCT offers the three-dimensional view on the implant and adjacent tissue, and is thought to be the most accurate way to locate the implant position [3]. But due to the consideration on radiation safety, dental radiological devices have to be kept in a separate room with protective barrier. For this reason, the examination is normally performed after the whole surgery is completed and the patient leaves the operation room. If unacceptable deviation occurs, it’s would be a difficult decision for the surgeon whether a corrective reentry is necessary. Another drawback of postoperative radiography is that the patient’s acceptability is often limited due to the growing concern on radiation hazard [4].
Alternative methods to locate implant postoperatively included measuring the difference in the angles of virtual planned and definitively used abutment replicas on the working model [5], or fusing the preoperative planned implant with the postoperative CBCT scans of the implant replicas of model cast [6]. These methods are unable to tell the surgeon the exact position of implant immediately after insertion and don’t allow any adjustment if the implant is not in a favorable position, because they generally require conventional impression and cast production, which are quite time-consuming.
A more simplified solution could be the introduction of digital impression. Digital impression is a three-dimensional model reconstructed from the data collected by a surface scanner, which records the geometry of tissue surface by measuring the light reflection times of the subject surface. The whole procedure usually costs within few minutes [7]. With known and mature digital tools, digital impression can be fused with CBCT images by matching fiducial points, such as remaining tooth, temporary implant and fixation pin [8]. Considering that the spatial relation of fiducial points to local anatomical structure is constant in a certain period, it’s possible to assess the position of placed implant to neighboring tissue by measuring the its relation to fiducial points. The digital impression with placed implants can also be directly used in following design and fabrication of immediate dental prosthetics, if the implant is in the ideal position. In this workflow, the surgical and restorative phases of the treatment would be both greatly simplified. Furthermore, intraoperative adjustment of deviated implant becomes possible if a handheld device is used, most mainstream commercial intraoral scanners for example.
However, in order to include fiducial points that are distributed dispersedly, a full arch scan is necessary to assess the position of placed implant. Although the precision of surface scanning devices has improved considerably over these years, and now is acceptable for crowns and short fixed prostheses [9, 10], the devices are still vulnerable to inaccuracies in scanning of increased span [11]. Whether the accuracy via surface scanner fulfills the needs in implant location is questionable.
In this study, the authors attempted to assess the implant position by matching scan body that was virtual-connected to implant with the surface scanning image. The accuracy of location was assessed by comparison with postoperative CBCT examination.

Materials and methods

Implant placement

A mandible model with bilateral second premolar and first molar missing was designed based on the CBCT data of a volunteer’s mandible in the software (Mimics v16.0, Materialise, Leuven, Belgium). A total of ten resin replicas of the designing were fabricated using rapid prototyping (ProJet 3500 HD MAX, 3D System, Rock Hill, SC, USA). Four implants (Straumann Standard Plus RN, 4.1 × 10 mm, Straumann AG, Basel, Switzerland) were placed in the edentulous regions of each model. The models were scanned with CBCT (3D eXam, Kavo, Bismarckring, Germany) postoperatively.

Implant location

A scan body (Regular Neck 4.8/10 mm, Straumann AG) was connected to the implant placed in the model (Fig. 1a). The models were scanned with an intraoral scanner in accordance with the manufacturer’s instruction (DL-100, Launca, Shenzhen, China) (Fig. 1b). The digital models of scan body and implant were connected virtually and simplified to a cylinder model for the convenience of following measurement (Fig. 1c, named as location component in the article) in the software (Mimics v16.0). The location component was fused into the surface scanning images using the geometry of scan body as reference (Fig. 1d). The implant part of location component was considered as the position of implant.
Each model was also scanned with an extraoral scanner (D810, 3Shape, Copenhagen, Denmark). The position of implant was measured using the methods described above. All CBCT and surface scanning procedures were performed by the same operator.

Accuracy analysis

The surface scanning/location component-fusing images was fused with the postoperative CBCT image using the adjacent cusps as reference (Fig. 1e). The fused images of location component, surface scanning and postoperative CBCT was uploaded into the software (3-Matic, Materialise, Leuven, Belgium) (Fig. 1f). The position deviations between implant located with surface scanning and postoperative CBCT were measured using seven parameters: central deviation at apex; central deviation at hex, horizontal deviation at apex, horizontal deviation at hex, vertical deviation at apex, vertical deviation at hex and angular deviation (Fig. 2). The values were standardized by the actual implant dimensions.

Statistical analysis

The data was analyzed using GraphPad Prism 5 (GraphPad Software, La Jolla, CA, USA). Deviation parameters were presented as mean, maximal/minimal value (max./min.), standardized deviation (SD) and 95% confidence interval (95% CI). Statistical differences between implant deviations measured with intraoral scanner and extraoral scanner were assessed by paired t test. The level of significance was set at 0.05 in all tests.

Results

In IS group, the value of cda, cdh, hda, hdh, vda, vdh and ad was 0.27 ± 0.14 mm, 0.23 ± 0.13 mm, 0.12 ± 0.10 mm, 0.10 ± 0.07 mm, 0.21 ± 0.15 mm, 0.19 ± 0.14 mm and 0.72 ± 0.52 degrees, respectively. In ES group, the value of cda, cdh, hda, hdh, vda, vdh and ad was 0.28 ± 0.14 mm, 0.25 ± 0.12 mm 0.14 ± 0.11 mm, 0.11 ± 0.10 mm, 0.22 ± 0.14 mm, 0.20 ± 0.12 mm and 0.68 ± 0.54 degrees, respectively. The implant deviations measured with intraoral scanner and extraoral scanner were summarized (Tables 1 and 2). There is no significant difference between the implant deviations measured with intraoral scanner and extraoral scanner (Fig. 3).
Table 1
Position deviations located with intraoral scanner
 
Max
Min
Mean
S.D
95%CI
Lower
Upper
hdh (mm)
0.29
0.00
0.10
0.07
0.08
0.12
hda (mm)
0.38
0.00
0.12
0.10
0.10
0.16
vdh (mm)
0.58
0.01
0.19
0.14
0.15
0.24
vda (mm)
0.56
0.01
0.21
0.15
0.16
0.25
cdh (mm)
0.61
0.04
0.23
0.13
0.20
0.27
cda (mm)
0.60
0.01
0.27
0.14
0.22
0.31
ad (°)
2.24
0.04
0.72
0.52
0.57
0.88
Table 2
Position deviations located with extraoral scanner
 
Max
Min
Mean
S.D
95%CI
Lower
Upper
hdh (mm)
0.41
0.00
0.11
0.10
0.08
0.14
hda (mm)
0.46
0.00
0.14
0.11
0.11
0.18
vdh (mm)
0.51
0.01
0.20
0.12
0.16
0.24
vda (mm)
0.57
0.03
0.22
0.14
0.18
0.26
cdh (mm)
0.53
0.05
0.25
0.12
0.21
0.29
cda (mm)
0.73
0.07
0.28
0.14
0.24
0.32
ad (°)
2.85
0.04
0.68
0.54
0.53
0.86

Discussion

In this pilot study, the surface scanning was fused with the postoperative CBCT based on manually-selected fiducial points. The virtually-defined implant by scan body was compared with the implant shown in CBCT. The deviation from CBCT measurement was less than 0.3 mm linearly and 0.8° angularly. The accuracy was superior to other reported location methods alternative to postoperative radiology [5, 6].
In the presented method, the implant position was calculated based on the position of scan body. Different to the direct scanning with CBCT, the relation of implant to neighboring structures such as bony envelop, mandibular nerve and Schneiderian membrane could not be viewed directly. The indirect location is of no clinical significance unless the accuracy of the calculated position within the safe zone that is mandatory in implant surgery. A safety distance of 0.5–1 mm between the implant and vital anatomy is recommended in most literatures [12, 13]. The deviations reported in the present study were within these recommendations and should therefore be regarded as clinically acceptable if the recommendations are followed in preoperative planning. The location accuracy of our study suggested the potential application of surface scanner in assessing implant location postoperatively.
Theoretically, the direct scanning using the intraoral scanning device could result in the same and even higher accuracy than the indirect digitalization of the gypsum cast using an extraoral scanner [14]. Indirect digitalization actually collects the errors of conventional impression taking, cast pouring, impression material distortion, and optical scanning as in direct digitalization. In this study, both intraoral and extraoral scanner were used to locate the placed implant in the same in vitro model, both of which resulted in the same accuracy. Our results provided experimental evidence to clear up the doubt that intraoral and extraoral scanners may differ when applied in implant location, and suggested that the digitalization of conventional impression is no longer necessary since intraoral scanner offers accuracy of same level. More importantly, application of handheld device as intraoral scanner opens the possibility to assess implant bed preparation by scanning the indicator inserted, and to perform the implant verification immediately after insertion. The immediacy facilitates necessary intraoperative adjustment if significant deviation is detected.
Although the location accuracy shown in this model study is encouraging, it’s important to notice that the accuracy of surface scanning was generally reported to be better in vitro than that in vivo, due to better access, better space for the scanning unit, better illumination, no patient movement, and absent of saliva and blood that may lead to possible fogging of the optical unit [15]. So, whether the accuracy reported here could be realized in clinical scenarios remains to be investigated. Furthermore, the accuracy in vivo could be influenced by the length of clinical career and the region being scanned [16]. Impressions of angulated implants might also diminish the accuracy of the impression [17]. As a result, further in vivo investigations are compulsory to verify the feasibility of this method, even if acceptable accuracy was achieved in the present study.
When the proposed method used in clinical practice, the main purpose should be to assess the relation of implant and anatomic structure. The surface scanning for location is fused with preoperative planning model depicted with CBCT and surface scanning. Image fusing requires manual processing for selecting the fiducial points, which introduce errors inevitably [18]. It would be quite challenging to reduce image fusing error in clinical scenarios where the condition usually varies greatly in different cases. Beside error, manual operation is also suboptimal in daily clinical operation. Because additional trained person and computer workstation are needed during the surgery. Unfortunately, the accuracy of full-automatic fusing method is still unsatisfactory limited to the current technology [19]. More technical adaptions are in need before the practicality of implant location via surface scanner.

Conclusion

Dental implant can be located via surface scanner. The accuracy of implant location with intraoral scanner could be acceptable for postoperative verification, but the efficiency and efficacy in clinical practice need further investigation in future.

Acknowledgements

Not applicable.
Not applicable. The research involved no human participants, human material, or human data.
Not applicable. The manuscript includes no details, images, or videos relating to an individual person.

Competing interests

The authors declare that they have no competing interest.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Raico Gallardo YN, da Silva-Olivio IRT, Mukai E, Morimoto S, Sesma N, Cordaro L. Accuracy comparison of guided surgery for dental implants according to the tissue of support: a systematic review and meta-analysis. Clin Oral Implant Res. 2017;28(5):602–12.CrossRef Raico Gallardo YN, da Silva-Olivio IRT, Mukai E, Morimoto S, Sesma N, Cordaro L. Accuracy comparison of guided surgery for dental implants according to the tissue of support: a systematic review and meta-analysis. Clin Oral Implant Res. 2017;28(5):602–12.CrossRef
2.
Zurück zum Zitat D’Haese J, Ackhurst J, Wismeijer D, De Bruyn H, Tahmaseb A. Current state of the art of computer-guided implant surgery. Periodontol 2000. 2017;73(1):121–33.CrossRef D’Haese J, Ackhurst J, Wismeijer D, De Bruyn H, Tahmaseb A. Current state of the art of computer-guided implant surgery. Periodontol 2000. 2017;73(1):121–33.CrossRef
3.
Zurück zum Zitat Jacobs R, Salmon B, Codari M, Hassan B, Bornstein MM. Cone beam computed tomography in implant dentistry: recommendations for clinical use. BMC Oral Health. 2018;18(1):88.CrossRef Jacobs R, Salmon B, Codari M, Hassan B, Bornstein MM. Cone beam computed tomography in implant dentistry: recommendations for clinical use. BMC Oral Health. 2018;18(1):88.CrossRef
4.
Zurück zum Zitat Stratis A, Zhang G, Jacobs R, Bogaerts R, Bosmans H. The growing concern of radiation dose in paediatric dental and maxillofacial CBCT: an easy guide for daily practice. Eur Radiol. 2019;29:7009–18.CrossRef Stratis A, Zhang G, Jacobs R, Bogaerts R, Bosmans H. The growing concern of radiation dose in paediatric dental and maxillofacial CBCT: an easy guide for daily practice. Eur Radiol. 2019;29:7009–18.CrossRef
5.
Zurück zum Zitat Naitoh M, Ariji E, Okumura S, Ohsaki C, Kurita K, Ishigami T. Can implants be correctly angulated based on surgical templates used for osseointegrated dental impla nts? Clin Oral Implant Res. 2000;11(5):409–14.CrossRef Naitoh M, Ariji E, Okumura S, Ohsaki C, Kurita K, Ishigami T. Can implants be correctly angulated based on surgical templates used for osseointegrated dental impla nts? Clin Oral Implant Res. 2000;11(5):409–14.CrossRef
6.
Zurück zum Zitat Nickenig HJ, Eitner S. An alternative method to match planned and achieved positions of implants, after virtual planning using cone-beam CT data and surgical guide templates–a method reducing patient radiation exposure (par t I). J Craniomaxillofac Surg. 2010;38(6):436–40.CrossRef Nickenig HJ, Eitner S. An alternative method to match planned and achieved positions of implants, after virtual planning using cone-beam CT data and surgical guide templates–a method reducing patient radiation exposure (par t I). J Craniomaxillofac Surg. 2010;38(6):436–40.CrossRef
7.
Zurück zum Zitat Rutkūnas V, Gečiauskaitė A, Jegelevičius D, Vaitiekūnas M. Accuracy of digital implant impressions with intraoral scanners. A systematic review. Eur J Oral Implantol. 2017;10(Suppl 1):101–20. Rutkūnas V, Gečiauskaitė A, Jegelevičius D, Vaitiekūnas M. Accuracy of digital implant impressions with intraoral scanners. A systematic review. Eur J Oral Implantol. 2017;10(Suppl 1):101–20.
8.
Zurück zum Zitat Van Assche N, Vercruyssen M, Coucke W, Teughels W, Jacobs R, Quirynen M. Accuracy of computer-aided implant placement. Clin Oral Implant Res. 2012;23(Suppl 6):112–23.CrossRef Van Assche N, Vercruyssen M, Coucke W, Teughels W, Jacobs R, Quirynen M. Accuracy of computer-aided implant placement. Clin Oral Implant Res. 2012;23(Suppl 6):112–23.CrossRef
9.
Zurück zum Zitat Mangano FG, Hauschild U, Veronesi G, Imburgia M, Mangano C, Admakin O. Trueness and precision of 5 intraoral scanners in the impressions of single and multiple implants: a comparative in vitro study. BMC Oral Health. 2019;19(1):101.CrossRef Mangano FG, Hauschild U, Veronesi G, Imburgia M, Mangano C, Admakin O. Trueness and precision of 5 intraoral scanners in the impressions of single and multiple implants: a comparative in vitro study. BMC Oral Health. 2019;19(1):101.CrossRef
10.
Zurück zum Zitat Runkel C, Güth JF, Erdelt K, Keul C. Digital impressions in dentistry-accuracy of impression digitalisation by desktop scanners. Clin Oral Investig. 2020;24(3):1249–57.CrossRef Runkel C, Güth JF, Erdelt K, Keul C. Digital impressions in dentistry-accuracy of impression digitalisation by desktop scanners. Clin Oral Investig. 2020;24(3):1249–57.CrossRef
11.
Zurück zum Zitat Flügge T, van der Meer WJ, Gonzalez BG, Vach K, Wismeijer D, Wang P. The accuracy of different dental impression techniques for implant-supported dental prostheses: a systematic review and meta-analysis. Clin Oral Implant Res. 2018;29(Suppl 16):374–92.CrossRef Flügge T, van der Meer WJ, Gonzalez BG, Vach K, Wismeijer D, Wang P. The accuracy of different dental impression techniques for implant-supported dental prostheses: a systematic review and meta-analysis. Clin Oral Implant Res. 2018;29(Suppl 16):374–92.CrossRef
12.
Zurück zum Zitat Bover-Ramos F, Viña-Almunia J, Cervera-Ballester J, Peñarrocha-Diago M, García-Mira B. Accuracy of implant placement with computer-guided surgery: a systematic review and meta-analysis comparing cadaver, clinical, and in vitro studies. Int J Oral Maxillofac Implants. 2018;33(1):101–15.CrossRef Bover-Ramos F, Viña-Almunia J, Cervera-Ballester J, Peñarrocha-Diago M, García-Mira B. Accuracy of implant placement with computer-guided surgery: a systematic review and meta-analysis comparing cadaver, clinical, and in vitro studies. Int J Oral Maxillofac Implants. 2018;33(1):101–15.CrossRef
13.
Zurück zum Zitat Sicilia A, Botticelli D, Working G. Computer-guided implant therapy and soft- and hard-tissue aspects. The third EAO consensus conference 2012. Clin Oral Implants Research. 2012;23(Suppl 6):157–61.CrossRef Sicilia A, Botticelli D, Working G. Computer-guided implant therapy and soft- and hard-tissue aspects. The third EAO consensus conference 2012. Clin Oral Implants Research. 2012;23(Suppl 6):157–61.CrossRef
14.
Zurück zum Zitat Bohner LOL, De Luca CG, Marció BS, Laganá DC, Sesma N, Tortamano Neto P. Computer-aided analysis of digital dental impressions obtained from intraoral and extraoral scanners. J Prosthet Dent. 2017;118(5):617–23. Bohner LOL, De Luca CG, Marció BS, Laganá DC, Sesma N, Tortamano Neto P. Computer-aided analysis of digital dental impressions obtained from intraoral and extraoral scanners. J Prosthet Dent. 2017;118(5):617–23.
15.
Zurück zum Zitat Keul C, Güth JF. Accuracy of full-arch digital impressions: an in vitro and in vivo comparison. Clin Oral Investig. 2020;24(2):735–45.CrossRef Keul C, Güth JF. Accuracy of full-arch digital impressions: an in vitro and in vivo comparison. Clin Oral Investig. 2020;24(2):735–45.CrossRef
16.
Zurück zum Zitat Giménez B, Özcan M, Martínez-Rus F, Pradíes G. Accuracy of a digital impression system based on active wavefront sampling technology for implants considering operator experience, implant angulation, and depth. Clin Implant Dent Relat Res. 2015;17(Suppl 1):e54-64.CrossRef Giménez B, Özcan M, Martínez-Rus F, Pradíes G. Accuracy of a digital impression system based on active wavefront sampling technology for implants considering operator experience, implant angulation, and depth. Clin Implant Dent Relat Res. 2015;17(Suppl 1):e54-64.CrossRef
17.
Zurück zum Zitat Lim JH, Park JM, Kim M, Heo SJ, Myung JY. Comparison of digital intraoral scanner reproducibility and image trueness considering repetitive exp erience. J Prosthet Dent. 2018;119(2):225–32.CrossRef Lim JH, Park JM, Kim M, Heo SJ, Myung JY. Comparison of digital intraoral scanner reproducibility and image trueness considering repetitive exp erience. J Prosthet Dent. 2018;119(2):225–32.CrossRef
18.
Zurück zum Zitat Rangel FA, Maal TJJ, de Koning MJJ, Bronkhorst EM, Bergé SJ, Kuijpers-Jagtman AM. Integration of digital dental casts in cone beam computed tomography scans-a clinical validation study. Clin Oral Investig. 2018;22(3):1215–22.CrossRef Rangel FA, Maal TJJ, de Koning MJJ, Bronkhorst EM, Bergé SJ, Kuijpers-Jagtman AM. Integration of digital dental casts in cone beam computed tomography scans-a clinical validation study. Clin Oral Investig. 2018;22(3):1215–22.CrossRef
19.
Zurück zum Zitat Woo S, Lee S, Chae J, Rim J, Lee J, Seo J, Lee C. Automatic matching of computed tomography and stereolithography data. Comput Methods Programs Biomed. 2019;175:215–22.CrossRef Woo S, Lee S, Chae J, Rim J, Lee J, Seo J, Lee C. Automatic matching of computed tomography and stereolithography data. Comput Methods Programs Biomed. 2019;175:215–22.CrossRef
Metadaten
Titel
Dental implant location via surface scanner: a pilot study
verfasst von
Miao Zhou
Hui Zhou
Shu-yi Li
Yuan-ming Geng
Publikationsdatum
01.12.2020
Verlag
BioMed Central
Erschienen in
BMC Oral Health / Ausgabe 1/2020
Elektronische ISSN: 1472-6831
DOI
https://doi.org/10.1186/s12903-020-01297-y

Weitere Artikel der Ausgabe 1/2020

BMC Oral Health 1/2020 Zur Ausgabe

Parodontalbehandlung verbessert Prognose bei Katheterablation

19.04.2024 Vorhofflimmern Nachrichten

Werden Personen mit Vorhofflimmern in der Blanking-Periode nach einer Katheterablation gegen eine bestehende Parodontitis behandelt, verbessert dies die Erfolgsaussichten. Dafür sprechen die Resultate einer prospektiven Untersuchung.

Invasive Zahnbehandlung: Wann eine Antibiotikaprophylaxe vor infektiöser Endokarditis schützt

11.04.2024 Endokarditis Nachrichten

Bei welchen Personen eine Antibiotikaprophylaxe zur Prävention einer infektiösen Endokarditis nach invasiven zahnärztlichen Eingriffen sinnvoll ist, wird diskutiert. Neue Daten stehen im Einklang mit den europäischen Leitlinienempfehlungen.

Zell-Organisatoren unter Druck: Mechanismen des embryonalen Zahnwachstums aufgedeckt

08.04.2024 Zahnmedizin Nachrichten

Der Aufbau von Geweben und Organen während der Embryonalentwicklung wird von den Zellen bemerkenswert choreografiert. Für diesen Prozess braucht es spezielle sogenannte „Organisatoren“. In einer aktuellen Veröffentlichung im Fachjournal Nature Cell Biology berichten Forschende durch welchen Vorgang diese Organisatoren im Gewebe entstehen und wie sie dann die Bildung von Zähnen orchestrieren.

Die Oralprophylaxe & Kinderzahnheilkunde umbenannt

11.03.2024 Kinderzahnmedizin Nachrichten

Infolge der Umbenennung der Deutschen Gesellschaft für Kinderzahnheilkunde in Deutsche Gesellschaft für Kinderzahnmedizin (DGKiZ) wird deren Mitgliederzeitschrift Oralprophylaxe & Kinderzahnheilkunde in Oralprophylaxe & Kinderzahnmedizin umbenannt. Aus diesem Grunde trägt die erste Ausgabe in 2024 erstmalig den neuen Titel.

Newsletter

Bestellen Sie unseren kostenlosen Newsletter Update Zahnmedizin und bleiben Sie gut informiert – ganz bequem per eMail.