Skip to main content
Erschienen in: Drug Safety 9/2015

01.09.2015 | Original Research Article

Detection of Drug–Drug Interactions Inducing Acute Kidney Injury by Electronic Health Records Mining

verfasst von: Yannick Girardeau, Claire Trivin, Pierre Durieux, Christine Le Beller, Lillo-Le Louet Agnes, Antoine Neuraz, Patrice Degoulet, Paul Avillach

Erschienen in: Drug Safety | Ausgabe 9/2015

Einloggen, um Zugang zu erhalten

Abstract

Background and Objective

While risk of acute kidney injury (AKI) is a well documented adverse effect of some drugs, few studies have assessed the relationship between drug–drug interactions (DDIs) and AKI. Our objective was to develop an algorithm capable of detecting potential signals on this relationship by retrospectively mining data from electronic health records.

Material and methods

Data were extracted from the clinical data warehouse (CDW) of the Hôpital Européen Georges Pompidou (HEGP). AKI was defined as the first level of the RIFLE criteria, that is, an increase ≥50 % of creatinine basis. Algorithm accuracy was tested on 20 single drugs, 10 nephrotoxic and 10 non-nephrotoxic. We then tested 45 pairs of non-nephrotoxic drugs, among the most prescribed at our hospital and representing distinct pharmacological classes for DDIs.

Results

Sensitivity and specificity were 50 % [95 % confidence interval (CI) 23.66–76.34] and 90 % (95 % CI 59.58–98.21), respectively, for single drugs. Our algorithm confirmed a previously identified signal concerning clarithromycin and calcium-channel blockers (unadjusted odds ratio (ORu) 2.92; 95 % CI 1.11–7.69, p = 0.04). Among the 45 drug pairs investigated, we identified a signal concerning 55 patients in association with bromazepam and hydroxyzine (ORu 1.66; 95 % CI 1.23–2.23). This signal was not confirmed after a chart review. Even so, AKI and co-prescription were confirmed for 96 % (95 % CI 88–99) and 88 % (95 % CI 76–94) of these patients, respectively.

Conclusion

Data mining techniques on CDW can foster the detection of adverse drug reactions when drugs are used alone or in combination.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Hines LE, Murphy JE. Potentially harmful drug-drug interactions in the elderly: a review. Am J Geriatr Pharmacother. 2011;9:364–77.CrossRefPubMed Hines LE, Murphy JE. Potentially harmful drug-drug interactions in the elderly: a review. Am J Geriatr Pharmacother. 2011;9:364–77.CrossRefPubMed
2.
Zurück zum Zitat Pimohamed M. Drug interactions of clinical importance. London: Chapman & Hall; 1998. Pimohamed M. Drug interactions of clinical importance. London: Chapman & Hall; 1998.
3.
Zurück zum Zitat Hazell L, Shakir SAW. Under-reporting of adverse drug reactions : a systematic review. Drug Saf. 2006;29:385–96.CrossRefPubMed Hazell L, Shakir SAW. Under-reporting of adverse drug reactions : a systematic review. Drug Saf. 2006;29:385–96.CrossRefPubMed
4.
Zurück zum Zitat Thakrar BT, Grundschober SB, Doessegger L. Detecting signals of drug–drug interactions in a spontaneous reports database. Br J Clin Pharmacol. 2007;64:489–95.CrossRefPubMedCentralPubMed Thakrar BT, Grundschober SB, Doessegger L. Detecting signals of drug–drug interactions in a spontaneous reports database. Br J Clin Pharmacol. 2007;64:489–95.CrossRefPubMedCentralPubMed
5.
Zurück zum Zitat Tatonetti NP, Fernald GH, Altman RB. A novel signal detection algorithm for identifying hidden drug-drug interactions in adverse event reports. J Am Med Inform Assoc. 2012;19:79–85.CrossRefPubMedCentralPubMed Tatonetti NP, Fernald GH, Altman RB. A novel signal detection algorithm for identifying hidden drug-drug interactions in adverse event reports. J Am Med Inform Assoc. 2012;19:79–85.CrossRefPubMedCentralPubMed
6.
Zurück zum Zitat Curtis JR, Cheng H, Delzell E, Fram D, Kilgore M, Saag K, et al. Adaptation of Bayesian data mining algorithms to longitudinal claims data: coxib safety as an example. Med Care. 2008;46:969–75.CrossRefPubMedCentralPubMed Curtis JR, Cheng H, Delzell E, Fram D, Kilgore M, Saag K, et al. Adaptation of Bayesian data mining algorithms to longitudinal claims data: coxib safety as an example. Med Care. 2008;46:969–75.CrossRefPubMedCentralPubMed
7.
Zurück zum Zitat Wang X, Hripcsak G, Markatou M, Friedman C. Active computerized pharmacovigilance using natural language processing, statistics, and electronic health records: a feasibility study. J Am Med Inform Assoc. 2009;16:328–37.CrossRefPubMedCentralPubMed Wang X, Hripcsak G, Markatou M, Friedman C. Active computerized pharmacovigilance using natural language processing, statistics, and electronic health records: a feasibility study. J Am Med Inform Assoc. 2009;16:328–37.CrossRefPubMedCentralPubMed
8.
Zurück zum Zitat Svanström H, Callréus T, Hviid A. Temporal data mining for adverse events following immunization in nationwide Danish healthcare databases. Drug Saf. 2010;33:1015–25.CrossRefPubMed Svanström H, Callréus T, Hviid A. Temporal data mining for adverse events following immunization in nationwide Danish healthcare databases. Drug Saf. 2010;33:1015–25.CrossRefPubMed
9.
Zurück zum Zitat Schuemie MJ. Methods for drug safety signal detection in longitudinal observational databases: LGPS and LEOPARD. Pharmacoepidemiol Drug Saf. 2011;20:292–9.CrossRefPubMed Schuemie MJ. Methods for drug safety signal detection in longitudinal observational databases: LGPS and LEOPARD. Pharmacoepidemiol Drug Saf. 2011;20:292–9.CrossRefPubMed
10.
Zurück zum Zitat Coloma PM, Trifirò G, Patadia V, Sturkenboom M. Postmarketing safety surveillance : where does signal detection using electronic healthcare records fit into the big picture? Drug Saf. 2013;36:183–97.CrossRefPubMed Coloma PM, Trifirò G, Patadia V, Sturkenboom M. Postmarketing safety surveillance : where does signal detection using electronic healthcare records fit into the big picture? Drug Saf. 2013;36:183–97.CrossRefPubMed
12.
Zurück zum Zitat Pouliot Y, Chiang AP, Butte AJ. Predicting adverse drug reactions using publicly available PubChem BioAssay data. Clin Pharmacol Ther. 2011;90:90–9.CrossRefPubMedCentralPubMed Pouliot Y, Chiang AP, Butte AJ. Predicting adverse drug reactions using publicly available PubChem BioAssay data. Clin Pharmacol Ther. 2011;90:90–9.CrossRefPubMedCentralPubMed
13.
Zurück zum Zitat Tatonetti NP, Denny JC, Murphy SN, Fernald GH, Krishnan G, Castro V, et al. Detecting drug interactions from adverse-event reports: interaction between paroxetine and pravastatin increases blood glucose levels. Clin Pharmacol Ther. 2011;90:133–42.CrossRefPubMedCentralPubMed Tatonetti NP, Denny JC, Murphy SN, Fernald GH, Krishnan G, Castro V, et al. Detecting drug interactions from adverse-event reports: interaction between paroxetine and pravastatin increases blood glucose levels. Clin Pharmacol Ther. 2011;90:133–42.CrossRefPubMedCentralPubMed
14.
Zurück zum Zitat Takahashi Y, Nishida Y, Nakayama T, Asai S. Comparative effect of clopidogrel and aspirin versus aspirin alone on laboratory parameters: a retrospective, observational, cohort study. Cardiovasc Diabetol. 2013;12:87.CrossRefPubMedCentralPubMed Takahashi Y, Nishida Y, Nakayama T, Asai S. Comparative effect of clopidogrel and aspirin versus aspirin alone on laboratory parameters: a retrospective, observational, cohort study. Cardiovasc Diabetol. 2013;12:87.CrossRefPubMedCentralPubMed
15.
Zurück zum Zitat Mehta RL, Pascual MT, Soroko S, Savage BR, Himmelfarb J, Ikizler TA, et al. Spectrum of acute renal failure in the intensive care unit: the PICARD experience. Kidney Int. 2004;66:1613–21.CrossRefPubMed Mehta RL, Pascual MT, Soroko S, Savage BR, Himmelfarb J, Ikizler TA, et al. Spectrum of acute renal failure in the intensive care unit: the PICARD experience. Kidney Int. 2004;66:1613–21.CrossRefPubMed
16.
Zurück zum Zitat Uchino S, Kellum JA, Bellomo R, Doig GS, Morimatsu H, Morgera S, et al. Acute renal failure in critically ill patients: a multinational, multicenter study. JAMA. 2005;294:813–8.CrossRefPubMed Uchino S, Kellum JA, Bellomo R, Doig GS, Morimatsu H, Morgera S, et al. Acute renal failure in critically ill patients: a multinational, multicenter study. JAMA. 2005;294:813–8.CrossRefPubMed
17.
Zurück zum Zitat Bellomo R, Ronco C, Kellum JA, Mehta RL, Palevsky P. Acute renal failure—definition, outcome measures, animal models, fluid therapy and information technology needs: the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. Crit Care. 2004;8:R204–12.CrossRefPubMedCentralPubMed Bellomo R, Ronco C, Kellum JA, Mehta RL, Palevsky P. Acute renal failure—definition, outcome measures, animal models, fluid therapy and information technology needs: the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. Crit Care. 2004;8:R204–12.CrossRefPubMedCentralPubMed
18.
Zurück zum Zitat Ricci Z, Cruz DN, Ronco C. Classification and staging of acute kidney injury: beyond the RIFLE and AKIN criteria. Nat Rev Nephrol. 2011;7:201–8.CrossRefPubMed Ricci Z, Cruz DN, Ronco C. Classification and staging of acute kidney injury: beyond the RIFLE and AKIN criteria. Nat Rev Nephrol. 2011;7:201–8.CrossRefPubMed
19.
Zurück zum Zitat Ricci Z, Cruz D, Ronco C. The RIFLE criteria and mortality in acute kidney injury: a systematic review. Kidney Int. 2007;73:538–46.CrossRefPubMed Ricci Z, Cruz D, Ronco C. The RIFLE criteria and mortality in acute kidney injury: a systematic review. Kidney Int. 2007;73:538–46.CrossRefPubMed
20.
21.
Zurück zum Zitat Lapi F, Azoulay L, Yin H, Nessim SJ, Suissa S. Concurrent use of diuretics, angiotensin converting enzyme inhibitors, and angiotensin receptor blockers with non-steroidal anti-inflammatory drugs and risk of acute kidney injury: nested case–control study. BMJ. 2013;346:e8525.CrossRefPubMedCentralPubMed Lapi F, Azoulay L, Yin H, Nessim SJ, Suissa S. Concurrent use of diuretics, angiotensin converting enzyme inhibitors, and angiotensin receptor blockers with non-steroidal anti-inflammatory drugs and risk of acute kidney injury: nested case–control study. BMJ. 2013;346:e8525.CrossRefPubMedCentralPubMed
22.
Zurück zum Zitat Bickel M, Khaykin P, Stephan C, Schmidt K, Buettner M, Amann K, et al. Acute kidney injury caused by tenofovir disoproxil fumarate and diclofenac co-administration. HIV Med. 2013;14:633–8.CrossRefPubMed Bickel M, Khaykin P, Stephan C, Schmidt K, Buettner M, Amann K, et al. Acute kidney injury caused by tenofovir disoproxil fumarate and diclofenac co-administration. HIV Med. 2013;14:633–8.CrossRefPubMed
23.
Zurück zum Zitat Gandhi S, Fleet JL, Bailey DG, McArthur E, Wald R, Rehman F, et al. Calcium-channel blocker-clarithromycin drug interactions and acute kidney injury. JAMA. 2013;310:2544–53.CrossRefPubMed Gandhi S, Fleet JL, Bailey DG, McArthur E, Wald R, Rehman F, et al. Calcium-channel blocker-clarithromycin drug interactions and acute kidney injury. JAMA. 2013;310:2544–53.CrossRefPubMed
24.
Zurück zum Zitat Yue Z, Shi J, Jiang P, Sun H. Acute kidney injury during concomitant use of valacyclovir and loxoprofen: detecting drug-drug interactions in a spontaneous reporting system. Pharmacoepidemiol Drug Saf. 2014;23(11):1154–9.CrossRefPubMed Yue Z, Shi J, Jiang P, Sun H. Acute kidney injury during concomitant use of valacyclovir and loxoprofen: detecting drug-drug interactions in a spontaneous reporting system. Pharmacoepidemiol Drug Saf. 2014;23(11):1154–9.CrossRefPubMed
25.
Zurück zum Zitat Zapletal E, Rodon N, Grabar N, Degoulet P. Methodology of integration of a clinical data warehouse with a clinical information system: the HEGP case. Stud Health Technol Inform. 2010;160:193–7.PubMed Zapletal E, Rodon N, Grabar N, Degoulet P. Methodology of integration of a clinical data warehouse with a clinical information system: the HEGP case. Stud Health Technol Inform. 2010;160:193–7.PubMed
27.
Zurück zum Zitat Gaião S, Cruz DN. Baseline creatinine to define acute kidney injury: is there any consensus? Nephrol Dial Transplant. 2010;25:3812–4.CrossRefPubMed Gaião S, Cruz DN. Baseline creatinine to define acute kidney injury: is there any consensus? Nephrol Dial Transplant. 2010;25:3812–4.CrossRefPubMed
28.
Zurück zum Zitat Pickering JW, Endre ZH. Back-calculating baseline creatinine with MDRD misclassifies acute kidney injury in the intensive care unit. CJASN. 2010;5:1165–73.PubMedCentralPubMed Pickering JW, Endre ZH. Back-calculating baseline creatinine with MDRD misclassifies acute kidney injury in the intensive care unit. CJASN. 2010;5:1165–73.PubMedCentralPubMed
Metadaten
Titel
Detection of Drug–Drug Interactions Inducing Acute Kidney Injury by Electronic Health Records Mining
verfasst von
Yannick Girardeau
Claire Trivin
Pierre Durieux
Christine Le Beller
Lillo-Le Louet Agnes
Antoine Neuraz
Patrice Degoulet
Paul Avillach
Publikationsdatum
01.09.2015
Verlag
Springer International Publishing
Erschienen in
Drug Safety / Ausgabe 9/2015
Print ISSN: 0114-5916
Elektronische ISSN: 1179-1942
DOI
https://doi.org/10.1007/s40264-015-0311-y

Weitere Artikel der Ausgabe 9/2015

Drug Safety 9/2015 Zur Ausgabe