Skip to main content
Erschienen in: BMC Pulmonary Medicine 1/2020

Open Access 01.12.2020 | Study protocol

Design for a multicenter, randomized, sham-controlled study to evaluate safety and efficacy after treatment with the Nuvaira® lung denervation system in subjects with chronic obstructive pulmonary disease (AIRFLOW-3)

verfasst von: Dirk-Jan Slebos, Bruno Degano, Arschang Valipour, Pallav L. Shah, Gaetan Deslée, Frank C. Sciurba, on behalf of the AIRFLOW-3 Trial Study Group

Erschienen in: BMC Pulmonary Medicine | Ausgabe 1/2020

Abstract

Background

Targeted lung denervation (TLD) is a bronchoscopically delivered ablation therapy that selectively interrupts pulmonary parasympathetic nerve signaling. The procedure has the potential to alter airway smooth muscle tone and reactivity, decrease mucous secretion, and reduce airway inflammation and reflex airway hyperresponsiveness. Secondary outcome analysis of a previous randomized, sham-controlled trial showed a reduction in moderate-to-severe exacerbations in patients with COPD after TLD treatment. A pivotal trial, AIRFLOW-3 has been designed to evaluate the safety and efficacy of TLD combined with optimal medical therapy to reduce moderate or severe exacerbations throughout 1 year, compared with optimal medical therapy alone.

Methods

The study design is a multicenter, randomized, full sham bronchoscopy controlled, double-blind trial that will enroll 400 patients (1:1 randomization). Key inclusion criteria are FEV1/FVC < 0.7, FEV1 30 to 60% of predicted, post-bronchodilator, ≥ 2 moderate or 1 severe COPD exacerbations in the prior year, and COPD assessment test (CAT) ≥ 10. Primary objective will be the comparison of moderate or severe COPD exacerbations through 12 months of TLD therapy with optimal medical therapy versus optimal medical therapy alone. The sham group will be allowed to cross over at 1 year. Patients will be followed for up to 5 years.

Discussion

The multicenter, randomized, full sham bronchoscopy controlled, double-blind AIRFLOW-3 trial will evaluate the efficacy of TLD to reduce moderate or severe COPD exacerbations beyond optimal medical therapy alone. The target population are patients with COPD, who suffer persistent symptoms and exacerbations despite optimal treatment, defining an unmet medical need requiring novel therapeutic solutions. This trial is registered at clinicaltrials.​gov: NCT03639051.
Hinweise

Supplementary information

Supplementary information accompanies this paper at https://​doi.​org/​10.​1186/​s12890-020-1058-5.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
AE
Adverse event
CAT
COPD assessment test
COPD
Chronic obstructive pulmonary disease
DMC
Data monitoring committee
EC
Ethics committee
GCSI
Gastroparesis cardinal symptom index
GOLD
Global Initiative for Chronic Obstructive Lung Disease
ICS
Inhaled corticosteroid
IRB
Institutional review board
ITT
Intent-to-treat
LABA
Long-acting ß-agonist
LAMA
Long-acting muscarinic antagonist
PFT
Pulmonary function testing
PR
Pulmonary rehabilitation
TLD
Targeted lung denervation

Background

COPD is characterized by persistent respiratory symptoms and airflow limitation due to airway and/or alveolar abnormalities [1]. COPD is a major cause of morbidity and mortality worldwide, and in the United States, costs associated with hospitalizations for exacerbations represent the largest proportion of total cost across all disease stages [2]. Reducing the risk for future exacerbations is a crucial guideline-directed goal of COPD management [1].
Inhaled pharmacologic treatments for COPD include drugs stimulating adrenergic receptors in airway smooth muscle (long-acting ß-agonists; LABA) or preventing acetylcholine binding to muscarinic receptors in the airways (long-acting muscarinic antagonists; LAMA) to induce bronchodilation, relax airway smooth muscle, and reduce airway inflammation [3]. LABA and LAMA also reduce exacerbation risk, and adding inhaled corticosteroids in dual or triple therapy may also enhance this effect in some patients [1, 4]. However, despite the benefits of inhaled pharmacologic treatments for COPD, a significant number of patients have persistent symptom and exacerbation burden (classified as GOLD Group “D”). Development of a therapeutic procedure that could reduce the risk for future exacerbation is an important research objective [5].
Baseline autonomic input of the vagus nerve, which modulates airway smooth muscle tone, mucus hypersecretion and hyperresponsiveness [68], is elevated in COPD [6]. Targeted lung denervation (TLD) aims to disrupt pulmonary nerve input to and from the lung to reduce clinical consequences of neural hyperactivity via improved bronchodilation, reduced mucous secretion of airway submucosal glands, and reduced airway hyperresponsiveness through disruption of pulmonary nerve reflexes [68]. Other potential impacts of TLD include disruption of other mediators of mucous secretion and inflammation such as neuropeptides [9]. Previous studies of TLD therapy have demonstrated proof of concept, evaluated dosing, established a safety profile, and identified potential efficacy outcomes [1012]. Secondary analysis of AIRFLOW-2, a phase IIB safety multicenter study using a 1:1 randomized, sham-controlled, double-blinded design showed a statistically significant decrease in hospitalizations for COPD exacerbation with a trend toward significance for moderate-to-severe exacerbations [11]. Given these promising results, a prospective study of TLD therapy in a larger group of patients is warranted.
This paper describes the study design for A Multicenter, Randomized, Sham-controlled Study to Evaluate Safety and Efficacy After Treatment with the Nuvaira® Lung Denervation System in Subjects with Chronic Obstructive Pulmonary Disease (AIRFLOW-3). The primary objective of this study is to evaluate the efficacy of TLD to reduce moderate or severe (hospitalized) exacerbations of COPD beyond optimal medical therapy alone.

Methods/design

Overview

AIRFLOW-3 is a prospective, multicenter, randomized, sham-controlled, double-blind, safety and efficacy study designed to prospectively evaluate TLD’s impact on moderate-to-severe exacerbations in GOLD Group D patients. The AIRFLOW-3 subject profile is diagnosed COPD with FEV1 30–60% predicted, a documented history of at least 2 moderate or 1 severe exacerbation in the 12 months prior to consent, and persistent symptoms (CAT > 10) while on optimal medical treatment [1]. Up to 40 academic investigational centers are planned (approximately 25 US sites (> 60% subject participation)) and 15 sites in Europe (France, UK, Netherlands, Germany, Austria) and Canada (< 40% subject participation). Participants will be randomized (1:1) to TLD therapy plus optimal medical care (active treatment) or sham bronchoscopy procedure plus optimal medical care (sham control) utilizing a clinical electronic data capture (EDC) software. Randomization will be stratified based on site, participation in a pulmonary rehabilitation maintenance program, and baseline use of an inhaled corticosteroid at the time of enrollment. Stratification, which normalizes the impact of ICS and PR on patient outcomes, has no impact on the statistical power of the trial. The study is registered on clinicaltrials.​gov (NCT03639051) and the protocol will have site ethics committee (EC) or Institutional Review Board (IRB) approval prior to any subject consent. The study will be conducted in accordance with Good Clinical Practice guidelines and all applicable country, state, and local regulations.

Primary outcome measures

AIRFLOW-3 is the first interventional COPD trial with a primary objective of reduction in moderate or severe (hospitalized) exacerbations compared with optimal medical care alone. For the purpose of enrollment and follow-up in this study, a COPD exacerbation will be defined as a complex of respiratory events/symptoms (increase or new onset) of more than one of the following: cough, sputum, wheezing, dyspnea or chest tightness with at least one symptom with a duration of at least 3 days and requiring treatment with antibiotics and/or corticosteroids (moderate exacerbation) and including hospital admission or emergency room / acute care visit > 24 h in duration (severe exacerbation) [13]. COPD exacerbations will be determined by and treated at the discretion of the Investigator in accordance with guideline-based recommendations.
To assess the primary objective, the primary endpoint is a comparison of time-to-first event for moderate or severe COPD exacerbations between the active treatment arm and the sham control arm based on a log-rank test. Event timing will be based on the time from the date of randomization to the date of a patient’s first primary endpoint event, or to the close of the 12-month visit window for patients who do not experience a primary endpoint event. Patients who have not experienced a primary endpoint event and are lost to follow-up, or withdrawn, prior to the close of the 12-month visit window, will be censored at the date of their last known status.

Secondary outcome measures

Secondary outcome measures will include comparisons between study arms of time to first respiratory-related hospitalization and time to first severe exacerbation at 12 months. Other prespecified secondary outcome measures include the difference between study and control group at 12 months for: quality of life (St. George’s Respiratory Questionnaire COPD version (SGRQ-C) scores, CAT scores, short form health survey (SF-36) scores), transitional dyspnea index (TDI), and changes in spirometric (FEV1 and FVC) and plethysmographic (RV) lung volume measures, see Table 1.
Table 1
Primary and Secondary Endpoints
 
Time Point
Primary endpoint
 Time-to-first event:
Through 12 months
  Moderate or Severe COPD Exacerbations
Secondary endpoints
 Time-to-first event
Through 12 months
  Severe COPD exacerbations
  Respiratory-related hospitalizations
 Changes in quality of life
Through 12 months
  SGRQ-C
  CAT Responders
  SF-36 Change
 
 Changes in dyspnea
Through 12 months
  Transition Dyspnea Index (TDI)
 Changes in lung functiona
Through 12 months
  FEV1
  FVC
  RV
aChanges in lung function are measured using spirometry (FEV1 and FVC) and plethysmography (RV). Abbreviations: CAT COPD assessment test; FEV1 forced expiratory volume in 1 s; FVC forced vital capacity; IC inspiratory capacity; SF-36 short form health survey; SGRQ-C St. George’s Respiratory Questionnaire COPD version; TLC total lung capacity; TDI transition dyspnea indexes; RV residual volume

Sub-studies

A sub-study on airway inflammatory biomarkers will be offered to randomized subjects at participating AIRFLOW-3 centers. Bronchial brushes will be collected at the time of the study procedure and during a second airway inspection at 6-months post-procedure. Three brushes from the right lower lobe segmental bronchi will be collected and analyzed. The study is exploratory in nature and gene expression changes after TLD will be based on transcriptome analysis; including differentially expressed genes, cluster analysis, and gene set enrichment [14].

Patient recall and recruitment

Monthly phone-visit follow-ups are planned for months when an in-person follow-up visits do not occur. A memory aid to record daily symptoms of exacerbation and medications will be provided to support patient recall of changes in respiratory symptoms, medications, and any respiratory-related healthcare resource utilization for the first 12 months.
Study sites may advertise for local recruitment. Study information and/or slides for presentation can be provided to referring physicians upon request. IRB/EC approval of any materials to be used for direct patient recruitment will be obtained by the reviewing IRB/EC prior to use.

Screening assessments

A summary of participant flow from consent to study exit is detailed in Fig. 1 and required testing and assessments are included in Additional file 1. Participants will be considered enrolled at the time of consent. Following consent, participants will undergo baseline screening to assess eligibility including medical history. Inclusion/exclusion criteria for the study are outlined in detail in Tables 2 and 3. Participants must have documented exacerbation history of at least 2 moderate COPD exacerbations or 1 severe COPD exacerbation in the 12-months prior to enrollment while on optimal maintenance COPD medications (minimum 12 months on LABA/LAMA therapy, or similar pharmacologic regimen). All participants will have an inspiratory chest CT scan submitted to the core lab for exclusionary review and confirmation of appropriate airway sizing prior to treatment (Fig. 2).
Table 2
Inclusion Criteria
1
Participants aged ≥40 and ≤ 75 years at the time of consent.
2
Women of childbearing potential must have a negative pregnancy test (blood or urine) pre-treatment and agree not to become pregnant for the duration of the study.
3
Smoking history of at least 10 pack years.
4
Non-smoking for a minimum of 2 months prior to consent and agrees to not smoke for the duration of the study. Negative nicotine test required, if participant is taking smoking cessation medication, patch, gum, etc., a quantitative test should be performed to assess if measured level of nicotine or cotinine is below study threshold(s).
5
Received a flu vaccination within the 12 months prior to consent and agrees to annual vaccinations for the duration of the study.
6
SpO2 ≥ 89% on room air at the time of screening.
7
CAT score ≥ 10 at the time of screening.
8
Diagnosis of COPD with 30% ≤ FEV1 < = 60% of predicted and FEV1/FVC < 70% (post-bronchodilator).
9
Documented history of ≥2 moderate COPD exacerbations or ≥ 1 severe COPD exacerbation leading to hospitalization in the 12 months prior to consent.
10
Documented history of taking at least LAMA and a LABA as regular respiratory maintenance medication for ≥12 months at the time of consent. Participants who have documented intolerance to LAMA and/or LABA but are taking a minimum of two regular respiratory maintenance medications (e.g., ICS/LABA) are eligible for participation. Participants who do not respond to LABA and LAMA maintenance inhaler therapy will be allowed to use nebulized bronchodilator therapy.
11
Recent participation in a formal pulmonary rehabilitation program should have occurred ≥3 months prior to consent; if participant is currently enrolled in a maintenance program, they agree to continue their current program through their 12-month follow-up visit.
12
Candidate for bronchoscopy in the opinion of the physician or per hospital guidelines. Examples of suitability of participant for bronchoscopy include, but are not limited to: cardiovascular fitness, ability of participant to be intubated, ability to oxygenate patient, absence of previously diagnosed high-grade tracheal obstruction, absence of uncorrectable coagulopathy (i.e. participant is unable to stop taking blood thinning medication, with the exception of aspirin, 7 days before and not restart until 7 days after the study procedure).
13
Willing, able, and agrees to complete all protocol required baseline and follow-up testing assessments including taking certain medications (e.g., azithromycin, prednisolone / prednisone).
14
Provided written informed consent using a form reviewed and approved by the IRB/EC.
Abbreviations: CAT COPD assessment test; FEV1 forced expiratory volume in 1 s; FVC forced vital capacity; ICS inhaled corticosteroids; IRB/EC Institutional review board/ethics committee; LABA long-acting beta agonists; LAMA long-acting muscarinic antagonists
Table 3
Exclusion Criteria
1
BMI between < 18 or > 35.
2
Has an implantable electronic device.
3
Uncontrolled diabetes as evidenced by an HbA1c > 7%.
4
Pulmonary nodule thought to be at high risk of malignancy.
5
Malignancy treated with radiation or chemotherapy within 2 years of consent.
6
More than 3 respiratory-related hospitalizations within 1 year of consent.
7
Asthma as defined by the current GINA guidelines.
8
Patient has been previously diagnosed with a non-COPD lung disease or has a documented medical history of pneumothorax.
9
Clinically relevant bronchiectasis, defined as severe single lobe or multilobar bronchial wall thickening associated with airway dilation on CT scan leading to cough and tenacious sputum on most days.
10
Pre-existing diagnosis of pulmonary hypertension, defined as a sustained elevation of the systolic pulmonary artery pressure ≥ 25 mmHg at rest by right heart catheterization or estimated by echocardiogram to be > 40 mmHg.
11
Myocardial infarction within last 6 months, EKG with evidence of life-threatening arrhythmias or acute ischemia, pre-existing documented evidence of a LVEF < 45%, stage C or D (ACC/AHA) or Class III or IV (NYHA) congestive heart failure, or any other cardiac findings that make the participant an unacceptable candidate for a bronchoscopic procedure utilizing general anesthesia.
12
Known gastrointestinal motility disorder or previous abdominal surgical procedure on stomach, esophagus, or pancreas.
13
A GCSI total symptom score ≥ 18.0 (sum of PAGI-SYM questions 1–9) prior to treatment.
14
Any disease or condition that might interfere with completion of a procedure or this study (e.g., structural esophageal disorder, life expectancy < 3 years).
15
Prior lung or chest procedure. Segmentectomy for benign lesion or segmentectomy for non-recurrent cancer ≥2 years is allowed.
16
Daily use of > 10 mg of prednisone or its equivalent at the time of consent.
17
Recent (within 3 months of consent) opioid use.
18
Known contraindication or allergy to medications required for bronchoscopy or general anesthesia that cannot be medically controlled.
19
Screening chest CT scan reveals bronchi anatomy cannot be fully treated with available catheter sizes, presence of severe emphysema > 50%, lobar attenuation area or severe bullous disease (> 1/3 hemithorax) (as determined by the CT core lab using a single density mask threshold of − 950 HU) or site discovery of a mass that requires treatment.
20
In the opinion of the treating Investigator, use of the Nuvaira System is not technically feasible due to patient anatomy or other clinical finding.
21
Enrolled in another clinical trial that has not completed follow-up.
Abbreviations: ACC/AHA American College of Cardiology/American Heart Association; BMI body mass index; GCSI gastroparesis cardinal symptom index; GINA Global Initiative for Asthma; LVEF left ventricular ejection fraction; NYHA New York Heart Association; PAGI-SYM patient assessment of gastrointestinal disorders symptom severity index
A cardiac assessment, including an ECG and medical clearance for anesthesia, will be required as part of baseline screening. To exclude patients with gastrointestinal symptoms, the validated, patient-reported gastroparesis cardinal symptom index (GCSI) assessment [15] will be administered. Scores of ≥18.0 on this index will be exclusionary.

Respiratory medication

Since the primary objective of this study compares TLD plus optimal medical care to optimal medical care alone, it will be important to document and control respiratory medications from the time of consent through the primary endpoint analysis period unless there is a drug specific adverse event requiring discontinuation. For the purposes of this study, optimal medical care is recommended per the GOLD 2019 guidelines [1]. Participants already taking an inhaled corticosteroid (ICS) or other classes of medication at the time of consent should continue taking them through the one-year study exit visit, to avoid potential confounding impact of medication changes. Randomization will be stratified to ensure an equal distribution of ICS patients in the sham and treatment arms. When necessary, changes in COPD medications are permitted for a legitimate medical need to protect the subject and will not be documented as a protocol deviation. All medication changes will be closely monitored and recorded for the duration of the study.

Blinding and group allocations

The study blinding plan will be implemented at each of the sites to ensure that double-blinding is maintained throughout the 12-month follow-up period. Blinded (follow-up visits) and unblinded (study procedure) teams will be formed at each center. All sham and TLD procedures will be performed by a physician. Participants randomized to the sham group will undergo a sham TLD procedure with the Nuvaira lung denervation system (the esophageal balloon and dNerva® catheter will be placed and the balloon inflated but no fluoroscopy or radiofrequency (RF) energy will be delivered). Steps will be taken to ensure that the bronchoscopy suite is staged, and equipment manipulated in a manner that provides a similar total procedure experience regardless of treatment allocation. Of note, TLD yields no radiographically visible implants or treatment evidence. Following the 12-month follow-up period of double-blinding, participants in the sham group will be offered the opportunity to undergo TLD therapy, followed for up to 4 years and evaluated as a cross over group.
The treatment group will undergo active TLD treatment with the Nuvaira lung denervation system (fluoroscopy and RF energy will be delivered). TLD is delivered via a dual-cooled balloon catheter as previously described, see Fig. 3 [1012, 16]. The Nuvaira catheter is passed through the working channel of a 3.2 mm flexible bronchoscope and coupled with the bronchoscope. This provides direct visualization of the catheter, balloon, and electrode-tissue interface and guides proper axial positioning along the length of the bronchi. Fluoroscopy is used to guide the proper rotational positioning and the electrode distance from the esophagus. Complete circumferential treatment involves 4 quadrant rotations of the catheter in each main bronchus. Both lungs are treated in a single procedure, with an average of one or two catheters used, depending on airway dimension. The procedure steps are described in Fig. 4.
At each site, the first 3 enrolled participants will be treated with TLD therapy (no randomization) as “roll-in cases” designed to evaluate the procedural learning curve. These patients will undergo the same pre- and post-treatment assessments as randomized subjects but will be analyzed separately from the randomized cohort. All subjects will be followed for 5 years.

Statistical analysis

Primary endpoint analyses will be conducted on the intent-to-treat (ITT), randomized population.
Secondary endpoints (including adverse events) will be based on a modified ITT population (all participants for whom the active procedure or the sham procedure is initiated, excluding roll-in procedure participants). One-sided statistical tests will be considered significant at p-values less than 0.025 while two-sided tests will be significant at p-values less than 0.05. The statistical test for the primary endpoint will be based on a log-rank test, comparing the survival distribution of the time-to-first event for the primary endpoint. The secondary endpoints will be tested using a combination of sequential gatekeeping procedure and Hommel adjustment to control for type I error rate.
Sample size for the study was driven by the number of primary endpoint events required to obtain adequate power and based on event-rate data from AIRFLOW-2. Assuming the percentage of participants with primary endpoint events through 12 months is 65 and 48.75% for the sham control and TLD groups respectively, a sample size of 400 will provide greater than 90% power based on a two-sided 0.05 alpha level log-rank test. An attrition rate of 10% at 12-months has been accounted for in the sample size calculation.

Safety

Oversight of the overall conduct of the study is the responsibility of the Steering Committee, which includes, but is not limited to, dissemination of data (including publications), recommendations of the independent data monitoring committee (DMC), and ongoing review of safety data. The DMC will provide independent monitoring of the study. The DMC will be charged with monitoring the overall study for safety, invoking study stopping rules, and for auditing the quality of the data. Treatment safety will be assessed by monitoring the incidence of all adverse events (AEs), serious adverse events (SAEs), and all unanticipated adverse device effects (UADEs) from randomization through 12 months. An independent Clinical Events Committee will adjudicate all AEs [1].
Long-term safety will be assessed by monitoring the incidence of a prospectively defined subset of important respiratory, cardiovascular, and gastrointestinal SAEs, and all-cause mortality out to 5 years. Sham control participants who are treated after the first year of follow-up will be included in the assessment of long-term safety.

Study timeline

The study will begin in May of 2019 and final follow-up of the primary endpoint is expected to be completed in August of 2022.

Study organization

This study was designed and guided by the study steering committee which consisted of 2 principal investigators and 5 physicians, working in academic hospital settings. Electronic data are collected at the study sites; data transfer, management and storage, quality control rest on Nuvaira, Inc. The AIRFLOW-3 trial is fully sponsored by Nuvaira, Inc. USA.

Discussion

Continued exacerbation events in guideline treated patients remains a therapeutic challenge in COPD management [1719]. Acute COPD exacerbations are associated with a rapid decline in lung function and with impaired survival [20], mortality in the year following a severe hospitalized exacerbation is estimated to be as high as 21% [21]. In the US, exacerbation-related costs represent the highest proportion of total COPD costs, across all levels of disease severity [22].
This study requires that patients be taking a minimum of two bronchodilators (i.e. stable GOLD guideline drug therapy) for 12 months prior to randomization and strongly recommends no maintenance therapy changes during the 12-month period following randomization. Maintenance add-on therapies (i.e., ICS, PDE4 inhibitors and azithromycin) are allowed at the discretion of the treating physician. All patient drug use will be tracked and recorded throughout the randomization period. Additionally, patients using an ICS will be stratified evenly between the treatment and sham groups [23].
Pulmonary rehabilitation (PR) improves dyspnea, health status, and exercise tolerance in stable patients, although PR appears to have no measurable impact on the risk of COPD exacerbation [24]. However, PR is under-utilized in COPD, particularly in the US [25]. Therefore, a requirement for PR program completion, while ideal, would result in a potential impediment to enrollment for significant numbers of otherwise qualified subjects. AIRFLOW-3 will thus record patient experience with PR (naïve or past participation) at baseline and throughout the trial, but will not require pulmonary rehabilitation as an inclusion criterion. Rather, subjects will be stratified based on their prior PR experience.
Time-to-first event analysis is considered the most robust way to measure COPD exacerbations in clinical studies because it is unlikely to be affected by early patient exits and associated missing data [26]. Analysis of the proportion of patients experiencing at least one exacerbation event is also important particularly in the context of individual risk-reward preferences. Recently published, large-scale randomized controlled trials targeting reduction in COPD exacerbation have documented that up to 65% of patients experience at least one moderate or severe exacerbation over 12 months of study follow-up [19, 23]. Percent reduction in total number of exacerbations can generate a large between-group difference skewed by a small number of patients with a disproportionately high number of events [27]. Therefore, the primary endpoint for AIRFLOW-3 is the time-to-first event analysis of the proportion of patients experiencing one or more moderate or severe exacerbations, comparing the active treatment (TLD) to the sham-control arm.
Increasingly, the COPD literature examining the effects of pharmacological treatment suggests that there are only modest alterations in secondary outcomes associated with clinically meaningful reductions in exacerbations [23, 28]. The SPARK trial comparing dual with single maintenance bronchodilator therapy (tiotropium) reported a 12% reduction in all moderate or severe exacerbation events favoring dual therapy, yet clinically unimportant changes in FEV1 (increased 60 vs. 80 mL) and SGRQ-C (decreased − 1.7 vs. -3.1) between groups [28]. In IMPACT, the 6.8% relative reduction in the proportion of patients with a moderate or severe COPD exacerbation was associated with differences of 54 mL in FEV1 and a − 1.8 in SGRQ-C between groups [23]. Such discrepancies between changes in exacerbation events and changes in baseline symptoms or lung function is biologically and medically consistent with a potential mechanism of TLD, that being disruption of reflex airway reactivity. AIRFLOW-3 will explore the impact of treatment on secondary outcomes such as FEV1 and SGRQ-C.
In conclusion, the AIRFLOW-3 trial will evaluate the efficacy of TLD to reduce moderate or severe COPD exacerbations beyond optimal medical treatment. Earlier-phase trials have demonstrated feasibility and a positive safety profile of TLD in COPD patients out to 3-years post-treatment. The target population is GOLD Group D patients, who suffer persistent symptoms and exacerbations despite optimal guideline-directed therapy, defining an unmet medical need requiring a novel therapeutic solution.

Supplementary information

Supplementary information accompanies this paper at https://​doi.​org/​10.​1186/​s12890-020-1058-5.

Acknowledgements

This study is sponsored by Nuvaira, Inc., which is also responsible for data collection. Statistical services will be provided by Nuvaira, Inc. and NAMSA, VIDA Diagnostics for CT measurements, and Aquilo for sub-study analysis. The authors thank Heather Gorby, PhD for providing medical writing support and Nuvaira, Inc. for contribution to the study design and management of the study, as well as the development and management of the study data base. The authors decided to submit this manuscript for publication.

Trial sponsor

Nuvaira, Inc. 3750 Annapolis Lane North, Suite 105. Minneapolis, MN, 55447 USA.
Phone: + 1.763.450.2800.
E-mail: info@nuvaira.​com
The study (Protocol D0543, dated 31 May 2019) is designed in accordance with the Declaration of Helsinki and approved by the Ethics Committee of the City of Vienna (Austria), Comité de Protection des Personnes (CPP) OUEST II – Angers (France), Ethics Committee of the Faculty of Heidelberg (Germany), University Medical Center Groningen (UMCG) Medical Ethics Review Board (Netherlands), East of England – Cambridge East Research Ethics Committee (United Kingdom), Western Institutional Review Board (WIRB; United States) and John Hopkins Medical Institutional Review Board (United States). Written informed consent will be obtained from all participants.
The ethical approval and patient information include consent to publish collected data.

Competing interests

BD reports grants and personal fees from Novartis, Actelion and consultation fees from Nuvaira, PneumRx, Teva, GSK, AstraZeneca, Chiesi, Menarini and Boehringer Ingelheim France. GD has received consultation fees from Nuvaira. All clinical trial activities are sponsored by Nuvaira, Inc.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
3.
Zurück zum Zitat Riley CM, Sciurba FC. Diagnosis and outpatient Management of Chronic Obstructive Pulmonary Disease: a review. JAMA. 2019;321(8):786–97.CrossRef Riley CM, Sciurba FC. Diagnosis and outpatient Management of Chronic Obstructive Pulmonary Disease: a review. JAMA. 2019;321(8):786–97.CrossRef
4.
Zurück zum Zitat Tashkin DP, Celli B, Senn S, Burkhart D, Kesten S, Menjoge S, Decramer M, Investigators US. A 4-year trial of tiotropium in chronic obstructive pulmonary disease. N Engl J Med. 2008;359(15):1543–54.CrossRef Tashkin DP, Celli B, Senn S, Burkhart D, Kesten S, Menjoge S, Decramer M, Investigators US. A 4-year trial of tiotropium in chronic obstructive pulmonary disease. N Engl J Med. 2008;359(15):1543–54.CrossRef
5.
Zurück zum Zitat Rothnie KJ, Mullerova H, Smeeth L, Quint JK. Natural history of chronic obstructive pulmonary disease exacerbations in a general practice-based population with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2018;198(4):464–71.CrossRef Rothnie KJ, Mullerova H, Smeeth L, Quint JK. Natural history of chronic obstructive pulmonary disease exacerbations in a general practice-based population with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2018;198(4):464–71.CrossRef
6.
Zurück zum Zitat Canning BJ. Reflex regulation of airway smooth muscle tone. J Appl Physiol (1985). 2006;101(3):971–85.CrossRef Canning BJ. Reflex regulation of airway smooth muscle tone. J Appl Physiol (1985). 2006;101(3):971–85.CrossRef
7.
Zurück zum Zitat Zaccone EJ, Undem BJ. Airway vagal neuroplasticity associated with respiratory viral infections. Lung. 2016;194(1):25–9.CrossRef Zaccone EJ, Undem BJ. Airway vagal neuroplasticity associated with respiratory viral infections. Lung. 2016;194(1):25–9.CrossRef
8.
Zurück zum Zitat Rogers DF. Motor control of airway goblet cells and glands. Respir Physiol. 2001;125(1–2):129–44.CrossRef Rogers DF. Motor control of airway goblet cells and glands. Respir Physiol. 2001;125(1–2):129–44.CrossRef
9.
Zurück zum Zitat Atanasova KR, Reznikov LR. Neuropeptides in asthma, chronic obstructive pulmonary disease and cystic fibrosis. Respir Res. 2018;19(1):149.CrossRef Atanasova KR, Reznikov LR. Neuropeptides in asthma, chronic obstructive pulmonary disease and cystic fibrosis. Respir Res. 2018;19(1):149.CrossRef
10.
Zurück zum Zitat Slebos DJ, Klooster K, Koegelenberg CF, Theron J, Styen D, Valipour A, Mayse M, Bolliger CT. Targeted lung denervation for moderate to severe COPD: a pilot study. Thorax. 2015;70(5):411–9.CrossRef Slebos DJ, Klooster K, Koegelenberg CF, Theron J, Styen D, Valipour A, Mayse M, Bolliger CT. Targeted lung denervation for moderate to severe COPD: a pilot study. Thorax. 2015;70(5):411–9.CrossRef
11.
Zurück zum Zitat Slebos DJ, Shah PL, Herth FJ, Pison C, Schumann C, Hubner RH, Bonta PI, Kessler R, Gesierich W, Darwiche K, et al. Safety and adverse events after targeted lung denervation for symptomatic moderate to severe COPD (AIRFLOW): a multicenter randomized controlled trial. Am J Respir Crit Care Med. 2019;200:1477.CrossRef Slebos DJ, Shah PL, Herth FJ, Pison C, Schumann C, Hubner RH, Bonta PI, Kessler R, Gesierich W, Darwiche K, et al. Safety and adverse events after targeted lung denervation for symptomatic moderate to severe COPD (AIRFLOW): a multicenter randomized controlled trial. Am J Respir Crit Care Med. 2019;200:1477.CrossRef
12.
Zurück zum Zitat Valipour A, Asadi S, Pison C, Jondot M, Kessler R, Benneddif K, Deslee G, Verdier M, Slebos DJ, Mayse M. Long-term safety of bilateral targeted lung denervation in patients with COPD. Int J Chron Obstruct Pulmon Dis. 2018;13:2163–72.CrossRef Valipour A, Asadi S, Pison C, Jondot M, Kessler R, Benneddif K, Deslee G, Verdier M, Slebos DJ, Mayse M. Long-term safety of bilateral targeted lung denervation in patients with COPD. Int J Chron Obstruct Pulmon Dis. 2018;13:2163–72.CrossRef
13.
Zurück zum Zitat Vogelmeier C, Hederer B, Glaab T, Schmidt H, Rutten-van Molken MP, Beeh KM, Rabe KF, Fabbri LM, Investigators P-C. Tiotropium versus salmeterol for the prevention of exacerbations of COPD. N Engl J Med. 2011;364(12):1093–103.CrossRef Vogelmeier C, Hederer B, Glaab T, Schmidt H, Rutten-van Molken MP, Beeh KM, Rabe KF, Fabbri LM, Investigators P-C. Tiotropium versus salmeterol for the prevention of exacerbations of COPD. N Engl J Med. 2011;364(12):1093–103.CrossRef
14.
Zurück zum Zitat Kistemaker LE, Slebos DJ, Meurs H, Kerstjens HA, Gosens R. Anti-inflammatory effects of targeted lung denervation in patients with COPD. Eur Respir J. 2015;46(5):1489–92.CrossRef Kistemaker LE, Slebos DJ, Meurs H, Kerstjens HA, Gosens R. Anti-inflammatory effects of targeted lung denervation in patients with COPD. Eur Respir J. 2015;46(5):1489–92.CrossRef
15.
Zurück zum Zitat Revicki DA, Rentz AM, Dubois D, Kahrilas P, Stanghellini V, Talley NJ, Tack J. Gastroparesis cardinal symptom index (GCSI): development and validation of a patient reported assessment of severity of gastroparesis symptoms. Qual Life Res. 2004;13(4):833–44.CrossRef Revicki DA, Rentz AM, Dubois D, Kahrilas P, Stanghellini V, Talley NJ, Tack J. Gastroparesis cardinal symptom index (GCSI): development and validation of a patient reported assessment of severity of gastroparesis symptoms. Qual Life Res. 2004;13(4):833–44.CrossRef
16.
Zurück zum Zitat Valipour A, Shah PL, Pison C, Ninane V, Janssens W, Perez T, Kessler R, Deslee G, Garner J, Abele C, et al. Safety and dose study of targeted lung denervation in moderate/severe COPD patients. Respiration. 2019;98:1–11.CrossRef Valipour A, Shah PL, Pison C, Ninane V, Janssens W, Perez T, Kessler R, Deslee G, Garner J, Abele C, et al. Safety and dose study of targeted lung denervation in moderate/severe COPD patients. Respiration. 2019;98:1–11.CrossRef
17.
Zurück zum Zitat Halpin DMMM, Metzdorf N, Celli B. Impact and prevention of severe exacerbations of COPD: a review of the evidence. Int J Chron Obstruct Pulmon Dis. 2017;12:2891–908.CrossRef Halpin DMMM, Metzdorf N, Celli B. Impact and prevention of severe exacerbations of COPD: a review of the evidence. Int J Chron Obstruct Pulmon Dis. 2017;12:2891–908.CrossRef
18.
Zurück zum Zitat Criner GJ, Connett JE, Voelker H. Simvastatin in moderate-to-severe COPD. N Engl J Med. 2014;371(10):970–1.PubMed Criner GJ, Connett JE, Voelker H. Simvastatin in moderate-to-severe COPD. N Engl J Med. 2014;371(10):970–1.PubMed
19.
Zurück zum Zitat Pavord ID, Chanez P, Criner GJ, Kerstjens HAM, Korn S, Lugogo N, Martinot JB, Sagara H, Albers FC, Bradford ES, et al. Mepolizumab for Eosinophilic chronic obstructive pulmonary disease. N Engl J Med. 2017;377(17):1613–29.CrossRef Pavord ID, Chanez P, Criner GJ, Kerstjens HAM, Korn S, Lugogo N, Martinot JB, Sagara H, Albers FC, Bradford ES, et al. Mepolizumab for Eosinophilic chronic obstructive pulmonary disease. N Engl J Med. 2017;377(17):1613–29.CrossRef
20.
Zurück zum Zitat Han MK, Quibrera PM, Carretta EE, Barr RG, Bleecker ER, Bowler RP, Cooper CB, Comellas A, Couper DJ, Curtis JL, et al. Frequency of exacerbations in patients with chronic obstructive pulmonary disease: an analysis of the SPIROMICS cohort. Lancet Respir Med. 2017;5(8):619–26.CrossRef Han MK, Quibrera PM, Carretta EE, Barr RG, Bleecker ER, Bowler RP, Cooper CB, Comellas A, Couper DJ, Curtis JL, et al. Frequency of exacerbations in patients with chronic obstructive pulmonary disease: an analysis of the SPIROMICS cohort. Lancet Respir Med. 2017;5(8):619–26.CrossRef
21.
Zurück zum Zitat McGhan R, Radcliff T, Fish R, Sutherland ER, Welsh C, Make B. Predictors of rehospitalization and death after a severe exacerbation of COPD. Chest. 2007;132(6):1748–55.CrossRef McGhan R, Radcliff T, Fish R, Sutherland ER, Welsh C, Make B. Predictors of rehospitalization and death after a severe exacerbation of COPD. Chest. 2007;132(6):1748–55.CrossRef
22.
Zurück zum Zitat Guarascio AJ, Ray SM, Finch CK, Self TH. The clinical and economic burden of chronic obstructive pulmonary disease in the USA. Clinicoecon Outcomes Res. 2013;5:235–45.PubMedPubMedCentral Guarascio AJ, Ray SM, Finch CK, Self TH. The clinical and economic burden of chronic obstructive pulmonary disease in the USA. Clinicoecon Outcomes Res. 2013;5:235–45.PubMedPubMedCentral
23.
Zurück zum Zitat Lipson DA, Barnhart F, Brealey N, Brooks J, Criner GJ, Day NC, Dransfield MT, Halpin DMG, Han MK, Jones CE, et al. Once-daily single-inhaler triple versus dual therapy in patients with COPD. N Engl J Med. 2018;378(18):1671–80.CrossRef Lipson DA, Barnhart F, Brealey N, Brooks J, Criner GJ, Day NC, Dransfield MT, Halpin DMG, Han MK, Jones CE, et al. Once-daily single-inhaler triple versus dual therapy in patients with COPD. N Engl J Med. 2018;378(18):1671–80.CrossRef
24.
Zurück zum Zitat Puhan MA, Gimeno-Santos E, Cates CJ, Troosters T. Pulmonary rehabilitation following exacerbations of chronic obstructive pulmonary disease. Cochrane Database Syst Rev. 2016;12:CD005305.PubMed Puhan MA, Gimeno-Santos E, Cates CJ, Troosters T. Pulmonary rehabilitation following exacerbations of chronic obstructive pulmonary disease. Cochrane Database Syst Rev. 2016;12:CD005305.PubMed
25.
Zurück zum Zitat Spitzer KA, Stefan MS, Priya A, Pack QR, Pekow PS, Lagu T, Pinto-Plata VM, ZuWallack RL, Lindenauer PK. Participation in pulmonary rehabilitation after hospitalization for chronic obstructive pulmonary disease among Medicare beneficiaries. Ann Am Thorac Soc. 2019;16(1):99–106.CrossRef Spitzer KA, Stefan MS, Priya A, Pack QR, Pekow PS, Lagu T, Pinto-Plata VM, ZuWallack RL, Lindenauer PK. Participation in pulmonary rehabilitation after hospitalization for chronic obstructive pulmonary disease among Medicare beneficiaries. Ann Am Thorac Soc. 2019;16(1):99–106.CrossRef
26.
Zurück zum Zitat Wedzicha JA, Decramer M, Seemungal TA. The role of bronchodilator treatment in the prevention of exacerbations of COPD. Eur Respir J. 2012;40(6):1545–54.CrossRef Wedzicha JA, Decramer M, Seemungal TA. The role of bronchodilator treatment in the prevention of exacerbations of COPD. Eur Respir J. 2012;40(6):1545–54.CrossRef
27.
Zurück zum Zitat Beeh KM, Hederer B, Glaab T, Muller A, Rutten-van Moelken M, Kesten S, Vogelmeier C. Study design considerations in a large COPD trial comparing effects of tiotropium with salmeterol on exacerbations. Int J Chron Obstruct Pulmon Dis. 2009;4:119–25.PubMedPubMedCentral Beeh KM, Hederer B, Glaab T, Muller A, Rutten-van Moelken M, Kesten S, Vogelmeier C. Study design considerations in a large COPD trial comparing effects of tiotropium with salmeterol on exacerbations. Int J Chron Obstruct Pulmon Dis. 2009;4:119–25.PubMedPubMedCentral
28.
Zurück zum Zitat Wedzicha JA, Decramer M, Ficker JH, Niewoehner DE, Sandstrom T, Taylor AF, D'Andrea P, Arrasate C, Chen H, Banerji D. Analysis of chronic obstructive pulmonary disease exacerbations with the dual bronchodilator QVA149 compared with glycopyrronium and tiotropium (SPARK): a randomised, double-blind, parallel-group study. Lancet Respir Med. 2013;1(3):199–209.CrossRef Wedzicha JA, Decramer M, Ficker JH, Niewoehner DE, Sandstrom T, Taylor AF, D'Andrea P, Arrasate C, Chen H, Banerji D. Analysis of chronic obstructive pulmonary disease exacerbations with the dual bronchodilator QVA149 compared with glycopyrronium and tiotropium (SPARK): a randomised, double-blind, parallel-group study. Lancet Respir Med. 2013;1(3):199–209.CrossRef
Metadaten
Titel
Design for a multicenter, randomized, sham-controlled study to evaluate safety and efficacy after treatment with the Nuvaira® lung denervation system in subjects with chronic obstructive pulmonary disease (AIRFLOW-3)
verfasst von
Dirk-Jan Slebos
Bruno Degano
Arschang Valipour
Pallav L. Shah
Gaetan Deslée
Frank C. Sciurba
on behalf of the AIRFLOW-3 Trial Study Group
Publikationsdatum
01.12.2020
Verlag
BioMed Central
Erschienen in
BMC Pulmonary Medicine / Ausgabe 1/2020
Elektronische ISSN: 1471-2466
DOI
https://doi.org/10.1186/s12890-020-1058-5

Weitere Artikel der Ausgabe 1/2020

BMC Pulmonary Medicine 1/2020 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Notfall-TEP der Hüfte ist auch bei 90-Jährigen machbar

26.04.2024 Hüft-TEP Nachrichten

Ob bei einer Notfalloperation nach Schenkelhalsfraktur eine Hemiarthroplastik oder eine totale Endoprothese (TEP) eingebaut wird, sollte nicht allein vom Alter der Patientinnen und Patienten abhängen. Auch über 90-Jährige können von der TEP profitieren.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Bei schweren Reaktionen auf Insektenstiche empfiehlt sich eine spezifische Immuntherapie

Insektenstiche sind bei Erwachsenen die häufigsten Auslöser einer Anaphylaxie. Einen wirksamen Schutz vor schweren anaphylaktischen Reaktionen bietet die allergenspezifische Immuntherapie. Jedoch kommt sie noch viel zu selten zum Einsatz.

Therapiestart mit Blutdrucksenkern erhöht Frakturrisiko

25.04.2024 Hypertonie Nachrichten

Beginnen ältere Männer im Pflegeheim eine Antihypertensiva-Therapie, dann ist die Frakturrate in den folgenden 30 Tagen mehr als verdoppelt. Besonders häufig stürzen Demenzkranke und Männer, die erstmals Blutdrucksenker nehmen. Dafür spricht eine Analyse unter US-Veteranen.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.